文档库 最新最全的文档下载
当前位置:文档库 › 催化臭氧化

催化臭氧化

催化臭氧化
催化臭氧化

Applied Catalysis B:Environmental 97 (2010) 340–346

Contents lists available at ScienceDirect

Applied Catalysis B:

Environmental

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p c a t

b

Surface acidity and reactivity of ?-FeOOH/Al 2O 3for pharmaceuticals degradation with ozone:In situ ATR-FTIR studies

Li Yang,Chun Hu ?,Yulun Nie,Jiuhui Qu

State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China

a r t i c l e i n f o Article history:

Received 14December 2009

Received in revised form 10April 2010Accepted 13April 2010

Available online 22 April 2010Keywords:ATR-FTIR

Catalytic ozonation Mesoporous alumina ?-FeOOH

Pharmaceuticals

Surface Lewis acid sites

a b s t r a c t

The surface acidity and reactive activity of ?-FeOOH,mesoporous alumina (MA),?-FeOOH/MA were investigated in catalytic ozonation of pharmaceutically active compounds (PhACs)aqueous solution.?-FeOOH/MA showed high ef?ciency for the degradation and mineralization of ibuprofen and cipro?oxacin.Its surface Lewis acid sites on ?-FeOOH/MA were more greatly enhanced compared with those on MA and ?-FeOOH.In situ attenuated total re?ection FTIR (ATR-FTIR)spectroscopy was used to investigate the interaction of D 2O and O 3with the catalysts in aqueous phase under various conditions.The dissociative chemisorptions of D 2O occurred at the surface Lewis acid sites of the catalyst.Furthermore,O 3interacted with the surface hydrogen-bonded –O–D and D 2O to initiate reactive oxygen species (ROS).The stronger Lewis acid sites of ?-FeOOH/MA caused the more chemisorbed water enhancing the interaction with ozone,resulting in higher catalytic reactivity.The observations veri?ed that the Lewis acid sites were reactive centers for the catalytic ozonation of PhACs in water.

? 2010 Elsevier B.V. All rights reserved.

1.Introduction

In recent years,numerous studies have established the occur-rence of pharmaceutically active compounds (PhACs)and several drug metabolites in the aquatic environment [1–4].Although the detected concentration levels of PhACs in aqueous environment are low and often range from ng/L to ?g/L levels,the potential dangers to human and ecological health exist due to long-term exposure [5,6].PhACs show a wide range of persistence in aquatic environ-ments,and some are highly persistent,which have been found to resist water and wastewater treatment [7,8].

Ozonation and especially advanced oxidation processes seem to be very effective in removal of PhACs [9,10].However,some PhACs,such as ibuprofen and cipro?oxacin could not be completely degraded with ozone alone [11,12].Heterogeneous catalytic ozona-tion has received increasing attention in recent years due to its potentially higher effectiveness in the degradation and mineraliza-tion of refractory organic pollutants and lower negative effect on water quality.It has been developed to overcome the limitations of ozonation processes,such as the formation of byproducts and selective reactions of ozone,which are designed to enhance the pro-duction of hydroxyl radicals (?OH),known nonselective oxidants [13,14].

?Corresponding author.Tel.:+861062849628;fax:+861062923541.E-mail address:huchun@https://www.wendangku.net/doc/0f9989918.html, (C.Hu).Supported and unsupported metals and metal oxides are the most commonly tested catalysts for the ozonation of organic com-pounds in water or air [15–18].It has been veri?ed that the catalyst activity for catalytic ozonation mainly depends on its sur-face acid–base property [18].Bulanin et al.[19]suggested that ozone dissociates after adsorption on strong Lewis sites yielding a surface oxygen atom,whereas on weaker sites,ozone molecules coordinate via one of the terminal oxygen atoms.This situation takes place in gaseous phase.In aqueous phase,it still could not be con?rmed whether ozone adsorption/decomposition occurs on the Lewis acid sites as do in gaseous phase due to the possible interac-tion of H 2O,OH ?and other hard Lewis bases commonly present in water.There is no evidence to prove whether the Lewis acid sites are active surface sites for the decomposition of O 3in water.Zhao et al.[20]proposed that molecule ozone in aqueous solution should interact with the surface–OH 2+existing on the surface of catalyst according to two basic attractive forces:electrostatic forces or/and hydrogen bonding to initiate the formation of ?OH.The surface hydroxyl groups of metal oxides in aqueous solution came from surface hydroxylation of chemisorbed water,which occurred only at the lattice metal ion site acting as a Lewis acid [21–23].Therefore,the surface Lewis acid sites of the catalyst still played an important role for catalytic ozonation in aqueous phase.

In the present study,the primary objective was to investigate the relationship of both the acid–base properties and the activity of catalysts for catalytic ozonation in water.Mesoporous ?-Al 2O 3(MA),?-FeOOH and MA-supported ?-FeOOH were synthesized and examined for the catalytic ozonation of ibuprofen and cipro?oxacin

0926-3373/$–see front matter ? 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.apcatb.2010.04.014

L.Yang et al./Applied Catalysis B:Environmental 97 (2010) 340–346

341

Table 1

The structure of selected pharmaceuticals.

Name

Chemical structure

p K a

Ibuprofen 4.9

Cipro?oxacin

6.27?COOH 8.87

NH 2+

in water.The MA-supported ?-FeOOH was found to be highly effec-tive for the mineralization of ibuprofen and cipro?oxacin with ozone.The surface acidity and catalytic activity of the catalyst were investigated in detail by in situ ATR-FTIR spectroscopy under differ-ent experiments.The results indicate that the Lewis acid sites are crucial surface reactive centers for chemisorbed water molecules,and the active species generated from the interaction of ozone with the surface hydroxyl.It was veri?ed that the Lewis acid sites were catalytic ozonation centers in aqueous phase.

2.Experimental

2.1.Materials and reagents

Ibuprofen (IBU)was obtained from TCI Japan (Tokyo,Japan),and cipro?oxacin (CPFX)was purchased from Acros (Geel,Bel-gium).Their purities were higher than 99%.Their structure and p K a were shown in Table 1.Aluminum i -propoxide (Al(O i Pr)3),glucose and urea were purchased from Beijing Chemical Reagents (Beijing,China).Iron chloride hexahydrate was acquired from Xilong Chem-ical Factory (Shantou,China).All the other reagents were analytical grade and used as received.All solutions were prepared with deion-ized water.The initial pH of the solution was adjusted with HCl or NaOH.

2.2.Catalyst preparation

Mesoporous ?-Al 2O 3(MA)was prepared from precursors of Al(O i Pr)3in the presence of glucose in aqueous system according to the reported method [24].Then ?-FeOOH was supported on MA by hydrothermal hydrolysis process with iron chloride hexahydrate (FeCl 3·6H 2O)as the metal precursor.As an example,0.30g of ferric chloride and 0.40g urea were dissolved in 3mL of distilled water,and 2g MA was added to this solution.The pH was adjusted to 1.6with hydrochloric acid.Subsequently,the temperature was main-tained at 373K with a water bath for 4h,and then cooled to room temperature naturally and the sample was washed with deionized water.Following this procedure,the catalysts with different Fe con-tents were prepared from 1to 8wt%,while the catalyst with 3wt%Fe exhibited the highest activity,designated by ?-FeOOH/MA,and was used for all of the experiments.The weight percent of Fe was calculated by the ratio of the dosage of Fe to the total dosage of ?-Al 2O 3and Fe.As reference,the unsupported ?-FeOOH was syn-thesized by the same procedure in the absence of MA.

2.3.Characterization

Nitrogen adsorption/desorption experiments of various sam-ples were carried out using a Micromeritics ASAP2000analyzer (Micromeritics,Norcross,GA).Powder X-ray diffraction (XRD)of the catalyst was recorded on an XDS-2000Diffractometer (Scin-tag,Cupertino,CA)with Cu K ?radiation ( =1.54059?).The zeta potential of catalysts in the KNO 3(10?3M)solution was mea-sured with a Zetasizer 2000(Malvern,Worcestershire,UK)with three consistent readings.The preparation processes of ozonated samples for FTIR analysis were as follows.A desired amount of catalyst particles was added into water,followed by the addi-tion of ozone stock solution.Finally,the concentration of the catalyst was 2g/L.The suspension was continuously magnetically stirred for half an hour and then dried overnight at 333K.The infrared spectrum of the dry samples supported on KBr pellets,was recorded on a Nicolet 5700FTIR spectrophotometer.The spectrum of pure KBr pellet was used as background while recording sample spectra.

In situ ATR-FTIR spectroscopy .To prepare an ATR sample,a desired amount of catalyst particles was added to D 2O solvent and the suspensions were sonicated intermittently over 48h.And then the solid was separated by centrifugation and treated again with another aliquot of D 2O without or with IBU compound to eliminate residual H 2O.For the ozonation experiments,the ozone D 2O solution (3mg/L)was added.The suspension was vigor-ously shaken,and the aliquots were immediately withdrawn for ATR-FTIR analysis.All manipulations are performed under nitro-gen atmosphere when D 2O is employed.A short time before running the spectra,the samples are centrifuged,half of the supernatant is used as reference,the solid resuspended in the other half and used as the sample.The ?nal concentration of the catalyst was 100g/L.ATR-FTIR spectra were recorded using a Nicolet 5700infrared spectrometer with a deuterated triglycine sulfate (DTGS)detector and a ZnSe horizontal ATR cell.Infrared spectra over the 4000–650cm ?1range were obtained by aver-aging 32scans with a resolution of 4cm ?1at room temperature (298K).

2.4.Procedures and analysis

Semi-batch experiments were carried out with the 1.2L reactor as described in the previous work [25].The reaction tempera-ture was maintained at 20?C.In a typical experiment,1L aqueous suspensions of PhACs at various concentrations and 1.5g catalyst powders were placed in the reactor.The solution was continuously magnetically stirred,and 30mg gaseous O 3/L oxygen–ozone was bubbled into the reactor through the porous plate of the reactor bottom at a 12L/h ?ow rate.Ozone was generated by a laboratory ozonizer (DHX-SS-IG;Harbin Jiujiu Electrochemistry Technology,Harbin City,China)in the reactor.The residual ozone in the off-gas was adsorbed by a KI solution.At given time intervals,samples were withdrawn and ?ltered through a ?lter (pore size 0.45?m;Millipore,Billerica,MA)for analysis.An aliquot of 0.1M Na 2S 2O 3was subsequently added to the sample to quench the aqueous ozone remaining in the reaction solution.The gaseous ozone con-centration was measured using the iodometric titration method.The concentration of ozone dissolved in the aqueous phase was determined using the indigo method.The concentration of each PhAC was measured using high-performance liquid chromatogra-phy (1200series;Agilent,Santa Clara,CA)with an Eclipse XDB-C18column (5?m,4.6mm ×150mm;Agilent).The mobile phase was a solution of 60/40(v/v)acetonitrile–phosphate buffer solution (20mM,pH 2.5)with a ?ow rate of 1mL/min.The amount of Fe 3+in the supernatant was measured by inductively coupled plasma optical emission spectrometry (ICP-OES)on an OPTIMA

342L.Yang et al./Applied Catalysis B:Environmental

97 (2010) 340–346

Fig.1.Nitrogen adsorption–desorption isotherms of (a)MA and (b)?-FeOOH/MA.The inset shows the pore size distribution calculated from their desorption

branch.

Fig.2.XRD patterns of different catalysts:(a)MA,(b)?-FeOOH/MA.The inset shows the XRD pattern of ?-FeOOH.

2000(PerkinElmer Co.)instrument.The total organic carbon (TOC)content of the solution was analyzed using a Phoenix 8000TOC analyzer.

3.Results and discussion 3.1.Characterization of catalysts

The nitrogen adsorption/desorption curves are presented in Fig.1.Both MA and ?-FeOOH/MA samples exhibited adsorption isotherms of type IV with hysteresis loops,which means that the materials had a mesoporous structure.The pore size distribution of ?-FeOOH/MA catalyst was nearly identical to that of the MA (the inset of Fig.1).The BET surface areas were 287and 272m 2/g for MA and ?-FeOOH/MA,respectively.The introduction of ?-FeOOH did not change signi?cantly the pore diameters of MA and the BET surface area,indicating that ?-FeOOH had high dispersion on MA.The XRD patterns of different samples are shown in Fig.2.It has been veri?ed that the support MA had a mesoporous structure,assigned to ?-Al 2O 3[25].?-FeOOH is the predominant phase of the unsupported sample prepared by hydrolysis of FeCl 3under the given experimental condition (the insert of Fig.2),while no

XRD

Fig.3.Plot of the zeta potential as a function of pH for different catalyst suspensions in the presence of KNO 3(10?3M):(a)MA,(b)?-FeOOH,(c)?

-FeOOH/MA.

Fig.4.pH change of solution with the addition of different catalysts:(a)MA,(b)?-FeOOH,(c)?-FeOOH/MA.

diffraction peaks of ?-FeOOH were observed in the supported sam-ple.This presumably contributed to its low loading content (3wt%)and high dispersion on MA.Based on the same method of prepara-tion,the supported iron oxide should have the same structure as the unsupported one.Therefore,the supported sample was designated ?-FeOOH/MA.

Fig.3shows the changes of the zeta potential with the pH of the solution.The pH of points of zero charge (pHpzc)were 9.1,8.8and 8.5for ?-FeOOH/MA,?-FeOOH and MA,respectively.The three metal oxides can behave as cation or anion exchangers,which are based on the ability of surface hydroxyl groups to dissociate or to be protonated.

Me ?OH +H +?Me ?OH +

2,

K int

1

Me ?OH +OH ??Me ?O ?+H 2O

K int 2

where K int 1

and K int 2

are the intristic ionization constants.The pHpzc depends on ionization reactions and is related to the ionization constants [26].

pHpzc =0.5(p K int 1+p K int

2)

Upward shifts of the pHpzc for ?-FeOOH/MA indicated that the catalyst surface enhanced the ability of ionizing H +ions,further suggesting that the surface Lewis acid sites increased.As shown in Fig.4,the pH of aqueous ?-FeOOH/MA suspension decreased with its concentration increasing.The pH of suspension was 4.64at the catalyst concentration 2g/L.For ?-FeOOH and MA,the pH of suspension did not greatly change and tended to 6–7with the

L.Yang et al./Applied Catalysis B:Environmental97 (2010) 340–346

343

Fig.5.FTIR spectra of various processes:(A)unozonated samples,(B)after treat-ment with ozone solution.For all panels,(a)?-FeOOH,(b)MA and(c)?-FeOOH/MA.

concentrations of catalysts increasing.The result indicated that?-FeOOH/MA surface had stronger Lewis acid sites than the other two.?-FeOOH/MA could have more adsorption of Lewis base such as water and ozone.The surface changes of the three catalysts were characterized by FTIR after treated with water or ozone aqueous solution.The samples for FTIR were prepared by drying catalyst suspensions with or without ozone overnight in air at333K.As shown in Fig.5A,the uptake of water by?-FeOOH/MA signi?cantly increased as indicated by the growth of the adsorbed water features which extend from approximately3800to2600cm?1,compared with those on MA and?-FeOOH.Correspondingly,on the FTIR spectra of these catalysts treated with ozone aqueous solution a new peak appeared at around1380cm?1(Fig.5B).The same fea-ture peak produced by the treatment of alumina with ozone was observed by Roscoe and Abbatt[27].They veri?ed in detail that the peak contributed to a surface oxide species formed by the interac-tion of ozone with Lewis acid sites on the alumina surface,and that the presence of water strongly inhibited the formation of the spec-tral feature at1380cm?1.However,in the present experiment,the peak at1380cm?1appeared after the ozone suspension was dried at333K overnight.The residual water in the sample did not affect the peak forming although water not ozone would hold on Lewis acid sites.The results indicated that different processes occurred in the tested conditions from the ones reported by Roscoe,which would be illustrated by in situ ATR-FTIR studies in the following.The intensities of the peak increased according to the following order:?-FeOOH/MA>MA>?-FeOOH,which closely paralleled the surface Lewis acid sites of the different catalysts.The results suggested that the surface Lewis acid sites should be relative to the peak formation of1380cm?1.Meanwhile,a series of ozone decomposition experi-ments were carried out in the presence of the studied catalysts.As can be seen from Fig.6,the ozone decomposition rate was

enhanced Fig.6.Decomposition of ozone in aqueous dispersions of various catalysts:(a) without catalyst,(b)?-FeOOH,(c)MA,(d)?

-FeOOH/MA.

Fig.7.Degradation of IBU in aqueous dispersions of various catalysts with ozone: (a)ozone alone,(b)?-FeOOH,(c)MA,(d)?-FeOOH/MA and(e)adsorption on?-FeOOH/MA(pH7.0,catalyst=1.5g/L,gaseous ozone concentration=30mg/L).The inset shows the TOC removal under the corresponding conditions.

by different catalysts,MA and?-FeOOH showed similar activity,?-FeOOH/MA exhibited the higher activity than the others.Since the decomposition of O3is a chain reaction.The reactive species generated from the decomposition of O3were not consumed due to the absence of pollutant in the experiments,leading to the rate difference to be smaller for the O3decomposition.However,the ?-FeOOH/MA exhibited highest activity agreeing with the obser-vation of FTIR,verifying the surface Lewis acid sites responsible for the catalytic decomposition of ozone.

3.2.Catalytic ozonation of IBU and CPFX

The catalytic activity of various catalysts was evaluated by the degradation of IBU(10mg/L)with ozone at an initial pH7.As shown in Fig.7,IBU was completely degraded in?-FeOOH/MA suspen-sion within a reaction time of9min,while about80%of IBU was removed over MA and?-FeOOH,respectively,and only50%of IBU was removed with ozone alone at the same reaction time.In addi-tion,about5%of IBU was adsorbed onto?-FeOOH/MA when the adsorption reached equilibrium.The p K a of IBU is4.9;most of IBU was in its anion form at the tested neutral pH.Meanwhile,at a reac-tion time of40min,only20%of TOC was removed with ozone alone, while about40and54%of TOC were removed in?-FeOOH and MA suspensions with ozone,respectively.In contrast,90%of TOC were

344L.Yang et al./Applied Catalysis B:Environmental

97 (2010) 340–346

Fig.8.Degradation of CPFX in the catalytic ozone with?-FeOOH/MA:C/C0:(a)cat-alyst,(b)ozone alone;TOC/TOC0:(c)catalyst,(d)ozone alone and(e)adsorption on catalyst(pH7.0,catalyst=1.5g/L,gaseous ozone concentration=30mg/L).

removed over?-FeOOH/MA at the same reaction time in the inset of Fig.7.The released Fe3+concentration from?-FeOOH/MA was 11?g/L during the ozonation reactions,which was similar to that of O3alone.The result indicated that the catalytic contribution of homogeneous Fe3+could be neglected.?-FeOOH/MA exhibited the highest catalytic activity for the catalytic ozonation of IBU and CPFX, which paralleled with the interaction between O3and the catalyst, indicating the key role of surface Lewis acid sites in the catalytic oxidation of pollutants with ozone.In the meanwhile,as shown in Fig.8,for the degradation of CPFX,the catalytic ozonation and the ozone alone exhibited similar effectiveness.However,for fur-ther degradation of intermediates,the oxidation performance of the ozone alone was not enough.Only30%TOC was removed with ozone alone at40min,while88%TOC was removed in?-FeOOH/MA suspension with ozone,indicating?-FeOOH/MA more effective for the mineralization of CPFX.Moreover,the adsorption of CPFX was examined onto?-FeOOH/MA,12%of TOC was adsorbed.The p K a of CPFX is6.27and8.87,it was mainly in undissociated form at the tested pH.Therefore,the contribution of the adsorption was not predominant during the catalytic ozonation of IBU and CPFX.

3.3.Catalytic ozonation mechanism ofˇ-FeOOH/MA

All the above results proved that the high ef?ciency of?-FeOOH/MA catalytic ozonation resulted from its comparatively strong surface Lewis acid sites.Furthermore,in situ ATR-FTIR experiments were carried out under different reaction conditions to investigate the role of the surface Lewis acid sites of the cata-lysts in aqueous phase.In this experiment,D2O was used as solvent instead of H2O to separate from the bulk OH of these catalysts.As shown in Fig.9,the stretching vibration of the hydrogen-bonded MeO–D for?-FeOOH,MA and?-FeOOH/MA were2463,2445, 2547cm?1,respectively.While the corresponding2322,2287and 2272cm?1were assigned to the vibrations of hydrogen-bonded D2O.The bands at around1500cm?1also belonged to the vibra-tion of hydrogen-bonded D2O.Obviously,?-FeOOH/MA exhibited the biggest intensities of hydrogen-bonded MeO–D and D2O.The result indicated that the more surface Lewis acid sites resulted in the more chemisorbed water to be formed on the surface of?-FeOOH/MA.When ozone was added to these catalyst suspensions, all the peak intensities of three catalysts increased.The results indi-cated that the interaction of the catalysts with O3aqueous solution brought about more chemisorbed water on the surface of the cata-lyst.Among them,the intensities of the peaks from adsorbed water on?-FeOOH/MA were strongest indicating the greatest interac-tion of O3with it.With the addition of IBU to the reaction

system,Fig.9.ATR-FTIR spectra of different reactions in D2O under various conditions:(A)?-FeOOH,(B)MA and(C)?-FeOOH/MA.For all panels,(a)catalyst,(b)catalyst+O3, (c)catalyst+O3+IBU.

the intensities of all the peaks decreased.In the meanwhile,the degradation of IBU was also observed.The observation paralleled in their catalytic activity for the catalytic ozonation of IBU.These results indicated that the chemisorbed water and its dissociative hydroxyl groups were active precursor in the degradation of IBU. Its formation and activation depended on the surface Lewis acid sites of the catalysts.Since phosphate is a harder Lewis base than water,its existence would inhibit the adsorption of water on the Lewis acid sites of the catalyst,causing lower activity.To ascertain the conjecture,the effect of phosphate on the catalytic degradation of IBU was investigated in?-FeOOH/MA suspension with ozone. Obviously,the absorption bands of hydrogen-bonded MeO–D and D2O disappeared in the presence of phosphate,while two new peaks appeared at1022and1105cm?1,belonging to phosphate vibrations[28]as shown in Fig.10.Accordingly,the TOC removal

L.Yang et al./Applied Catalysis B:Environmental 97 (2010) 340–346

345

Fig.10.ATR-FTIR spectra of ?-FeOOH/MA suspension in D 2O:(a)without phosphate and (b)in the presence of 30mM

phosphate.

Fig.11.Effect of phosphate on the reaction activity of ?-FeOOH/MA:(a)with-out phosphate and (b)5mM phosphate (pH 7.0,catalyst =1.5g/L,gaseous ozone concentration =30

mg/L).

Fig.12.Effect of phosphate on decomposition of ozone under different conditions:(a)without catalyst and phosphate,(b)with 5mM phosphate,(c)?-FeOOH/MA with 5mM phosphate,(d)?-FeOOH/MA,(e)with 1M phosphate.

was greatly depressed in the presence of 5mM phosphate (Fig.11).Phosphate had two roles to affect the reactivity of the catalyst.One is that phosphate held the surface Lewis acid sites on the catalyst preventing chemisorption of the water,leading to lower activity,the other is that phosphate could trap ?OH competing with pollu-tant.In order to express the former,the decomposition of O 3was

examined with and without phosphate in the absence of pollutant.As can be seen from Fig.12,the catalytic decomposition rate of O 3greatly decreased in the presence of phosphate,which is similar to the one in ozone alone with phosphate.The results indicated that the catalytic decomposition of O 3was nearly completely depressed in the presence of phosphate.In addition,the decomposition of O 3belonged to the chain reaction,producing free radicals,which could be scavenged by the radical scavenger and organics,thus accelerating the decomposition of O 3[29,30].The observation of the phosphate at 5mM enhancing the decomposition rate of O 3in pure water is different from those reported [29].However,with the increasing phosphate concentration,the decomposition rate of O 3decreased.In these experiments with different phosphate concen-trations,the solution pH was kept at pH 7by adjusting the addition ratio of Na 2HPO 4and NaH 2PO 4.The formation of phosphate in water mainly depended on solution pH.Therefore,the charac-ters of phosphates in these experiments were same although their concentrations were different.For the O 3decomposition experi-ment in pure water,the initial pH 7of solution was adjusted by 0.1M NaOH solution,and the solution pH was about 7.5after the reaction ?nished,so the pH changes favored the decomposition of O 3.The interaction of phosphate with ozone still needs to be investigated further in detail in another work.Nevertheless,it was obvious that the catalyst hardly played any role in the decomposi-tion of O 3in the presence of phosphate compared with the one in ozone alone with phosphate.The results indicated that the catalytic role of ?-FeOOH/MA was almost completely depressed due to the replacement of surface hydroxyl group and chemisorbed water by phosphate.These studies con?rm that the reactive oxygen species are generated by the interaction of the ozone in aqueous solution with the surface hydrogen-bonded MeO–D and D 2O in aqueous phase catalytic ozonation,while the surface Lewis acid sites are reactive sites for the surface hydroxylation of catalysts in water.Therefore,the peak at 1380cm ?1shown in Fig.5B was formed from the interaction of the hydroxyl groups and the chemisorbed water with O 3.Zhao et al.[20]studied the relationship of the density of surface–OH 2+and the zero charge point of the pH of catalyst and the ?OH formation,indicating the initiation of ?OH by the interac-tion of ozone in aqueous solution with the surface–OH 2+.Here,the studies of in situ ATR-FTIR supplied direct evidences for the interac-tion of the Lewis acid sites with H 2O,the surface hydrogen-bonded MeO–D and D 2O with O 3at the solid–liquid interface,proving the process of catalytic ozonation.

4.Conclusions

Surface Lewis acid sites on ?-FeOOH/MA were more greatly enhanced by the combination of ?-FeOOH and MA.The catalyst showed high ef?ciency for the mineralization of IBU and CPFX aque-ous solution with ozone.In situ ATR-FTIR studies veri?ed that the dissociative chemisorptions of D 2O occurring at the surface Lewis acid sites of the catalyst,and interacted with ozone to initiate ROS.The stronger Lewis acid sites of ?-FeOOH/MA caused the more chemisorbed water enhancing the interaction with ozone,result-ing in higher catalytic reactivity.The observations veri?ed that the Lewis acid sites were reactive center for the catalytic ozonation of PhACs in water.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.20977104,50778169,50921064)and the Chinese Academy of Sciences (kzcx1-yw-06-02)and the 973project (2010CB933600).

346L.Yang et al./Applied Catalysis B:Environmental97 (2010) 340–346

Appendix A.Supplementary data

Supplementary data associated with this article can be found,in the online version,at doi:10.1016/j.apcatb.2010.04.014. References

[1]B.Halling-S?rensen,S.Nors Nielsen,https://www.wendangku.net/doc/0f9989918.html,nzky,F.Ingerslev,H.C.Holten

Lützh?ft,S.E.J?rgensen,Chemosphere36(1998)357–393.

[2]N.M.Vieno,T.Tuhkanen,L.Kronberg,Environ.Sci.Technol.39(2005)

8220–8226.

[3]M.J.Benotti,B.J.Brownawell,Environ.Sci.Technol.41(2007)5795–5802.

[4]T.Heberer,Toxicol.Lett.131(2002)5–17.

[5]F.Pomati,https://www.wendangku.net/doc/0f9989918.html,ting,D.Calamari,B.A.Neilan,Aquat.Toxicol.67(2004)

387–396.

[6]F.Pomati,S.Castiglioni,E.Zuccato,R.Fanelli,D.Vigetti,C.Rossetti,D.Calamari,

Environ.Sci.Technol.40(2006)2442–2447.

[7]T.A.Ternes,M.Meisenheimer,D.McDowell,F.Sacher,H.J.Brauch,B.Haist-

Gulde,G.Preuss,U.Wilme,N.Zulei-Seibert,Environ.Sci.Technol.36(2002) 3855–3863.

[8]P.E.Stackelberg,E.T.Furlong,M.T.Meyer,S.D.Zaugg,A.K.Henderson,D.B.Reiss-

man,Sci.Total Environ.329(2004)99–113.

[9]C.Zwiener,F.H.Frimmel,Water Res.34(2000)1881–1885.

[10]N.M.Vieno,H.Harkki,T.Tuhkanen,L.Kronberg,Environ.Sci.Technol.41(2007)

5077–5084.

[11]M.M.Huber,S.Canonica,G.-Y.Park,U.von Gunten,Environ.Sci.Technol.37

(2003)1016–1024.

[12]B.DeWitte,J.Dewulf,K.Demeestere,V.Van De Vyvere,P.De Wispelaere,H.

Van Langenhove,Environ.Sci.Technol.42(2008)4889–4895.[13]R.Andreozzi,A.Insola,V.Caprio,R.Marotta,V.Tufano,Appl.Catal.A:Gen.138

(1996)75–81.

[14]B.Legube,N.Karpel Vel Leitner,Catal.Today53(1999)61–72.

[15]F.J.Beltrán,F.J.Rivas,R.Montero-de-Espinosa,Appl.Catal.B:Environ.47(2004)

101–109.

[16]W.-J.Huang,G.-C.Fang,C.-C.Wang,Colloids Surf.A:Physicochem.Eng.Aspects

260(2005)45–51.

[17]F.J.Beltrán,F.J.Rivas,R.Montero-de-Espinosa,Appl.Catal.B:Environ.39(2002)

221–231.

[18]B.Kasprzyk-Hordern,M.Zióek,J.Nawrocki,Appl.Catal.B:Environ.46(2003)

639–669.

[19]K.M.Bulanin,https://www.wendangku.net/doc/0f9989918.html,valley,A.A.Tsyganenko,Colloids Surf.A:Physicochem.Eng.

Aspects101(1995)153–158.

[20]L.Zhao,Z.Z.Sun,J.Ma,Environ.Sci.Technol.43(2009)4157–4163.

[21]P.W.Schindler,in:M.A.Anderson,A.J.Rubin(Eds.),Adsorption of Inorgan-

ics at Solid–Liquid Interfaces,Ann Arbor Publishers,Inc.,Michigan,1981,pp.

1–50.

[22]D.A.Dzombak,F.M.M.Morel,Surface Complexation Modeling,John Wiley&

Sons,New York,1990.

[23]W.Stumm,Chemistry of the Solid–Water Interface,John Wiley&Sons,New

York,1992.

[24]B.J.Xu,T.C.Xiao,Z.F.Yan,X.Sun,J.Sloan,S.L.González-Cortés,F.Alshahrani,

M.L.H.Green,Micropor.Mesopor.Mater.91(2006)293–295.

[25]L.Yang,C.Hu,Y.L.Nie,J.H.Qu,Environ.Sci.Technol.43(2009)2525–2529.

[26]J.Nawrocki,M.Rigney,A.McCormick,P.W.Carr,J.Chromatogr.A657(1993)

229–282.

[27]J.M.Roscoe,J.P.D.Abbatt,J.Phys.Chem.A109(2005)9028–9034.

[28]M.I.Tejedor-Tejedor,M.A.Anderson,Langmuir2(1986)203–210.

[29]J.Staehelin,J.Hoigné,Environ.Sci.Technol.16(1982)676–681.

[30]H.Taube,W.C.Bray,J.Am.Chem.Soc.62(1940)3357–3373.

2020年臭氧催化氧化计算书

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 一、进水条件 当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。以下为部分重要的原水进水条件。 1.1pH 催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。 1.2温度 进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。 1.3氯化物 氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。 1.4臭氧投加方式 臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。 二、相关简图 1.1催化氧化填料 催化剂主要特点如下:

(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构; (2) 在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物; (3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。 催化剂填料图片如下: 臭氧催化氧化填料 规格参数如下: 项目指标单位规格 外观指 标 吸水率% 45% -55% 粒径mm 条形3-6 堆积密度t/m30.45 -0.62 耐磨强度% ≥92% 压碎强度N/cm ≧110 碘值mg/g ≧550 活性金属含量% 3% -4% 性能指COD去除率% 40%-75%

均相催化臭氧氧化设备处理染料废水技术

均相催化臭氧氧化设备处理染料废水技术 催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。 催化臭氧氧化设备 1、均相催化臭氧氧化设备处理染料废水技术 前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处=理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。 2、非均相催化臭氧氧化设备处理染料废水技术 在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。负载型非均相催化剂由载体、活性组分和助剂三部分组成。常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。

为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。

臭氧联合氧化技术在污水处理方面的新进展

臭氧联合氧化技术在污水处理方面的新进展 贾瑞平,陈烨璞 (上海大学理学院化学系,上海200444) 【摘要]介绍了近年来国内外采用臭氧以及臭氧联合氧化技术在污水处理研究方面的新进展。在低剂量和短时间内臭氧难以完全矿化有机物,且分解生成的中间产物会阻止臭氧的进一步氧化。但以其他方法与臭氧联用,可大大促进臭氧分解,提高有机物的去除率。因此臭氧与过氧化氢、紫外线、超声波、光催化以及生物技术等多种手段联用于水处理已经成为目前研究的热点,并取得了显著的进步。 【关键词]臭氧;污水处理;高级氧化;生物处理;联合氧化 水是人类社会得以存在和发展的重要资源。随着人们对水的需求越来越多。污水处理后回用成为解决水资源短缺问题的有效途径。 臭氧是一种强氧化剂。用于污水处理可有效地消毒、除色、除臭、改善水味、去除有机物和降低COD等。因此,近年来臭氧及其与其他手段联合用于处理各种污水的技术获得了迅速的发展。笔者着重讨论了近年来臭氧联合氧化技术用于污水处理方面的新进展。l臭氧氧化法 臭氧是一种强氧化剂,氧化电势为2.07V,与有机物反应时速度快并且可就地生产,原料易得,使用方便,不产生二次污染。臭氧能与水中各种形态存在的污染物质(溶解、悬浮、胶体物质及微生物等)起反应,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。多余O3可自行分解为O2。 刘和义等对极难生物降解的呋吗唑酮模拟废水进行了臭氧化处理研究。当模拟废水中呋吗唑酮初始质量浓度为500mg/L,pH128,臭氧投加量2g/L时,BOD5/COD>03,可生化性显著高;臭氧投加量6g/L时,脱色率达100%,CODQ和TOC去除率分别达到95.9%和95.2%。水中有机物基本矿化。卢宁川等采用臭氧氧化的方法.对某厂苯酐车间的增塑剂废水的氧化降解过程进行了探讨。结果表明,将废水pH调至9、臭氧氧化时间为60min时,对增塑剂废水中COD的去除率较高,可达41.5%,适当提高pH可加快污染物的氧化速率,同时降低了臭氧投加计量比值。从而增加了臭氧的利用率。 王长友等采用臭氧氧化法降解金矿氰化废水,废水水样pH为8.0~9.0,当氧化反应时间达到12min,臭氧投加量为133.33mg/L时,氰化物去除率达到98.1%.残余氰化物质量浓度为0.43mg/L。 Y.Chen等研究了臭氧氧化降解水溶液中的2-巯噻唑(2一MT)。当2一MT全部分解时,硫酸盐生成率和TOC去除率分别为24%和2.3%。在实验中,增加臭氧量,则硫酸盐生成率和TOC去除率最大值分别可达48%和16%。实验结果同时也表明,在2一MT的杂环结构中,N、S原子很难被氧化成硝酸盐和硫酸盐。所以2一MT臭氧化的产物还需进一步氧化。 2臭氧联合氧化法 2.1高级氧化技术 利用催化降解技术或光化学方法氧化降解污染物的过程通常称为高级氧化过程(AdvancedOxidationProcessAOP)。与其他传统水处理方法相比,高级氧化技术具有选择性小、反应速度快、可有效减少THMs的生成量、可将THMs的前体物彻底氧化为二氧化碳和水以及对TOC和COD去除效率高等优点。

催化臭氧技术

一、水处理催化臭氧技术 催化臭氧技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,能较为有效地解决有机物降解不完全的问题。催化臭氧化按催化剂的相态分为均相催化臭氧化和多相催化臭氧化,在均相催化臭氧化技术中,催化剂分布均匀且催化活性高,作用机理清楚,易于研究和把握。但是,它的缺点也很明显,催化剂混溶于水,导致其易流失、不易回收并产生二次污染,运行费用较高,增加了水处理成本。多相催化臭氧化法利用固体催化剂在常压下加速液相(或气相)的氧化反应,催化剂以固态存在,易于与水分离,二次污染少,简化了处理流程,因而越来越引起人们的广泛重视。 1催化臭氧化 对于催化臭氧化技术,固体催化剂的选择是该技术是否具有高效氧化效能的关键。研究发现,多相催化剂主要有三种作用。 一是吸附有机物,对那些吸附容量比较大的催化剂,当水与催化剂接触时,水中的有机物首先被吸附在这些催化剂表面,形成有亲和性的表面螯合物,使臭氧氧化更高效。 二是催化活化臭氧分子,这类催化剂具有高效催化活性,能有效催化活化臭氧分子,臭氧分子在这类催化剂的作用下易于分解产生如羟基自由基之类有高氧化性的自由基,从而提高臭氧的氧化效率。 三是吸附和活化协同作用,这类催化剂既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,产生高氧化性的自由基,在这类催化剂表面,有机污染物的吸附和氧化剂的活化协同作用,可以取得更好的催化臭氧氧化效果[3]。在多 相催化臭氧化技术中涉及的催化剂主要是金属氧化物(Al 2O 3 、TiO 2 、MnO 2 等)、 负载于载体上的金属或金属氧化物(Cu/TiO 2 、Cu/Al 2 O 3 、TiO 2 /Al 2 O 3 等)以及具有 较大比表面积的孔材料。这些催化剂的催化活性主要表现对臭氧的催化分解和促进羟基自由基的产生。臭氧催化氧化过程的效率主要取决于催化剂及其表面性质、溶液的pH值,这些因素能影响催化剂表面活性位的性质和溶液中臭氧分解反应[4]。 1.1 (负载)金属催化剂 通过一定方式制备的金属催化剂能够促使水中臭氧分解, 产生具有极强氧

臭氧催化填料反应机理

臭氧是氧的同素异形体,含有三个氧原子。臭氧在常温常压下为淡蓝色气体。在水中的溶解度为9.2mlO3/L,高于氧气(42.87mg/L)。当水中溶解浓度高于20mg/L时,呈紫蓝色。臭氧具有强氧化性,氧化还原电位为2.07V,仅低于元素物质中的F2(3.06V)。臭氧可直接将废水中残留的大分子,长链和难以生物降解的有机物质矿化成二氧化碳和水,部分分解成小分子和易生物降解的物质,破坏不可生物降解的有机物质结构,降低毒性,并提高B/C比,从而保证了后续的生化处理效果。 臭氧广泛用于工业废水处理。臭氧和有机物在水溶液中的作用主要有两种:一种是臭氧分子的直接氧化;另一种是臭氧分解后OH羟基自由基的强氧化作用。。 传统的臭氧氧化技术主要是基于直接氧化,传质效果差,选择性极高,臭氧利用率低,投资运行成本高。 臭氧催化氧化技术是在氧化体系中加入过渡金属离子,可明显催化臭氧的氧化。它可以催化臭氧在水中的自分解,增加水中产生的OH浓度,从而提高臭氧氧化效果。 目前,催化臭氧工艺分为两种类型:均相臭氧氧化和异相臭氧氧化。均相臭氧氧化是指向水中加入一些可溶性过渡金属离子以达到催化臭氧氧化的效果。非均相臭氧催化催化剂以固体形式存在,易于分离,并且工艺简单,避免了催化剂的损失并降低了水处理的成本。 反应机制: 臭氧化学吸附在催化剂表面上以形成活性材料并与溶液中的有机物质反应。该活性物质可以是·OH或其可以是其他形式的氧。 有机分子通过化学键的作用吸附在催化剂的表面上,并进一步与气相或液相中的臭氧反应。首先,有机物质迅速吸附在催化剂载体上,载体表面的氧化物与其形成螯合物,然后这些螯合物被臭氧和OH氧化。 臭氧和有机分子同时吸附在催化剂表面上(复合作用),然后两者反应。从还原态催化剂开始,臭氧会氧化金属,臭氧在还原金属上的反应会产生?OH。有机物质将被吸附在氧化的催化剂上,然后通过电子转移反应被氧化以再生还原的催化剂。。然后有机物很容易从催化剂中解吸(解吸),然后进入本体溶液或被OH和臭氧氧化。 臭氧催化剂的特性 该催化剂通过大量试验和工程应用筛选催化剂载体和活性组分,采用大规模工业生产方式,确保合成催化剂具有较大的机械强度和较长的使用寿命。多孔材料为催化剂提供大的比表面积,使催化反应每单位时间更有效。 催化剂的活性组分主要由活性过渡金属/氧化物组成,其具有与载体材料相似的性质和高粘合强度。同时,高温烧结成型确保了活性组分的高利用率,并解决了均相催化体系。催化剂必须定期加入,催化剂损失率高的问题,以防止二次污染。 该催化剂用于臭氧催化氧化反应可显着提高臭氧和污染物的反应速度,有效降低处理成本。采用合适的臭氧氧化塔设备,臭氧用量可减少30%以上,臭氧利用率可达98%以上。以化学废水预处理和印染废水深度处理为例,与传统方法相比,可以将臭氧添加量减少30%,每吨水的运行成本可降低30%。

臭氧氧化技术在废水处理的运用

臭氧是一种具有强氧化性的化学药剂,可在水中开展如氧化还原等各类化学反应,利用臭氧氧化技术对污水进行二次处理可有效提升水的质量。相较于世界其他国家,我国对于臭氧氧化技术的应用时间较晚,因此,臭氧氧化技术在我国工程中的实际应用效果与其他国家相比也具有一定差距。此种状况下,我们更加致力于研究臭氧氧化技术于工程中的应用,努力拓展臭氧氧化技术的使用范围,使之更加广泛的服务于我国各类工程废水处理工作当中。 1利用臭氧氧化技术处理废水的工作过程 现如今,臭氧氧化技术已然成为废水处理领域的未来趋势,臭氧氧化技术与废水处理领域的运用可有效降低废水处理工艺中所耗费 的各项资金。臭氧氧化技术可有效降解废水中的各类生物,并对其中包含的化合物进行良好处理。在臭氧氧化技术的实际应用过程中需充分考量废水溶剂流量及符合率,并以此两者的实际变化程度作为依据,选取不同的处理方式。若废水具有较高的容积流量且具有较低的符合率,可利用生物处理-臭氧的方法来开展废水处理工作,此种处理方法的操作流程较为简单,具有较强实用性,处理起来也较为方便,臭氧消耗程度较低。若废水处理工作中需用到生物处理-臭氧-生物处理方法,则需在对其的实际应用过程中细致分析臭氧投加量,并对其予以良好管控,通过调节臭氧投加量的方式来提升废水处理过程中生物的可降解程度。在各领域应用臭氧氧化方法行废水处理操作时需充

分考虑所运用处理方法的经济效益,以在使废水处理质量得到保障的同时降低对各项能源与资金的消耗[1]。 2臭氧氧化技术在我国废水处理工作中的实际应用 饮用水处理领域是臭氧氧化技术与我国大规模工业化应用的首要阵地,臭氧氧化技术是近些年来才开始逐步应用于我国废水处理领域中的。臭氧氧化技术在我国废水处理工作中的实际应用案例如下:(1)我国某公司污水处理站以往采用的污水处理工艺为混凝-厌氧-好氧 生物组合工艺,每天可处理废水15000立方米,出于对部分出水进行深度处理并回收利用的目的,其采取了一体化臭氧曝气生物滤池与上流式曝气生物滤池的组合工艺,将此项废水处理工艺作为后续膜分离系统的预处理方法,确保废水处理工序结束后所得的反渗透水可回收并应用于该公司的染整工序,且浓缩液质量达到国家相关排放标准。该公司污水处理站在升级改造后每天可多处理废水5000立方米,在公司生化出水后对废水行砂滤操作,并利用一体化臭氧曝气生物滤池与上流式曝气生物滤池对其进行处理,处理完毕后再对其进行砂滤、超滤操作,得到反渗透水。该公司共投入约800万元用以污水处理站的改造,改造结束后该公司的废水处理运行费用为每立方米废水0.45元[2]。(2)我国中石化某分公司将经过膜生物反应器处理的炼油废水作为原水,利用臭氧氧化-多级过滤-活性炭吸附-臭氧氧化方式对其进行处理,使废水中的污染物含量获得了有效降低,处理后的出水水质与中石化所制定的回用水水质要求相符,成功使处理后的废水成为了补充水与循环水。(3)我国某企业,以生产手机显示屏强化玻

光催化臭氧氧化法

光催化臭氧氧化法(臭氧紫外线法) 此法是在投加臭氧的同时辅以紫外光照射,其效率大大高于单一紫外法和单一臭氧法。这一方法不是利用臭氧直接与有机物反应,而是利用臭氧在紫外线的照射下分解的活泼的次生氧化剂来氧化有机物。03/UV工艺机理的解释有目前有两种:Okabe认为,当03被紫外光照射时,首先产生游离氧自由基((O),然后,.O 与水反应产生.-OH.03一=hv(310nm)一,O。十OZO,+H2口-> 20H,而Glaze 等人则认为,031UV过程首先产生H202,然后H202在紫外光的照射下分解生成·OH.1目前这一工艺真实可靠的机理还有待进一步深入研究。 Prengle等人在实验中首先发现了03/UV系统可显著地加快有机物的降解速率。之后Glaze等人提出了03与UV之间的协同作用机理。臭氧在紫外光辐射下会分解产生活泼的轻基自由基,再由轻基自由基氧化有机物。因而它能氧化臭氧难以降解的有机物,如乙醛酸、丙二酸、乙酸等。其中紫外线起着促进污染物的分解,加快臭氧氧化的速度,缩短反应的时间的作用。此外,紫外线的辐射还能使有机物的键发生断裂而直接分解。研究证明03/UV比单独臭氧处理更有效,只有在酸性时,臭氧才是主要的氧化剂,中性及碱性时氧化是按自由基反应模式进行的,在03/UV , 03情形下,酚及TOC的去除率随pH值升高而升高,在一定的pH时,三种方法的处理效果为q/UV>03>UV o施银桃等以300 W高压汞灯为光源,研究了紫外光联合臭氧化、单纯臭氧氧化及单纯紫外光照处理400 mg/L的活性艳红K-2BP废水的可行性。结果表明:光催化臭氧化可加速有机物的矿化。在同样时间条件下,三者氧化能力由大至小为:UV/O3>单独O3>单独UV。光催化臭氧化染料过程中,TOC随反应时间的增大而逐渐减小,表明反应过程中有部分有机物逐渐矿化为无机物。TOC虽降低了,但最终TOC去除率仍大

分析催化臭氧氧化技术及部分组成说明

分析催化臭氧氧化技术及部分组成说明 催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。 催化臭氧氧化设备 1、均相催化臭氧氧化设备处理染料废水技术 前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。 2、非均相催化臭氧氧化设备处理染料废水技术 在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。负载型非均相催化剂由载体、活性组分和助剂三部分组成。常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。

为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。

(推荐)臭氧催化氧化计算书

一、进水条件 当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。以下为部分重要的原水进水条件。 1.1pH 催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。 1.2温度 进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。 1.3氯化物 氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。 1.4臭氧投加方式 臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。 二、相关简图 1.1催化氧化填料 催化剂主要特点如下: (1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构; (2) 在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物; (3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分

在载体表面分散性

良好。 催化剂填料图片如下: 臭氧催化氧化填料 规格参数如下: 项目指标单位规格 外观指 标 吸水率%45% -55%粒径mm条形3-6堆积密度t/m30.45 -0.62耐磨强度%≥92% 压碎强度N/cm≧110碘值mg/g≧550 活性金属含量%3% -4% 性能指 标 COD去除率%40%-75% Rt(水力停留时间)min30-60寿命年3~5

水处理应用臭氧的知识

臭氧几乎在瞬间以高速杀死水中的细菌、病毒和其他微生物。水中有机化合物等污染物的分解完全,没有二次污染。这是世界上臭氧应用最重要的领域。 水是传染病的主要媒介。据调查,农村地区50%的疾病是由饮用水污染引起的。臭氧是国家提倡的水消毒的首选,可以去除水中的重金属和其他成分。不会产生致癌的卤化氯,也不会产生二次污染。 杀菌力强,速度快。臭氧杀死普通大肠杆菌的速度是氯的数百倍,对原核生物中的病毒和细菌具有有效的杀灭作用。臭氧可以防止有机污染物的积累,改善水质,脱色和杀灭病原微生物。处理后的水可以有效防止传染病的传播。臭氧能有效减少水中污染物,减少氯副产物(一氯胺、二氯胺、三氯胺、三氯甲烷等)的形成。),并确保游泳者的健康。在处理过程中,游泳池水中残留的臭氧不会超过安全限值,空气可以消毒净化,使室内空气清新舒适。 臭氧是一种优良的强氧化剂,在水处理中可以氧化水中的各种杂质,从而达到净水的效果。同时,臭氧是一种非常有效的消毒剂,可以高效、快速地杀灭细菌和病毒,不会造成二次污染。 臭氧杀菌装置可以对生物卵、养殖水和设施进行杀菌,从而防止病原体的入侵。臭氧杀菌净水效果强,无毒无害。是水产养殖和种苗生产中最理想的杀菌净化剂。这对防治鱼、虾、海胆、河蟹、甲鱼等生物病害,改善水产养殖生态环境具有重要意义。 水是人类社会生存最重要的物质条件之一。作为一个水资源短缺的国家,水资源短缺已经成为制约我国城市可持续发展的重要因素。

臭氧发生器凭借自身在中水回用领域的技术和信息优势,在废水回用方面形成了一系列操作简单、满足多层次用户需求的经济实用的工艺和设备。 工业循环冷却水使用后。Ca2、Mg2、CI等离子体、水中溶解固体和悬浮固体相应增加。空气中的灰尘、杂物、可溶性气体、换热器材料泄漏等污染物都可能进入循环冷却水,造成循环冷却水系统中设备和管道的腐蚀和结垢,导致换热器传热效率降低,水截面积减小,甚至设备管道腐蚀穿孔。循环冷却水系统中的结垢、腐蚀和微生物繁殖是相互关联的。污垢和微生物粘液会导致水垢下的腐蚀,而腐蚀性产品会形成污垢。要解决循环冷却水系统中的这些问题,必须进行综合治理。臭氧可以作为唯一的处理剂来代替其他冷却水处理剂。它能抑制水垢、抑制腐蚀、杀菌,使冷却水系统在高浓度多次甚至零污染排放下运行,从而节水节能,保护水资源。同时,臭氧冷却水处理不会造成任何环境污染。 飞立电器科技有限公司是一家专业从事臭氧消毒设备研发、制造、销售为一体的现代化高科技企业,公司长期秉承“自主研发,掌握核心,以质取胜”的理念,以“质量第一,客户第一”为宗旨,以“现代化的管理,卓越的品质,合理的价格,优质的服务”为承诺,为广大客户提供质优价廉的产品。公司主要研发生产定制:大中小型空气源臭氧发生器、氧气源臭氧发生器、中央系统循环式臭氧消毒机、多功能臭氧消毒柜等;作为一家致力于打造高端品牌的现代化企业,飞立秉承以“宁为价格作解释,不为品质找借口”为宗旨,用具竟争力

臭氧在污水处理中的应用

臭氧在污水处理中的应用 更新时间:1-1815:33 臭氧水处理的优点: 1.臭氧是优良的氧化剂,可以杀灭抗氯性强的病毒和芽孢; 2.臭氧消毒受污水PH值及温度影响较小; 3.臭氧去除污水中的色、嗅、味和酚氯等污染物,增加水中的溶解氧,改善水质; 4.臭氧可以分解难生物降解的有机物和三致物质,提高污水的可生化性; 5.臭氧在水中易分解,不会因残留造成二次污染。 臭氧水处理的影响因素 臭氧在用于饮用水消毒时具有极高的杀菌效率,但在应用污水消毒时往往需要较大的臭氧投加量和较长的接触时间。其主要原因是污水中存在着较高的污染物如COD、NO2-N、色度和悬浮物等,这些物质都会消耗臭氧,降低臭氧的杀菌能力,只有当污水在臭氧消毒之前经过必要的预处理,才能使臭氧消毒更经济更有效。臭氧与污水的接触方式传质效果也会影响臭氧的投加量和消毒效果。 1.水质影响主要是水中含COD、NO2-N、悬浮固体、色度对臭氧消毒的影响 2.臭氧投加量和剩余臭氧量 剩余臭氧量象余氯一样在消毒中起着重要的作用,在饮用水消毒时要求剩余臭氧浓度为0.4mg/L,此时饮用水中大肠菌可满足水质标准要求.在污水消毒时,剩余臭氧只能存在很短时间,如在二级出水臭氧消毒时臭氧存留时间只有3-5min。所测得的剩余臭氧除少量的游离臭氧外,还包括臭氧化物、过氧化物和其他氧化剂。在水质好时游离的臭氧含量多,消毒效果最好。 3.接触时间 臭氧消毒所需要的接触时间是很短的,但这一过程也受水质因素的影响,另外研究发现在臭氧接触以后的停留时间内,消毒作用仍在继续,在最初停留时间10min内臭氧有持续消毒作用,30min,以后就不在产生持续消毒作用。 4.臭氧与污水的接触方式对消毒效果也会产生影响,如采用鼓泡法,则气泡分散的愈小,臭氧的利用率愈高,消毒效果愈好。气泡大小取决于扩散孔径尺寸,水的压力和表面张力等因素,机械混合器、反向螺旋固定混合器和水射器均有很好的水气混合效果,完全可用于污水臭氧消毒。 一、污水臭氧处理工艺 1.污水臭氧处理流程 采用臭氧消毒的污水,预处理是十分重要的,往往由于预处理程度不够而影响臭氧消毒的效果,污水处理程度要经过技术经济比较确定。污水消毒最好是经过二级处理后再用臭氧消毒。这样可以减少臭氧的投加量,降低设备投资费用和运行费用。污水臭氧消毒的基本工艺流程如图:

臭氧催化氧化

化学与环境工程学院水处理高级氧化处理 学号:122209201133 专业:环境工程 姓名: 任课老师: 2015年6月

臭氧催化氧化技术 摘要:近几年臭氧高级氧化技术已在我国各个行业污水处理方面迅速发展,自从“两会” 结束以后,我国更注重环境友好型社会建设,臭氧氧化技术在印染废水、煤化工废水、反渗透浓缩垃圾渗滤液、废乳化液等方面有了深一步进展,取得了很大的进步。 关键词:臭氧氧化技术、工业废水、臭氧利用率 1.臭氧氧化机理 1.1 臭氧性质 臭氧是一种氧化性极强的不稳定气体,须现场制备使用。臭氧是氧气的同素异形体,含有3 个氧原子,呈sp2 杂化轨道,成离域π键,形状为V 形,极性分子。臭氧在常温常压下为淡蓝色气体,水中的溶解度为9.2mlO3/L,高于氧气(42.87mg/L),水中溶解浓度高于20mg/L 时呈紫蓝色。臭氧有很强的氧化性,氧化还原电位为 2.07V,单质中仅低于F2(3.06V)。 1.2 臭氧的氧化机理 臭氧能够氧化大多数有机物,特别是氧化难以降解的物质,效果良好。臭氧在与水中有机物发生反应过程中,通常伴随着直接反应和间接反应两种途径,不同反应途径的氧化产物不同,且受控的反应动力学类型也不同。 (1)直接氧化反应 臭氧直接反应是对有机物的直接氧化,反应速率较慢,反应具有选择性,反应速率常数在1.0~103M-1S-1范围内。由于臭氧分子的偶极性、亲电、亲核性,臭氧直接氧化机理包括Criegree 机理、亲电反应、亲核反应三种。 (2)间接氧化反应 臭氧间接反应是有自由基参与的氧化反应,过程中产生了?OH,氧化还原电位高达2.80V,自由基作为二次氧化剂使得有机物迅速氧化,属于非选择性瞬时反应,反应速率常数为108~1010M-1S-1,氧化效率大大高于直接反应。此外?OH 与有机物发生的反应主要有三种:脱氢反应(Hydrogen abstraction),亲电加成( Electrophilic addition),转移电子(Electron transfer reaction)。 2 臭氧氧化法的影响因素 ⑴臭氧浓度 由于臭氧在水中的溶解度比较小,提高臭氧的浓度能够提高改变臭氧在水中中的溶解平衡,使水中臭氧的浓度上升,进而提高臭氧氧化的效果。 ⑵体系的pH 反应体系的pH对臭氧氧化降解的影响非常大。体系的pH会直接影响以羟基自由基为主的各类自由基的产生。 ⑶体系的温度 体系温度对反应速率有明显的影响,温度升高有助于提高臭氧分子在水溶液中自分解产生自由基的浓度,同时温度提高有助于水溶液的污染物分子与臭氧分子或是自由基的平均分子动能,有利于污染物分子与臭氧分子或是自由基的碰撞,从而提高氧化降解的速率。 3 以臭氧为主体的组合工艺

催化臭氧化技术处理水中污染物的研究进展

注:a在酸性且羟基自由基捕捉存在条件下;b在羟基自由基捕捉剂存在条件下。 臭氧、羟基自由基与某些有机物反应速率常数比较 溶质Ko3(/M ?s)KOH ?(/M?s)苯2±0.4a7.8×109硝基苯0.09±0.02a 3.9×109间二甲苯94±20a7.5×109甲酸5±5a1.3×108甲酸根离子100±20b3.2×109乙二酸(<4×10-2)a1.4×106乙二酸根离子 (<4×10-2)b7.7×106乙酸(<3×10-5)a1.6×107乙酸根离子(<3×10-5)b8.5×107丁二酸(<3×10-2)a3.1×108丁二酸根离子[(3±1)×10-2]b 3.1×108三氯乙烯174.0×109四氯乙烯 <0.11.7×109 1前言 臭氧是一种强氧化性物质(标准氧化电位 -2.07V),在液相[1,2]和固相[3]中对有机物的处理已有广 泛的研究,现已应用于工业和环境问题中。但因其经济 因素,使应用受到了一定限制。因此近年来出现的高级氧化技术(AOP)作为一种高效、经济的处理方法,成为研究的热点。而催化臭氧化技术作为一种具有巨大应用前景的高级氧化技术正逐渐被运用到水处理中。运用该技术可以氧化CO,CH4,链烷烃,芳烃,乙醇和氯代烃,并在反应过程中产生大量羟基自由基(?OH),?OH非常活泼,几乎没有选择性,所以可以快速氧化分解绝大多数有机化合物[4]。下表[5]为某些有机物单独臭氧化与?OH氧化速率进行比较,可以看出?OH与有机物反应的速率常数至少是臭氧与该有机物反应速率常数的107倍。?OH可有效地将水中的多种有机污染物氧化分解,可将臭氧难 以氧化分解的醇、酮、有机酸和酯继续氧化为化学结构饱和的短链烷烃。因此,催化臭氧化工艺对有机污染物的氧化程度更高,去除效率更彻底。 2催化臭氧化机理 2.1均相催化臭氧化的机理 均相催化臭氧化的机理是利用过渡金属作为催化剂,在臭氧分解的同时,产生羟基,溶液中的金属离子促 使臭氧分解产生?O2-,电子从?O2- 转移到另外一个O3生成?O3-,紧接着生成 ?OH。1983年Hart[6]第一次提出了Fe2+催化臭氧化的机 理。即一个电子从Fe2+转移到了O3,生成Fe3+和O3- ,然 后生成?OH。?OH再氧化过量的Fe2+,生成Fe3+和OH- 。 Fe2++O3→Fe3++O3- O3-+H+→HO3→OH+O2Fe2++OH→Fe3++OH? 平衡:2Fe2++O3+2H+→2Fe3+ +O2+H2O1987年Nowell和Hoigne[7]却提出?OH不是Fe2+催化臭氧化时的中间产物,而假设O3中的一个氧原子转移到了铁合离子(FeO)2+中。方程式如下。 Fe2++O3→(FeO)2++O2 (FeO)2++Fe2++2H+ →2Fe3++H2O 平衡:2Fe2++O3+2H+→2Fe3+ +O2+H2O1992年Andreozzi[8]等发现在酸性环境下,Mn2+可以加速草酸的氧化,这与先前Nowell和Hoigne的结论一致,即在过渡金属臭氧化过程中没有?OH直接产生,具体的过程可能是通过草酸和Mn(Ⅲ)配位生成易被臭 氧氧化的中间产物来催化该反应,但此结论仍有待进一步实验证实。 催化臭氧化技术 处理水中污染物的研究进展 郭晗 鲍治宇(苏州科技学院环境科学与工程系215011) 摘 要:本文介绍了催化臭氧化技术作为一种具有巨大应用前景的高级氧化技术,在给水和废水 处理中的应用,并初步探讨了其在均相、非均相条件下的不同机理,指出催化臭氧化技术较传统的单独臭氧技术,拥有经济性好、利用率高的优点,但仍存在工艺复杂、机理尚待研究的问题。最后展望了催化臭氧化技术的发展趋势。 关键词:催化臭氧化;臭氧;羟基自由基;水处理

臭氧催化氧化计算书之欧阳歌谷创作

一、进水条件 欧阳歌谷(2021.02.01) 当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。以下为部分重要的原水进水条件。 1.1pH 催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。 1.2温度 进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。 1.3氯化物 氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。 1.4臭氧投加方式 臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。

二、相关简图 1.1催化氧化填料 催化剂主要特点如下: (1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构; (2)在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物; (3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。 催化剂填料图片如下: 臭氧催化氧化填料 规格参数如下:

1.2进水方式 臭氧催化高级氧化进水工艺流程 上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下,激发产生羟基自由基,羟基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至CO2和H2O。第二段、第三段取水位置分别是第一段出水和第二段出水,同样采用高效臭氧溶气装置投加臭氧,原理与第一段相同。通过三段投加,污水中难降解有机物被充分降解,使污水达到设计标准。接触池内未溶解的臭氧需重新还原变为氧气,避免对大气环境造成污染。在臭氧接触池池顶上设置有臭氧尾气分解处理设施,设计采用热触媒式臭氧尾气处理装置进行处理,将空气中残留臭氧还原为氧气,使尾气处理装置出口处臭氧浓度低于0.1ppm。 相关工程案例平面简图如下: 内部构造简图如下: 三、主要构筑物计算

臭氧在废水处理中的应用

Cu-丝光沸石/臭氧催化—坡缕石联用工艺降解染料污水的初步研究 中国非金属矿工业导刊.2004年第5期 赵波1,尹琳1,卢保奇2,李真1,邹婷婷2,郑意春1 (1.南京大学地球科学系内生金属矿床成矿作用国家重点实验室,南京210093; 2.上海大学材料科学与工程学院,上海201800) [摘要]对于生物难降解性有机染料,利用臭氧化加催化方法进行处理的效果较好。但由于臭氧能与许多有机物或官能团发生反应,生成有机小分子酸,使后处理的水体酸度大大增强,造成二次污染。本文主要针对这一问题将粘土矿物凹凸棒石和Cu-丝光沸石固体催化剂进行矿物复配。一方面提高臭氧化效果;另一方面调节臭氧化过程中的水体pH值。 O3/BAC工艺应用于城市污水深度处理 中国给水排水2004Vol.20 蒋以元1,杨敏1,张昱1,邓荣森2,周军3,淳二4(1.中科院生态环境研究中心环境水质学国家重点实验室,北京100085;2.重庆大学城市建设与环境工程学院,重庆400045;3.北京城市排水集团有限责任公司,北京100061;4.三菱电机株式会社先端技术综合研究所,日本国) 摘要:为使再生水适合不同用途,对经过混凝沉淀和砂滤处理的再生水进行了臭氧—生物活性炭的深度处理。在臭氧消耗量和反应时间分别为5mg/L和10min,BAC空床停留时间(EBCT)为10min的条件下,臭氧—生物活性炭工艺对CODMn、DOC、UV254和色度平均去除率为32.4%、29.2%、48.6%和80.1%,出水CODMn、DOC、UV254和色度的平均值分别为3.3mg/L、4.0mg/L、0.05cm-1和2.0倍;臭氧生物活性炭工艺出水SDI<4,从而满足了反渗透系统的进水要求。

水处理催化臭氧技术 常用的3种催化剂总结

水处理催化臭氧技术常用的3种催化 剂总结 臭氧催化氧化技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,能较为有效地解决有机物降解不完全的问题。 臭氧催化氧化技术按催化剂的相态分为均相臭氧催化氧化技术和多相臭氧催化氧化技术,在均相臭氧催化氧化技术技术中,催化剂分布均匀且催化活性高,作用机理清楚,易于研究和把握。但是它的缺点也很明显,催化剂混溶于水,导致其易流失、不易回收并产生二次污染,运行费用较高,增加了水处理成本。多相臭氧催化氧化技术法利用固体催化剂在常压下加速液相(或气相)的氧化反应,催化剂以固态存在,易于与水分离,二次污染少,简化了处理流程,因而越来越引起人们的广泛重视。 对于臭氧催化氧化技术技术,固体催化剂的选择是该技术是否具有高效氧化效能的关键。研究发现,多相催化剂主要有三种作用: 一是吸附有机物,对那些吸附容量比较大的催化剂,当水与催化剂接触时,水中的有机物首先被吸附在这些催化剂表面,形成有亲和性的表面螯合物,使臭氧氧化更高效。 二是催化活化臭氧分子,这类催化剂具有高效催化活性,能有效催化活化臭氧分子,臭氧分子在这类催化剂的作用下易于分解产生如羟基自由基之类有高氧化性的自由基,从而提高臭氧的氧化效率。 三是吸附和活化协同作用,这类催化剂既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,产生高氧化性的自由基,在这类催化剂表面,有机污染物的吸附和氧化剂的活化协同作用,可以取得更好的催化臭氧氧化效果的。 在多相臭氧催化氧化技术技术中涉及的催化剂主要是金属氧化物(Al2O3、TiO2、MnO2等)、负载于载体上的金属或金属氧化物(CuTiO2、CuAl2O3、TiO2AlO3等)以及具有较大比表面积的孔材料。这些催化剂的催化活性主要表现对臭氧的催化分解和促进羟基自由基的产生。臭氧催化氧化过程的效率主要取决于催化剂及其表面性质、溶液的pH值,这些因素能影响催化剂表面活性位的性质和溶液中臭氧分解反应。

高级氧化技术_催化臭氧化研究进展

高级氧化技术——催化臭氧化研究进展 曾玉凤1,刘宏伟2,汪鹏华2,刘自力 3,4 (1.广西大学化学化工学院,高级工程师,广西南宁530004)(2.广西大学化学化工学院研究生,广西南宁530004)(3.广西大学化学化工学院教授,广西南宁530004)(4.广州大学化学化工学院教授,广东广州510006) 【摘要】 作为高级氧化技术之中的一个分支,催化臭氧化处理废水技术逐渐成为研究的热门领域.提高催化臭氧化效率的关键之处在于产生大量、持久的活性基团如?OH自由基,但其本质上涉及的是催化剂的选取问题.本文简要介绍了近年来均相催化剂和多相催化剂在催化臭氧化处理废水技术中的应用和研究进展. 【关键词】 催化臭氧化;均相催化剂;多相催化剂;高级氧化技术;臭氧;废水处理【中图分类号】X3【文献标识码】A【文章编号】1004-4671(2006)05-0066-04 ResearchProgressinAdvancedOxidation Process—— —CatalyticOzonationZengYu-feng1,LiuHong-wei1,WangPeng-hua1,LiuZi-li1,2 (1.SeniorEngineerChemistryandChemicalEngineeringCollegeofGuangxi University,Nanning,Guangxi530004) (2.MAStudent,ChemistryandChemicalEngineeringCollegeofGuangxiUniversity,Nanning,Guangxi530004) (3.Professor,ChemistryandChemicalEngineeringCollegeofGuangxiUniversity,Nanning,Guangxi530004) (4.ChemistryandChemicalEngineeringCollegeofGuangZhouUniversity,Guangzhou,Guangdong510006)Abstract:Asabranchofadvancedoxidationprocess(AOP),catalyticozonationforwastewatertreatmentwasgraduallybecominganattractiveresearchfield.Thekeyproblemofenhancingefficiencyofcatalyticozonationwashowtoproducesustainableandlargeamountsofactivegroupssuchas?OHradical.Butessentially,itwasrelatedtotheprincipleofchoosingcatalyst.Thisarticlebrieflyreviewsabouthomogeneouscatalystandheterogeneouscatalystapplicationandresearchprogressinthetechnologyfordisposalofwastewaterwithcatalytico-zonation. Keywords:catalyticozonation;homogeneouscatalyst;heterogeneouscatalyst;AOP;ozone;wastewatertreatment 第27卷第5期玉林师范学院学报(自然科学) Vol.27No.5 2006年JOURNALOFYULINTEACHERSCOLLEGE (NaturalScience) 化学研究

臭氧用于污水处理的应用

臭氧用于污水处理的应用 [关键词]:臭氧用于污水处理的应用工业污水处理、医院污水处理、生活污水处理,机器视觉,烟草机械 臭氧水处理的优点:1 臭氧是优良的氧化剂,可以杀灭抗氯性强的病毒和芽孢; 2 臭氧消毒受污水PH 值及温度影响较小; 3 臭氧去除污水中的色、嗅、味和酚氯等污染物,增加水中的溶解氧,改善水质。 4 臭氧可以分解难生物降解的有机物和三致物质,提高污水的可生化性。 5 臭氧在水中易分解,不会因残留造成二次污染。 臭氧水处理的影响因素:臭氧在用于饮用水消毒时具有极高的杀菌效率,但在应用污水消毒时往往需要较大的臭氧投加量和较长的接触时间。其主要原因是污水中存在着较高的污染物如COD 、NO 2 -N 、色度和悬浮物等,这些物质都会消耗臭氧,降低臭氧的杀菌能力,只有当污水在臭氧消毒之前经过必要的预处理,才能使臭氧消毒更经济更有效。臭氧与污水的接触方式传质效果也会影响臭氧的投加量和消毒效果。 1. 水质影响主要是水中含COD 、NO2-N 、悬浮固体、色度对臭氧消毒的影响。 2. 臭氧投加量和剩余臭氧量,剩余臭氧量象余氯一样在消毒中起着重要的作用,在饮用水消毒时要求剩余臭氧浓度为0.4mg/L, 此时饮用水中大肠菌可满足水质标准要求. 在污水消毒时, 剩余臭氧只能存在很短时间, 如在二级出水臭氧消毒时臭氧存留时间只有3-5min 。所测得的剩余臭氧除少量的游离臭氧外,还包括臭氧化物、过氧化物和其他氧化剂。在水质好时游离的臭氧含量多,消毒效果最好。 3. 接触时间:臭氧消毒所需要的接触时间是很短的,但这一过程也受水质因素的影响,另外研究发现在臭氧接触以后的停留时间内,消毒作用仍在继续,在最初停留时间10min 内臭氧有持续消毒作用,30min ,以后就不在产生持续消毒作用。 4. 臭氧与污水的接触方式对消毒效果也会产生影响,如采用鼓泡法,则气泡分散的愈小,臭氧的利用率愈高,消毒效果愈好。气泡大小取决于扩散孔径尺寸, 水的压力和表面张力等因素, 机械混合器、反向螺旋固定混合器和水射器均有很好的水气混合效果,完全可用于污水臭氧消毒。 一、污水臭氧处理工艺:一)污水臭氧处理流程,采用臭氧消毒的污水,预处理是十分重要的,往往由于预处理程度不够而影响臭氧消毒的效果,污水处理程度要经过技术经济比较确定。污水消毒最好是经过二级处理后再用臭氧消毒。这样可以减少臭氧的投加量,降低设备投资费用和运行费用。 二)臭氧消毒工艺设计及设备选择:污水臭氧消毒工艺设计,包括预处理工艺设计、臭氧消毒接触系统设计及臭氧发生器及配套设备的选择等。预处理工艺指在臭氧消毒之前对污水进行的一级处理或二级处理过程。 1. 臭氧发生器选择:根据污水水质及处理工艺确定臭氧投加量,根据臭氧投加量和小时处理消毒水量确定臭氧使用量,按小时使用臭氧量选择臭氧发生器台数及型号。 计算公式如下:G=q*g式中G ----- 每小时使用的臭氧量(g/h ) q ----- 每小时最大污水处理量(m 3 /h ) g----- 臭氧投加量(g/m 3 污水) 二、臭氧处理系统的安全与保护 1. 系统设备管道防腐处理:臭氧气体具有很强的腐蚀性,在潮湿情况下腐蚀性最强。因此,臭氧发生设备输送臭氧的管道阀门及接触反应设备均采取防腐措施。如使用碳钢材料必须涂防腐涂层。最好使用不锈钢管,玻璃钢管,ABS 、PVC 、PP-R 塑料管等。

相关文档