文档库 最新最全的文档下载
当前位置:文档库 › 人类基因组计划.doc

人类基因组计划.doc

人类基因组计划.doc
人类基因组计划.doc

【篇一】人类基因组计划随着人类基因组计划的完成

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测

序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范

围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。

本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。

1、第一代测序

1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的

3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。

人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。

值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。单个突变点的扩增包括该位点在内的外显子片段即可,不必将该点所在基因的全部外显子都扩增。

因此,应明确定位要扩增的位点所在的基因外显子和该点的具体位置,设计包括该点在内的上下游150 ~ 200 bp 的外显子片段引物。此外,尽管有NGS 的出现,但Sanger 测序对于有致病基因位点明确并且数量有限的单基因遗传疾病的致病基因的检测是非常经济和高效的。到目前为止,Sanger 测序仍然是作为基因检测的金标准,也是NGS 基因检测后进行家系内和正常对照组验证的主要手段。

值得注意的是,Sanger 测序目的是寻找与疾病有关的特定的基因突变。对于没有明确候选基因或候选基因数量较多的大样本病例筛查是难以完成的,此类测序研究还要依靠具有高通量测序能力的NGS。虽然Sanger 测序具有高度的分析准确性,但其准确性还取决于测序仪器以及测序条件的设定。另外,Sanger

测序不能检测出大片段缺失或拷贝数变异等基因突变的类型,因此对于一些与此相关的遗传性疾病还不能做出基因学诊断。

2 连锁分析采用的是间接测序法。在NGS 出现之前,国际通用的疾病基因定位克隆策略是建立在大规模全基因扫描和连锁分析基础上的位置候选基因克隆。人类的染色体成对出现,一条来自父亲,一条来自母亲,每一对染色体在同样的位置上拥有相同的基因,但是其序列并不完全相同,被称为父系和母系等位基因。遗传标记是指在人群中表现出多态现象的DNA 序列,可追踪染色体、染色体某一节段或某个基因座在家系中传递的任何一种遗传特性。它存在于每一个人,但大小和序列有差别,具有可遗传性和可识别性。目前采用第二代遗传标记,即重复序列多态性,特别是短串联重复序列,又称微卫星标记。连锁分析是以连锁这种遗传现象为基础,研究致病基因与遗传性标记之间关系的方法。如果控制某一表型性状的基因附近存在遗传标记,那么利用某个遗传标记与某个拟定位的基因之间是否存在连锁关系,以及连锁的紧密程度就能将该基因定位到染色体某一位置上。1986 年Morton 等提出优势对数记分法(log odds score method,LOD),主要检测两基因以某一重组率连锁时的似然性。LOD 值为正,支持连锁;LOD 值为负,则否定连锁。通过计算家系中的微卫星标记与致病位点之间的LOD 值,可以初步估算二者间的遗传距离及连锁程度,从而确定该基因在染色体上的粗略位置。然后利用该区域的染色体基因图谱,分析定位区域内所有基因的功能与表达,选择合适的候选基因进行突变检测,最终将致病基因定位或克隆。

然而,采用连锁分析进行基因检测存在很大的局限性。不但所需遗传样本量较大,一般要求提供三代及以上遗传家系患者血样,而且数据量大、处理复杂、产出速度较慢、定位不够精确( 一般只能定位在染色体某一区间),这就使得研究工作繁重和定位基因的时间周期特别长。目前,连锁分析采用的单核苷酸多肽性和短串联重复序列还在使用,但经典的间接测序方法,如单链构象多肽性、变性梯度凝胶电泳和异源双链分析在美国已被淘汰,而在发展中国家作为研究手段还在有限使用。

2、新一代测序(NGS)

主要包括全基因组重测序(whole-genomesequencing,WGS)、全外显子组测序(whole-exomesequencing,WES) 和目标区域测序(Targeted regionssequencing,TRS),它们同属于新一代测序技术。总体而言,NGS 技术具有通量大、时间短、精确度高和信息量丰富等优点,使得遗传学者可以在短时间内对感兴趣的基因进行精确定位。但这些不同的测序技术在测序范围、数据分析量以及测序费用和时间等方面又有很大差别,如果选择适合的方法,对于临床诊断和科学研究将起到事半功倍的作用。

1 目标区域测序目前常用的是基因芯片技术。其测序原理是基于DNA 杂交原理,利用目标基因组区域定制的探针与基因组DNA 进行芯片杂交或溶液杂交,将目标基因区域DNA 富集,再通过NGS 技术进行测序。其测序过程是通过把数以万计的cDNA 或寡聚核苷酸置于芯片上制成列阵,将芯片上固定好的

已知序列的核苷酸探针与溶液中含有荧光标记的相应核酸序列进行互补配对,根据测序仪所显示强荧光的位置和强度,获取每组点阵列信息,再利用生物信息学算法确定目的靶核苷酸的序列组成。测序所选定的目标区域可以是连续的DNA 序列,也可以是分布在同一个染色体不同区域或不同染色体上的片段。目标区域测序技术,对于以往通过连锁分析将基因突变锁定在染色体某一片段区域内,但无法找出突变是一个非常好的进一步检测手段。2010 年,Nicholas等使用基因分型芯片联合连锁分析技术,成功发现头小畸形的新基因WDR62,文章发表在《NatGenet》杂志。类似的研究在家族性胰腺癌中确定8 个候选变异位点和在家族性渗出性玻璃体视网膜病变发现易感基因TSPAN12。

基因芯片测序技术可以将经过连锁分析锁定了目标范围或经过全基因组筛选的特定基因或区域进行更深一层的研究,是解决连锁分析无法发现致病基因的有效手段。基因芯片技术对于已知基因突变的筛查具有明显优势,可以快速、全面地检测出目标基因突变。同时,由于目标区域受到了限制,测序范围大幅度减少,测序时间和费用相应降低。但基因芯片检测所需要的DNA 的量要大,由于已提取的DNA 存在降解的风险,用于基因芯片研究的血标本最好是冰冻的全血,这样可以使用于检测DNA 的量有充分保证。

2 全外显子组测序(WES) 外显子组是单个个体的基因组DNA 上所有蛋白质编码序列的总合。人类外显子组序列约占人类全部基因组序列的1%,但大约包含85% 的致病突变。WES 是利用序列捕获技术将全外显子区域DNA 捕捉并富集后进行高通量测序的基因分析方法。采用的技术平台主要是罗氏公司的

SeqCap EZ 全外显子捕获系统,Illumina 公司的Solexa 技术和Agilent 公司的SureSelect 外显子靶向序列富集系统。其捕获的目标区在34 ~ 62 M 之间,不仅包括编码区同时也加入了部分非编码区。NGS 的测序过程主要包括DNA 测序文库的制备、锚定桥接、PCR 扩增、单碱基延伸测序和数据分析。研究者根据测序仪捕获到在测序过程中掺入有不同荧光标记碱基片段,经计算机将荧光信号转化成不同颜色的测序峰图和碱基序列。基因测序结果与NCBI的SNP数据库、千人基因组数据库等国际权威数据库比对,最终确定是否为突变基因。

自NGS 技术问世以来,利用WES 在临床疾病致病基因的鉴定研究中取得前所未有的成果。这些成果不仅集中在单基因遗传疾病,还在多基因影响的复杂疾病中获得大量相关基因

的发现。在单基因遗传性疾病中,如视网膜色素变性、终端骨发育不良等发现新基因或已知基因新突变。在一些罕见的疾病中,如Kabuki 综合征、家族性混合型低脂血症和脊髓小脑共济失调症等疾病中发现新的致病基因。同时,在小细胞肺癌、慢性淋巴细胞性白血病等肿瘤研究和诸如肥胖症、脑皮质发育不良等复杂疾病的研究中也取得丰硕成果。

WES 技术在筛查范围和检出率等方面较其他测序技术具有明显的优势。例如,对于采用Sanger测序和基因芯片测序不能筛查出基因的样本,可以采用WES 来进一步基因筛查鉴定。应用WES技术能够获得较传统Sanger 等方法对编码区测序更深的覆盖度和更准确的数据。由于信息量的大幅度增加,WES 可

以获得更多个体的编码区信息,因此成为检测致病基因和易感基因位点的有效手段。与连锁分析定位方法比较,WES 对家系的要求并不十分严格,在单基因遗传病同一家系中有2 ~3 个患者和1 个正常人即可进行致病基因的鉴定研究,而不需要连续三代的遗传家系。由于不需要严格的三代以上的遗传家系,WES 使以前不能进行研究的家系成为可能。不仅对于单基因遗传病是一个很好的研究手段,对于许多常见病,如肿瘤、糖尿病等疾病也可进行大规模比较研究。

3 全基因组重测序(WGS) WGS 是对已知基因组序列的物种进行不同个体的全基因组的测序,经过数据分析后对序列进行拼接、组装并获得基因组图谱,或是对不同组织进行测序并分析体细胞突变的一种研究方法。尽管WES 可以快速全面地找出个体基因组上的所有突变,从而找到个体间的差异,但对于外显子以外的区域则不能有效地进行基因检测。对于此种情况,目前还要借助WGS 进行全基因组检测。但由于人类基因组过于庞大,一次单端全基因组测序很难达到所需要的测序深度。因此,需要重复测序或双端测序,由此带来测序成本的大幅度提高和由于不能达到足够的测序深度所导致的结果准确性的降低。而对于临床疾病诊断和普通科研工作,其高昂的检测费用也是难以承受的。尽管如此,对于部分临床研究和WES 不能解决的科研课题还需要借助WGS进行更加全面的基因检测。

3、展望

NGS 的出现为新兴的基因组技术增添了无限的活力和想象空间。特别是基

因芯片的问世和已在临床上应用于大样本的疾病筛查和基因诊断中所展现出的活力,以及其商业化发展的模式都令人鼓舞。在眼科是单基因病最常见的学科,利用芯片技术进行Laber 病的筛查已使很多病因不清楚的视神经萎缩得到明确诊断。而原发性开角型青光眼是眼科最具隐蔽性和危险性的致盲性眼病,其致病基因或突变的鉴定研究对疾病筛查将有着非常重要的临床价值和巨大的商业价值。在新生儿糖尿病的筛查中采用基因芯片技术可以更加快速、全面经济,避免第一代测序过于繁琐和漏检。

基因芯片技术在产前诊断中更加具有发展前景。只要对孕妇进行DNA 血液检查即可进行遗传疾病的筛查,避免以往通过羊膜穿刺抽取羊水进行有创检查的局限性和危险性。目前,基因检测技术水平的提升和检测费用的不断降低,发展大规模个体化基因检测在不久的将来成为可能。同时,药物易感性基因和疾病发生的易感基因的检测的深入开展,个体化医疗将在基因检测的基础上得以实现。有理由相信,随着人们生活水平的不断提高和健康意识不断增强,基因检测在未来医学发展中应用前景将十分可观。

参考文献

1 Jones S,Hruban RH,Kamiyama M,et al. Exomic sequencingidentifies PALB

2 as a pancreatic cancer susceptibility

gene[J].Science,2009,324(5924)21

2 Ng SB,Turner EH,Robertson PD,et al. Targeted capture andmassively parallel sequencing of 12 human exomes[J]. Nature,2009,461(7261)272-27

3 Ng SB,Buckingham KJ,Lee C,et al. Exome sequencing identifiesthe cause of a mendelian disorder[J]. Nat Genet,2010,42(1)30-3

4 Sequeiros J,Paneque M,Guimar es B,et al. The wide variationof definitions of genetic testing in international recommendations,guidelines and reports[J]. J Community Genet,2012,3(2)113-12

5 Kiezun A,Garimella K,Do R,et al. Exome sequencing and thegenetic basis of complex traits[J]. Nat Genet,2012,44(6)623-630.

6 Bakker E. Is the DNA sequence the Gold standard in genetic testing?Quality of molecular genetic tests assessed[J]. Clin Chem,2006,52(4)557-55

7 Katsanis SH,Katsanis N. Molecular genetic testing and the future ofclinical genomics[J]. Nat Rev Genet,2013,14(6)415-42

8 Robin NH,Falk M J and Haldeman-Englert CR.

FGFR-relatedcraniosynostosis syndromes[J/OL]. http // 7 Jun 2011). 9 Katsanis SH and Jabs EW. Treacher Collins syndrome[J]. http

// 30 Aug 2012).

10 Nicholas AK,Khurshid M,Désir J,et al. WDR62 is associatedwith the spindle Pole and is mutated in human microcephaly[J].Nat Genet,2010,42(11)1010-101 11 Nikopoulos K,Gilissen C,Hoischen A,et al. Next-generationsequencing of a 40 Mb linkage interval reveals TSPAN12 mutationsin patients with familial exudative vitreoretinopathy[J]. Am J HumGenet,2010,86(2)240-24

12 Rosa-Rosa JM,Gracia-Aznárez FJ,Hodges E,et al. Deepsequencing of target linkage assay-identified regions in familial breastcancer methods,analysis pipeline and troubleshooting[J]. PLoSOne,2010,

5(4)e997

13 Liu T,Jin X,Zhang X,et al. A novel missense SNRNP200 mutationassociated with autosomal dominant retinitis pigmentosa in a Chinesefamily[J]. PLoS One,2012,7(9)e4546

14 Sun Y,Almomani R,Aten E,et al. Terminal osseous dysplasia

iscaused by a single recurrent mutation in the FLNA gene[J]. Am JHum Genet,2010,87(1)146-15

【篇二】人类基因组计划人类基因组计划原理和基本步骤

人类基因组计划原理和基本步骤

人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。

序列图的绘制主要采用两大策略: 即逐个克隆法(Clone by Clone)和全基因组鸟枪法(Whole Genome Shot-gun)。

逐个克隆法的原理

逐个克隆法的原理是Sanger双末端终止法。人类基因组框架图全部采用基于Sanger双脱氧原理的自动化毛细管测序。在1977年,英国人Frederick Sanger 创建了双脱氧链末端合成终止法(chain termination method),简称Sanger法、双脱氧法或酶法。他发现如果在DNA复制过程中掺入ddNTP,就会产生一系列末端终止的DNA链,并能通过电泳按长度分辨。不同末端终止DNA 链的长度是由掺入到新合成链上随机位置的ddNTP决定的。

Sanger双末端终止法的基本原理是利用DNA聚合酶,以待测单链DNA为模板,以dNTP为底物,设立四种相互独立的测序反应体系,在每个反应体系中加入不同的双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP)作为链延伸终止剂。具体实验是通过PCR来完成的,但与普通PCR不同,它只需要一个引物而不是一对。在4个相同的反应体系中分别加入普通的dNTP以及4种不同的ddNTP(比如体系1里面缺少dATP,而有ddATP,以此类推)。假设四个体系中分别加入的是ddATP, ddGTP, ddCTP和ddGTP我们就分别把这个叫做A,G,C,T体系,然后每个体系中,会在遇到相应碱基的时候停止反应,这样就产生了一系列长度不一并且分别在以A,G,C,T时终止的DNA片段,比如A 体系中的DNA片段,都是以A结尾的DNA。通过高分辨率的变性聚丙烯酰胺凝胶电泳分离,放射自显影检测后,从凝胶底部到顶部按5′→3′方向读出新合成链序列,由此推知待测模板链的序列。

逐个克隆法基本步骤

逐个克隆法的基本步骤是物理图谱的构建→BAC克隆的筛选→“工作框架图”的构建→序列的全组装与“完成图”构建。

物理图谱的构建的基本步骤如下确定各STS序列及其在基因组中的位置→大插入片段基因组文库的构建(BAC文库)→以特定STS为标记筛选并定位克隆→含有STS的克隆在基因组中排序。

BAC克隆的筛选的基本步骤如下用NotI、SacI等处理基因组,通过脉冲场凝胶电泳得200Kb左右的大片段DNA→纯化后与载体连接,得到插有外源DNA 片段的BAC载体→通过电转化将连接产物导入大肠杆菌感受态细胞,在含有抗生素的筛选培养基中筛选带有相同外源DNA片段的单克隆菌落→“STS-PCR反应池”方案筛选种子克隆→相互间具有重叠片段的BAC克隆根据STS信息组装成contig,并定位于基因组上。

值得注意的是,STS的密度尚未达到绘制高精度物理图谱的要求,且在基因组中的分布不均匀,造成很多区域没有阳性克隆覆盖,形成空洞。因此需用指纹图谱(FPC法)或末端序列(Walking by End Sequence)步移等手段对种子克隆进行延伸,形成连续克隆群。利用延伸方法筛选得到的克隆称为延伸克隆。

“工作框架图”的构建根据序列与STS database进行blastn比较结果,将克隆定位末端序的比较,判定延伸在contig外的一端序列。并可及时进行walking,筛选新的克隆。

鸟枪法

鸟枪法或霰弹法是一个高度计算机化的方法,它是先把基因组随机分成已知长度(2000个碱基对、1万个碱基对、5万个碱基对)的片段,然后用数学算法将这些片段组装成毗邻的

大段并确定它们在基因组上的正确位置。人类基因组计划中塞莱拉公司的科学家先用霰弹法测序DNA,并将整个基因组覆盖8

次,

然后用两个数学公式将人类基因组序列多次组装起来,确定出了基因中的转录单元,预测出60%的已识别基因的分子功能。最后研究人员将人类基因组信息与此前已完成的果蝇和线虫的基因组序列进行比较,从而找出了三者共有的核心功能。

鸟枪法的工作流程图

两种方法对比表

【篇三】人类基因组计划人类基因组计划的历史背景

人类基因组计划的历史背景

问题的提出

尽管生物机体的尺寸有限,但并未能为研究工作带来任何容易之处。人们经过

了不懈的努力,渴望解开生命之谜这个多年的愿望并未向前推进多少,谜仍是个谜!以往研究的艰履或失败教训使人们头脑开始清醒地认识到,任何仅依靠单一学科如细胞学、发青学、肿瘤学、人类遗传学或分子生物学的独自努力都无济于事,都太局限了,难以完成人类对自身的认识和保护。美国曾投巨资但基本上以失败告吹了的肿瘤十年计划也说明了这个问题。所以,要知道某事物的局部作用机制最好先知道全局的看法逐渐主导了人们的认识(Dulbecco R,1986)。在绕了一大段弯路后,人们回过头来决定开始进行人的所有基因即基因组的研究,全面探讨这个“摸得到,猜不透',的人体奥秘,由此形成了基因组学(genomics)和人类基因组计划(Human Genome Project,HGP),其最终目的是对生命进行系统地和科学地解码,以此达到了解和认识生命的起源,种间和个体间存在差异的起因,疾病产生的机制以及长寿与衰老等生命现象(Under ES,1996)。人类基因组计划以前的遗传学或称基因学(genetics)偏重于单个基因的研究,而人类基因组计划则是把目光投向整个基因组的所有基因,从整体水平去考虑基因的存在、基因的结构与功能、基因之间的相互关系等。随着数理化、信息和材料等学科的渗透以及具有时代特征的工业化技术管理模式的引进,HGP真正成为了生命科学领域的第一项大科学工程,其规模和意义远远超过阿波罗(Apollo)登月计划和曼哈顿(Manhatton)原子弹计划口HGP的正式启动也就标志着解码生命的真正开始也就很自然地成为人们关注的焦点。

历史的回顾

对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已

形成一定规模,并在以下的几个事件的影响下形成了投资额最多、最具规模的美国人类基因组计划。

1984年在Utah州的Aita,White R和MendelSOIlhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景(Cook-y明n则,1989)。1985年5月在加州antaCruz由美国能说部的SindeimerRL主持的议上提出了测定人类基因组全序列的动议,由此形成了美国能源部的“人类基因组计划”草案。1986年3月,在新墨西哥州的Santa Fe 讨论了这一计划的可行性,随后美国能源部宣布实施这一草案。1986年著名遗传学家McK1Mick V提出从整个基因组的层次研究遗传的科学称“基因组学"。1986年3月7日,诺贝尔奖获得者Dulbecco R在Science杂志上发表的一篇有关开展人类基因组计划的短文。1986年6月在美国冷泉港,另两位诺贝尔奖获得者GIbedW及Berg P主持了有关“人类基因组计划”的专家会议。1987年初,美国能源部与国家健康研究院(NIH)为“人类基因组计划"下拨了启动经费约550万美元(1987年全年66亿美元),并开始筹建人类基因组计划实验室。1988年2月,国家科学研究委员会(NRC)的专家撰写了“人类基因组的作图与测序(mapping andsequencing the human genome)”的报告,全面地介绍了有关这项史无前例的、看起来似“胆大妄为',计划的内容(Nati?ml Research Council,1988)。同年,美国成立了“国家人类基因组研究中心",由因提出DNA分子双螺旋模型的贡献而获诺贝尔奖的沃森(Watson J)出任第一任主任。

Duibeeco短文的功绩

Dulbecco R于1986年在Science杂志上发表的题为“癌症研究的转折点——人类基因组的全序列分析”的短文,回顾了70年代以来癌症研究的进展,使人们认识到包括癌症在内的人类疾病的发人类基因组计划

生,都与基因直接、间接有关;同时,他指出要么仍处在用“零敲碎打”的方法piecemeal approach)开展研究,要么从整体上研究和分析整个人类基因组及其序列。

Dulbecco R在他的文章中还指出:“这一计划的意义,可以与征服宇宙的计划媲美。我们也应该以征服宇宙的气魄来开展这一计划”,并且谈到“这样的工作是任何一个实验室难以单独承担的项目。:人类基因组计划

这个世界上发生的一明事情,都与这一人类的DNA制思思相关”。今天当我们重读这一短文时仍感到DtElbecco的胆识和引起全世界巨大反响的意义所在。这也是为什么许多单项领域的进展都有足够的理由在世界范围内提出一个“计划,,,如“遗传工程计划"、“肿瘤计划"、“脑计划”、“蛋白质计划”、“信号传导计划”等时,人们最终选择和接受“人类基因组计划"作为全球性重大计划的原因所在。这看来是由于自然科学的自身规律,内在联系和发展阶段等因素导致了人们的最后选择。如果仔细想一下,所有这些计划的最关键因素都离不开基因的作用,就会倍加感到Dulbecco短文的高瞻远瞩,只有弄清楚了人类基因组的全部或大部分基因的工作情况,实施其他计划才成为可能。

世界的行动

历经5年左右的辩论后,美国国会正式批准美国的“人类基因组计划”于1990年10月1日正式启动。其规模在世界上是最大的,总体计划是在15年内投入至少30亿美元进行人类全基因组的分析。

在DIllbecco短文的影响下,整个西欧几乎全部都动了起来,并各具特色。最早开始国家级HGP的是意大利的国家研究委员会(National Research Council)。1987年,该委员会组织了15个,以后发展到30个实验室开始了人类基因组计划的研究。其特点是技术多样(YAC、杂种细胞、CDNA等)、区域集中(基本上限于Xq24-qteE区域)。

1989年2月开始的英国HGP的特点是:帝国癌症研究基金会与国家医学研究委员会(ICRP-MRC)共同负责全国协调与资金调控;剑桥附近的Sanger中心注重首先在线虫基因组上积累经验,改进大规模DNA测序技术;同时,建立了YAC库的筛选与克隆、特异细胞系、DNA探针、基因组DNA、CDNA文库、比较生物基因组DNA序列、信息分析等的“英国人类基因组资源中心”,并向全国的用于研究目的会员免费提供技术及实验材料服务。可谓“资源集中,全国协调”。

1990年6月法国的国家人类基因组计划开始启动。科学研究部(Ministry of Research)委托国家医学科学院(IMSERM)制定人类基因组计划,主要特点是注

重整体基因组、CDNA和自动化。诺贝尔奖金获得者Dausset J于1983年用自己的奖金建立的CEPH(人类多态性研究中心)和法国民众捐款至少5000万美元建造的Genethon为全世界的HGP做出了不可磨灭的贡献,特别是在全基因组YAC重叠群、微卫星标记(遗传图)的构建以及驰名世界的用作基因组研究的经典材料CEPH家系(80个3代多个体家系)的影响方面产生了巨大的影响。

1995年6月德国才正式开始了HGP。虽然起步晚,但来势迅猛q他们先后成立了资源中心和基因扫描定位中心,并已开始了对21号染色体的大规模测序工作。

此外,1990年6月欧洲共同体通过了“欧洲人类基因组研究计划”,主要资助23个实验室重点用于“资源中心”的建立与运转。这也是欧洲计划在多个领域赶超美国的一个重要方面。另外,榜上有名的还有丹麦、俄罗斯等国,以及亚太地区的日本、韩国、澳大利亚等。

中国HGP是于1994年初在吴雯院士、强伯勤院士、陈笠院士和杨焕明教授的倡导下启动的工

最初由国家自然科学基金委员会和“863”高科技计划的支持下.先后启动了“中华民峡基因组中若干位点基因结构的研究”和“重大疾病相关基因的定位、克隆、结构与功能研究"(陈兰等,1998)。经过了几年的摸索已逐渐形成了自己的体系,并进一步看清了开展这项工作的重要性。l998年在国家科技部的领导和牵

人类基因组计划.doc

【篇一】人类基因组计划随着人类基因组计划的完成 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测 序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范

人类基因组计划研究的进展及其意义

人类基因组计划研究的进展及其意义 摘要:文章综述了人类基因组计划研究和进展的情况 关键词: 正文: 定义 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约4万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。命人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。被誉为生科学的"登月计划"。 人类基因组计划(英语:Human Genome Project, HGP)是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表(由公共基金资助的国际人类基因组计划和私人企业塞雷拉基因组公司各自独立完成,并分别公开发表)被认为是人类基因组计划成功的里程碑。 背景 20世纪是物理学和化学的世纪,21世纪是生物学的世纪。生命科学将取代物理学和化学成为带头学科,从而为其他学科的研究和发展提供新的思路和方法,生物工程产业将成为支柱产业。早在上世纪中叶,生物技术就被称作是21世纪的关键技术。许多科学家预言,生物技术将与信息技术、材料技术以及能源技术共同构成新的技术革命的基础,生物技术将重塑医学、农业以及生命科学研究本身,进而改造社会,改变人类的生活方式。一些重大的研究项目如人类基因组计划、体细胞克隆技术、转基因技术等的影响已超出了学科的范围,引起了公众的广泛关注。在生命科学领域随着分子生物学研究的不断深入,80年代末出现了一个新的研究领域———基因组学(Genomics)。基因组研究被称作是20世纪末21世纪初最重大的全球性的科研项目,其中以人类基因组计划(HGP)最为重要 人类基因组计划研究的目的,是获得人类染色体的物理图谱和基因图谱以及测定核苷酸的全序列 进展 人类基因组计划是由美国国立研究院和能源都1990年发起,后来有德、日、英、法、中等国科学家加入,有至少16个实验室及1100名生物学家、计算机专家和技术人员参与,预计耗资30亿美元,在15年内完成。人类基因组计划正式启动以来,受到人类各界的极大关心,经过全球科学家的努力,各阶段进展一再提前,已提前完成绘制出基因的遗传图谱和物理图谱的草图,现在已进入大规模的测序阶段。目前已完成了人类基因组约50%的测序,预期在2005年将能

人类基因组计划及其意义

人类基因组计划及其意义 摘要:人类基因组计划意义深远,对人类健康、中医药、当代科学研究方法、甚至是商 业等都有影响。 关键词:人类基因组计划意义 人类从古至今都想揭开生命的奥秘,都想了解人类自身,探究人的生老病死是怎么一回事。于是人人心中都有一个疑问:到底什么是生命?但是由于当时知识与技术的限制,人类的疑问得不到科学合理的解释。美国东部时间2000年6月26日,国际人类基因组计划(Human Genome Project ,HGP)的美、英、法、德、日、中6国协作组向世界联合宣布:人类生命蓝图人类基因组“工作框架图”已经完成。它的问世标志着人类在研究自身规律的过程中迈出了至关重要的一步,也预示着人类在探索生命奥秘的历史进程中翻开了新的篇章。 什么是人类基因组计划? 生物学的原理告诉我们,基因是染色体上的DNA双螺旋链的一段,它由四种碱基通过不同的排列组合而成,并在特定的条件下表达遗传信息和表现特定功能,是生物性状遗传的基本功能单位。基因组指合成具有生物功能的蛋白质多肽链或RNA所必须的全部DNA序列。1985年美国科学家诺贝尔奖获得者杜伯克首先提出了人类基因组计划,目的在于通过国际间的合作,识别人类DNA中所有的十万个以上的基因,测定人类DNA的30亿个碱基对顺序,以建立详细的人类基因组遗传图和物理图,解读人类基因组中所有的基因,最终解读人类生、老、病、死的遗传信息,使得人类第一次在分子水平上全面认识自我。 人类基因组计划的意义 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。 人类基因组计划带来的革命 1.基因治疗 人类基因组计划将为基因治疗技术的发展提供基础性的支持,对特异致病基因的研究,无疑会给基因治疗技术针对性地指明方向,加速这一技术的发展。基因治疗就是利用基因工程的手段,通过向人体导入功能基因,修补、改变相应的缺陷基因,以对相关疾病进行治疗和预防。对基因治疗的临床研究早在十年前就开始了,90年美国研究人员对一个4岁的小女孩施行了基因治疗,使她的病情大大好转。十年来,基因治疗技术在实验过程中取得了不少的成果,载体的改进和靶细胞的选择使基因治疗技术的效果也不断提高。 2.基因工程药物研究

(整理)人类基因组计划.

人类基因组计划 HGP(Human Genome Projects) 1、HGP简介 ?人类基因组计划是由美国科学家于1985年率先提出、于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。 ?诺贝尔奖获得者Renato Dulbecco于1986年发表短文 《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。 ?文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome) ?基因组就是一个物种中所有基因的整体组成 ?人类基因组有两层意义: ——遗传信息 ——遗传物质 ?从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。 人类染色体 HGP的诞生 ?1984年12月Utah州的Alta,White R受美国能源部的委托,主持召开了一个小型会议,讨论DNA重组技术的发展及测定人类整个基因组的DNA序列的意义。 ?1985年6月,在美国加州举行了一次会议,美国能源部提出了“人类基因组计划”的初步草案。?1986年6月,在新墨西哥州讨论了这一计划的可行性。随后美国能源部宣布实施这一草案。?1987年初,美国能源部与国家医学研究院(NIH)为“人类基因组计划”下拨了启动经费约550万美元,1987年总额近1.66亿美元。同时,美国开始筹建人类基因组计划实验室。 ?1989年美国成立“国家人类基因组研究中心”。诺贝尔奖金获得者J.Waston出任第一任主任。?1990年,历经5年辩论之后,美国国会批准美国的“人类基因组计划”于10月1日正式启动。美国的人类基因组计划总体规划是:拟在15年内至少投入30亿美元,进行对人类全基因组的分析。 HGP诞生过程中的质疑 ?计划的必要性问题 ?计划的现实性问题 ?科学研究领域的选择问题 ?为什么不选择基因组小的或有经济意义的生物 ?认为?°制图?±是在沙漠里建公路,?°测序?±是把?°垃圾?±分类,选择?°模式动物?±是拼凑?°诺亚方舟?±。

人类基因组计划原理和基本步骤

人类基因组计划原理和基本步骤 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。 序列图的绘制主要采用两大策略: 即逐个克隆法(Clone by Clone)和全基因组鸟枪法(Whole Genome Shot-gun)。 逐个克隆法的原理 逐个克隆法的原理是Sanger双末端终止法。人类基因组框架图全部采用基于Sanger 双脱氧原理的自动化毛细管测序。在1977年,英国人Frederick Sanger 创建了双脱氧链末端合成终止法(chain termination method),简称Sanger法、双脱氧法或酶法。他发现如果在DNA复制过程中掺入ddNTP,就会产生一系列末端终止的DNA链,并能通过电泳按长度分辨。不同末端终止DNA链的长度是由掺入到新合成链上随机位置的ddNTP决定的。 Sanger双末端终止法的基本原理是利用DNA聚合酶,以待测单链DNA为模板,以dNTP为底物,设立四种相互独立的测序反应体系,在每个反应体系中加入不同的双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP)作为链延伸终止剂。具体实验是通过PCR来完成的,但与普通PCR不同,它只需要一个引物而不是一对。在4个相同的反应体系中分别加入普通的dNTP以及4种不同的ddNTP(比如体系1里面缺少dATP,而有ddATP,以此类推)。假设四个体系中分别加入的是ddATP, ddGTP, ddCTP和ddGTP 我们就分别把这个叫做A,G,C,T体系,然后每个体系中,会在遇到相应碱基的时候停止反应,这样就产生了一系列长度不一并且分别在以A,G,C,T时终止的DNA片段,比如A 体系中的DNA片段,都是以A结尾的DNA。通过高分辨率的变性聚丙烯酰胺凝胶电泳分离,放射自显影检测后,从凝胶底部到顶部按5′→3′方向读出新合成链序列,由此推知待测模板链的序列。 逐个克隆法基本步骤 逐个克隆法的基本步骤是:物理图谱的构建→BAC克隆的筛选→“工作框架图”的构建→序列的全组装与“完成图”构建。 物理图谱的构建的基本步骤如下:确定各STS序列及其在基因组中的位置→大插入片段基因组文库的构建(BAC文库)→以特定STS为标记筛选并定位克隆→含有STS的克隆在基因组中排序。 BAC克隆的筛选的基本步骤如下:用NotI、SacI等处理基因组,通过脉冲场凝胶电泳得200Kb左右的大片段DNA→纯化后与载体连接,得到插有外源DNA片段的BAC载体→通过电转化将连接产物导入大肠杆菌感受态细胞,在含有抗生素的筛选培养基中筛选带有相同外源DNA片段的单克隆菌落→“STS-PCR反应池”方案筛选种子克隆→相互间具有重叠片段的BAC克隆根据STS信息组装成contig,并定位于基因组上。 值得注意的是,STS的密度尚未达到绘制高精度物理图谱的要求,且在基因组中的分布不均匀,造成很多区域没有阳性克隆覆盖,形成空洞。因此需用指纹图谱(FPC法)或末端序列(Walking by End Sequence)步移等手段对种子克隆进行延伸,形成连续克隆群。利用延伸方法筛选得到的克隆称为延伸克隆。 “工作框架图”的构建:根据序列与STS database进行blastn比较结果,将克隆定位末端序的比较,判定延伸在contig外的一端序列。并可及时进行walking,筛选新的克隆。 鸟枪法 鸟枪法或霰弹法是一个高度计算机化的方法,它是先把基因组随机分成已知长度(2000个碱基对、1万个碱基对、5万个碱基对)的片段,然后用数学算法将这些片段组装成毗邻的

人类基因组计划

人类基因组计划 一、什么是基因和基因组 1、基因:DNA分子上具有特定遗传效应的一段特定的核苷酸序列。遗传效应:有蛋白质产物或RNA产物或对其它基因起调节效应的功能。 2、基因组:是一个单倍体染色体组中所包含的全部遗传物质。有核基因组和线拉体基因组之分。 二、人类基因组结构 人类基因组结构庞大、复杂:基因组DNA总长度为3×109bp,3-4万个基因分布在24条染色体上,非编码区远远多于编码区,占90%以上,结构基因占3%,以单拷贝形式存在。 1、DNA序列中的组成结构可分为3种类型: (1)单一序列(非重复序列、单拷贝序列)占60-65%,绝大多数为蛋白质编码的结构基因 (2)中度重复序列:占20-30%,拷贝数为104-105 ,包括组蛋白基因、免疫球蛋白基因及RNA基因,绝大多数中度重复序列为不编码序列,成为间隔区,如人类Alu序列家族由300bp的短序列构成,重复达30万-50万拷贝,占基因组3-6%。 (3)高度重复序列:又称为卫星DNA 通常是小于10bp的短小序列组成基本单元,重复达105以上,占基因组的10%,不能转录,组成异染色质。 2、结构基因 (1)概念:为蛋白质编码的基因叫-。其DNA序列大多数是不连续的,编码序列之中往往还插入有非编码序列。 (2)结构: 内含子:非编码的序列叫—。 外显子:编码序列的片段叫—。 一个结构基因常常是由多个内含子和多个外显子相间排列组成的。图4-2,n个内含子嵌合排列在n+1外显子之间,故有内外之分。 (3)功能:内含子的长度比外显子的大好几倍,一起转录成RNA以后,必须经过剪接加工过程,将内含子部分切除,使外显子连接起来,才能形成成熟的mRNA,成为翻译蛋白质的模板。内含子,含而不显的片段对基因的表达有重要的调控作用。图4-3。 3、多基因家族和基因簇: (1)多基因家族:真核生物的基因组中有许多来源相同、结构相似、功能相关的基因,这样的一组基因称为基因家族 如血红蛋白基因家族。(指进化过程中由某一个祖先基因经过多次重复和变异所产生的一大类群序列相似、功能相似的基因群。) a、有的集中在一条染色体上共同发挥作用,合成某些蛋白质,如组蛋白基因家族中的5种组蛋白基因集中在7号染色体的长臂上的。 b、有的多基因家族成员是分散存在于几条染色体上,如人的rRNA基因家族成员分别位于13、14、15、 21、22,5条染色体的短臂的核仁组织区中。 每个区中包含几十个rRNA基因单位,大量转录18S rRNA、 28S rRNA、 5.8S rRNA。 假基因:是基因组中因突变而失活的基因,它和同一家族中的活跃基因在结构上和DNA序列上有相似性,但是没有蛋白质产物。(在多基因家族中,有少数成员不产生有功能的蛋白质,这样的基因叫—。假基因与正常基因从序列上看是同源的,但是在进化过程中发生突变丧失了功能活性。) (2)基因簇或超基因:同一基因家族中,一些结构和功能更为相似的基因彼此靠近成串地排列在一起,形成一个基因簇。如人类类α珠蛋白基因族、类β珠蛋白基因族。 在人类基因组中,有中等重复序列构成的大的基因群,包含有几百个功能相关的基因,紧密成簇状排列,称为超基因。如人类组织相容性抗原复合体HLA,及免疫球蛋白的重链和轻链基因。

人类基因组计划论文

人类基因组计划的重要性 “以破解人类遗传和生老病死之谜,解决人类健康问题为目的的人类基因组计划,对人类自身的生存和发展具有重要的意义。其旨在通过测定人类基因组DNA约3×109对核苷酸的序列,探寻所有人类基因并确定它们在染色体上的位置,明确所有基因的结构和功能,解读人类的全部遗传信息,使得人类第一次在分子水平上全面认识自我。” 基因作为掌控人类自身性状、特征和遗传的根本因子,以其简单的双螺旋结构、复杂的排列方式,使全世界范围内的每一个人类都有着相同的本质和不同的特质。基因的轰动范围极为广泛,我们身上的每一处体态特征几乎都由基因所决定,大到一个人的身高、外貌,小到一颗牙形的状,甚至是一根头发的直径都与基因有着密不可分的联系。众所周知,基因由五种碱基对以庞大的数量按一定顺序排列组合而成,其本质是核糖核苷酸和脱氧核糖核苷酸。在一个活跃的细胞内,特定的基因通过解旋、转录、翻译等一系列过程,来实现RN A、蛋白质等相应物质的合成,这些数以万计的不同形态不同功能的RN A、蛋白质在细胞内外发挥出他们自身的作用,从而达到控制人类机体、完善结构功能、协调组织器官运作的神奇效果。 由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。 人类基因组计划便应运而生了。该计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波1罗计划并称为三大科学计划。 “HDP(人类基因组计划)的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。”

人类基因组计划及生物制药展望

人类基因组计划及生物制药展望 杨亚军(200805035)法医学专业 关键词:人类基因组、生物技术、基因工程、生物制药、经济发展 摘要:20世纪90年代以后,生物技术产业发展迅速,为生物制药企业发展带来了机遇和挑战,特别是人类基因组计划的实施,使得生物医药的市场无比广阔。本文综述了生化药物和基因工程药物的发展历史与国内外的研究进展。基因工程诞生二十余年,运用于医药行业研制和开发基因工程药物,已取得长足进步。迄今为止,已有近一百个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有强大的生命力。 在中国几个高增长、高收益的产业(生物制药、高端装备制造、新能源、IT产业、)中,生物制药始终是一个充满潜力的产业,虽然现在因为一些技术和政策的原因,中国的生物制药技术稍微有些落后,但是不可否认,生物制药的前景必然是可观的,成为21世纪经济发展的支柱这一点的趋势确信是必然的。这不仅是因为生物制药会带来不可估量的社会效益和经济效益,更是因为这是一项真正以人的健康为本,以人的健康为依归的科技。 自20世纪70年代初基因工程问世以来,基因工程药物的研究与开发一直是发展最快和最活跃的领域。美国礼来公司于1982年首先利用重组DNA技术合成了人胰岛素病投放市场,标志着生物工程药物时代的开始。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态,形成了一个巨大的高兴技术产业。

目前全世界的医药品已有一半是生物合成的,特别是合成分子结构复杂的药物时,它不仅比化学合成法简便,而且有更高的经济效益。 生物制药是21世纪新兴的支柱型产业,具有投入高、周期长、收益高、风险大等特点,识别生物制药企业的成功要素是投资人和管理者共同关心的重点问题。 半个世纪以来微生物转化在药物研制中一系列突破性的应用给医药工业创造了巨大的医疗价值和经济效益。微生物制药工业生产的特点是利用某种微生物以“纯种状态”,也就是不仅“种子”要优而且只能是一种,如其它菌种进来即为杂菌。对固定产品来说,一定按工艺有它最合适的“饭”—培养基,来供它生长。培养基的成分不能随意更改,一个菌种在同样的发酵培养基中,因为只少了或多了某个成分,发酵的成品就完全不同。如金色链霉菌在含氯的培养基中可形成金霉素,而在没有氯化物或在培养基中加入抑制生成氯化的物质,就产生四环素。药物生产菌投入发酵罐生产,必须经过种子的扩大制备。从保存的菌种斜面移接到摇瓶培养,长好的摇瓶种子接入培养量大的种子罐中,生长好后可接入发酵罐中培养。不同的发酵规模亦有不同的发酵罐,如

人类后基因组计划及研究进展

人类后基因组计划及研究进展 摘要:2003年4月14日生命科学诞生了一个新的重要里程碑,人类基因组计划完成,后基因组时代正式来临。着重介绍了人类基因组计划的提出、目标与任务、实施与进展等方面的基本情况,讨论了后基因组时代的时间界定,分析展望了后基因组时代与人类基因组计划密切相关的生物信息学、功能基因组学、蛋白质组学、药物基因组学等几个重要研究领域。 关键词:人类基因组计划;研究进展 2003年4月14日,美国人类基因组研究项目首席科学家Collins F博士在华盛顿隆重宣布:人类基因组序列图绘制成功,人类基因组计划(human genome project,HGP)的所有目标全部实现。这标志“人类基因组计划”胜利完成和“后基因组时代”(post genome em,PGE)正式来l临,在举世庆祝“DNA双螺旋结构”提出50周年之际,生命科学诞生了一个新的里程碑。HGP被誉为可与“曼哈顿原子弹计划”、“阿波罗登月计划”相媲美的伟大系统工程,是人类第一次系统、全面地解读和研究人类遗传物质DNA的全球性合作计划。人类基因组序列图的成功绘制是科学史上最伟大的成就之一,奠定了人类认识自我的重要基石,推动了生命与医学科学的革命性进展。在后基因组时代,生命科学关注的范围越来越大,涉及的问题越来越复杂,采用的技术越来越高,取得的成就将越来越多,生命科学及其相关科学将大有作为。 1人类基因组计划的产生与目标 1984年12月,美国犹他大学的Wenter受美国能源部的委托,主持讨论了DNA重组技术及测定人类整个基因组DNA序列的意义.1985年6月,美国能源部提出“人类基因组计划”(Humangenome project,HGP)的初步草案.最早提出测定人类基因组序列的是美国科学家罗伯特·辛西默(Robert Sinshimer).1986年3月,美国的诺贝尔奖获得者雷纳多·杜尔贝柯石(Renato Dulbecco)在《科学》杂志上发表的短文中率先提出“测定人类的整个基因组序列”的主张[1],后经世界性的讨论取得共识.1987年,美国开始筹建“人类基因组计划”实验室.1988年,科学家开始讨论如何才能更快、更多、更好地研究与人类的生老病死有关的所有基因——全部的人类基因组.1989年,美国成立“国家人类基因组研究中心”,诺贝尔奖获得者、DNA分子双螺旋结构模型的提出者Jamse Wateson担任第一任主任.1990年10月,美国首先正式启动“人类基因组计划”(HGP),完成人类全部DNA分子核苷酸序列的测定.1993年,美国对这一计划做了修订,其中最重要的任务就是人类基因组的基因图构建与序列分析,需最优先考虑、必须保质保量完成的是DNA序列图.随后,英国、法国、日本、加拿大、前苏联、中国等许多国家积极响应,都开始了不同规模、各有特色 的人类基因组研究。 1999年12月1日,人类首次成功地完成人体染色体基因完整序列的测定.2000年6 月26日,六国科学家公布人类基因组工作框架图,成为人类基因组计划进展的一个重要里程碑.2001年2月12日,人类基因组图谱及初步分析结果首次公布.2003年4月15日,美、英、德、日、法、中6个国家共同宣布人类基因组序列图完成,人类基因组计划的所有目标全部实现,提前2年实现了目标。 2人类基因组计划的内容

人类基因组计划的成果

类基因组计划的成果(一) 谁来当“亚当”---人类基因组多样性与个体医学已在进行的人类基因组计划,可以说是“代表性个体”人类基因组计划。在美国,现在用于用于绘制人类DNA序列的DNA 来自于几个“无名氏”的男性。这在当时还曾有过争论,谁可以做“亚当”?这个问题也重要也不重要。人类的所有个体、所有的人,在遗传上都是平等的。所有的人类基因组不管是在基因组中的位置,即基因位点,还是每一个基因的结构都是很相似的,绝对不存在好坏优劣之分。不管从哪一个人身上分离到的一个位点上的DNA片段,可以用于任何种族任何个体的这一位点的研究,这一位点致病等位基因的鉴定,将来可能的基因诊断与基因治疗。因此,我们说人类只有一个基因组,不存在黄种人基因组、白种人的基因组之分。一个基因被鉴定、分离了,进而被专利,就是全人类的这一基因组被专利了,我们不能说你专利的是白种人的基因,我们再来专利一个黄种人或中国人的基因。但人与人是不同的,这就是人类在“同一性”的前提下的“多样性”,多样性体现在每个人身上,称为“基因多样性”或“个体特异性”,一般每个人之间5%位点的等位基因不同有0.1%的序列不同。体现在黄种人棗白种人这一人种族差异上,可称为“种族多样性”,体现在民族(遗传上称为“族群”)上,称为“族群多样性”。将来的某一天,如果需要每一个人的全基因的全核苷酸序列也许能不费多少钱就测定了,并且记录在一个光盘上,要诊断疾病就方便啦。医生先把这个光盘装进计算机,检查几个有关的“候选基因”,看看要注意什么,譬如说,某种药物,有人用灵验,有人不灵验,这就是个体差异。这一差异很多是基因决定的,也就是“多样性”决定的,这对医生诊病很有帮助。当然,也许不需要了解一个人的整个基因组棗大家都大同小异,而把重要区域、重要基因、重要位点的“多样性”较高的区域搞清就行了。“全基因组”信息非同小可,表达了每一个人有关生、老、病、死的重要信息,它是一个人全部隐私中的最重要的隐私,可不是一个人一般生理指标,如身高、体重、胸围、血型等等,因此,它的使用可得慎之又慎。

基因组计划综述

人类基因组计划综述 摘要:人类基因组计划(humangenomeproject,HGP)是由美国科学家于1985年率先提出,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。于1990年正式启动的。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。 关键字:人类基因组计划;碱基构成;遗传信息 一、研究内容和目标 人类基因组计划的内容和分阶段目标如下: 1、遗传图谱的绘制。遗传图谱主要是用遗传标签来确定基因在染色体上的排列。1994年9月,完成了包含3000个(原计划为600-1500)标签分辨率为1-cM(即1%重组率)的遗传图谱的绘制。 2、物理图谱的绘制。物理图谱是通过序列标签位点对构成基因组的DNA分子进行测定,从而对某基因所相对之遗传讯息及其在染色体上的相对位置做一线性排列。1998年10月,完成了包含52,000个(原计划为30,000)序列标签位点的物理图谱的绘制。 3、序列测定。通过测序得到基因组的序列,是一般意义上的人类基因组计划。2003年4月,包含基因序列中的98%(原预计为95%)获得了测定,精确度为99.99%。 4、辨别序列中的个体差异。每一个人都有唯一的基因序列,因此,人类基因组计划发布的数据不可能精确的反映单独个体的基因序列。它只是很少量匿名捐赠人基因组的组合。人类基因组计划只是为未来鉴定不同个体间基因组差异做一些基础的框架性工作。当前主要工作在于鉴定不同个体间包含的单核苷酸多态性。至2003年2月,已有约3,700,000个单核苷酸多态性位点得到测定。 5、基因鉴定。以获得全长的人类cDNA文库为目标。至2003年3月,已获得15,000个全长的人类cDNA文库。人类基因组计划最开始的目标是不但以最小的错误率检测出人类基因的所有30亿个碱基对,还要从如此海量的数据中确认出所有的基因及其序列。这一部分计划正在进行中,尽管目前的数据显示在人类基因组中只有大约20,000至25,000个基因,远远低于大多数科学家先前的估计。 6、基因的功能性分析。今天,人类DNA序列已经存储在数据库中,任何人都可以通过互联网下载。美国国家生物技术信息中心和位于欧洲和日本的姊妹组织储存着整个基因序列,其中包含已知序列,假设基因和蛋白质。其他组织像加州大学圣塔克鲁斯分校和ENSEMBL提供附加数据,注释和观察和检索数据的有力工具。 二、测序手段 在国际计划中,基因组被分割成多个片断(长度接近150,000个碱基对)。由于这些片断能被插入细菌中,并利用细菌的DNA复制机器进行复制,因此被称为细菌人工染色体。通过对每一个这样的片断分别应用“霰弹枪测序法”,最终将这些片断通过配对末端法(pair-end)以及其他许多定位数据重新组装在一起从而获得完整的基因组。这一手段是先将基因组分成相对较大的片断,并且在对片断进行测序前将其定位到每条染色体对应位置,所以被称为“分级霰弹枪测序法”。

人类基因组计划的重要意义

人类基因组计划的重要意义人类基因组计划(human genome project,HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。 人类基因组计划耗资巨大,该计划的原因如下:人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。 测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。 在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。 HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。

我们知道所有生物的遗传物质是DNA,它的总和就是基因组,就人类基因组而言,指合成有功能的人体各类细胞中蛋白质及或多肽链和RNA所必须的全部DNA顺序和结构,人体遗传物质综合就是人类基因组,由大约30亿碱基对组成,分布在细胞核的23对染色体中。人类基因组计划是测定人类基因组的全部DNA序列,从而解读所有遗传密码,揭示生命的所有奥秘。 诺贝尔奖获得者杜伯克于1986年在《科学(Science)》杂志上发表的一篇短文中率先提全面解剖人类基因组的计划。1988年,该计划正式获得美国国会批准,并于1990年10月1日正式启动。其总体规划是:拟在15年内至少投资30亿美元,进行对人类基因组的分析。不久,该计划发展成一个由多国政府支持的国际项目,先后有美、英、日、德、法及中国等6个国家参加。HGP其最初的目标是,用15年时间(1990-2005),构建详细的人类基因组遗传图和物理图,确定人类DNA的全部核苷酸序列,定位全部基因,并对其他生物进行类似研究。1993年,又增加了人类基因的鉴定和分离的内容。其终极目标即:阐明人类基因组全部DNA序列;识别基因;建立储存这些信息的数据库;开发数据分析工具;研究HGP实施所带来的伦理、法律和社会问题。1998年,人类基因组计划增加了基因组多样性研究的内容,强化了功能基因组研究技术平台体系。

专题一 人类基因组计划及其意义

开卷有益 你能活多少岁?你想活多少岁?长寿是人类梦寐以求的,但是疾病等因素一直困扰着我们,癌症、糖尿病等大多是基因病。如果能攻克人类基因的奥秘,活到一百五十岁并不是异想天开。我们也能够在超市买到抗感冒的苹果、防肝炎的梨,能吃到治疗艾滋病的大米。如果能攻克人类基因的奥秘,我们的生活将发生翻天覆地的变化,我国正是人类基因组计划的成员国之一,承担着百分之一的任务,而这正是本文作者杨焕明博士争取而来的。今天我们就随他走进基因世界,去领略基因世界的多姿多彩! 话题链接——科学与生活 1.教材赏悟 全文通过介绍人类基因组计划的科学地位及六大导向性的意义,阐明了该计划是人类科学史上的重大工程,可以奠定揭开生命最终奥秘的基础,反映了当前领先于科技前沿的基因组研究的重大突破和广阔前景,体现了人文关怀性和科学严谨性,并呼吁人们要加强国际性合作,走良性发展的科研之路。 2.名句赏记 ◆科学家的成果是全人类的财产,而科学是最无私的领域。——高尔基 ◆数理科学是大自然的语言。——伽利略 ◆科学是我心中的温暖和愉快,你使我无所畏惧,视死如归。入狱者虽难得重见天日,你却能把锁链和铁窗粉碎。——布鲁诺 ◆科学是人类智慧的结晶和硕果……展望科学的未来,人类将高举科学的火炬登上宇宙的天堂。——霍金 ◆科学是人们生活中最重要、最美好和最需要的东西。——契诃夫 ◆没有科学和艺术,就没有人和人的生活。——列夫·托尔斯泰 ◆科学是我们时代的神经系统。——高尔基 ◆科学的真正的、合法的目标说来不外是这样:把新的发现和新的力量惠赠给人类生活。——培根

◆科学、科学知识总是假设的:它是猜想的知识。科学的方法是批评的方法: 寻求和消灭错误并服务于真理的方法。——卡尔·波普尔 ◆科学本身就有诗意。——斯宾塞 3.典例赏析 揭开遗传奥秘 原文:1832年的一天,奥地利西里西亚地区一个名叫海因赞多夫的小村庄,10岁的约翰正忙着帮助父亲嫁接果树。父亲酷爱园艺,是果树栽培嫁接方面的行家,左邻右舍的农民经常来向他请教。约翰从小就在父亲影响下学会了干各种农活,并且对果树嫁接产生了浓厚的兴趣。 一次小约翰问父亲:“爸爸,一枝小小的良种接穗,尽管全部养料都由劣种砧木供给,为什么仍能长成粗大的枝干和香甜的果实?” “孩子,我也不知道为什么!但事实的确如此。比养料力量更大是树木的本性,就是人们称为‘遗传’的那种性质吧!”父亲根据自己掌握的知识回答了约翰的问题。 小约翰默默地听着听着,陷入了沉思:“树木的本性”“遗传”,那是怎么一回事呢?他不断地喃喃自语。 童年的嫁接经验和学校里组织的生物活动,这些生物学的遗传现象在约翰幼小的心灵里扎下了深深的根基,这对他成为举世闻名、发现遗传规律的伟大的生物学家影响极大,他就是发现遗传三大定律的孟德尔。 悟语:伟大的发现常产生于我们普通的生活中,但是如果没有刨根究底的精神,如果没有持之以恒的坚持,没有把好奇心继续到底的决心,这伟大的发现还会是平常的生活现象。 4.时文赏读

人类基因组计划的历史背景

人类基因组计划的历史背景 问题的提出 尽管生物机体的尺寸有限,但并未能为研究工作带来任何容易之处。人们经过了不懈的努力,渴望解开生命之谜这个多年的愿望并未向前推进多少,谜仍是个谜!以往研究的艰履或失败教训使人们头脑开始清醒地认识到,任何仅依靠单一学科如细胞学、发青学、肿瘤学、人类遗传学或分子生物学的独自努力都无济于事,都太局限了,难以完成人类对自身的认识和保护。美国曾投巨资但基本上以失败告吹了的肿瘤十年计划也说明了这个问题。所以,要知道某事物的局部作用机制最好先知道全局的看法逐渐主导了人们的认识(Dulbecco R,1986)。在绕了一大段弯路后,人们回过头来决定开始进行人的所有基因即基因组的研究,全面探讨这个“摸得到,猜不透',的人体奥秘,由此形成了基因组学(genomics)和人类基因组计划(Human Genome Project,HGP),其最终目的是对生命进行系统地和科学地解码,以此达到了解和认识生命的起源,种间和个体间存在差异的起因,疾病产生的机制以及长寿与衰老等生命现象(Under ES,1996)。人类基因组计划以前的遗传学或称基因学(genetics)偏重于单个基因的研究,而人类基因组计划则是把目光投向整个基因组的所有基因,从整体水平去考虑基因的存在、基因的结构与功能、基因之间的相互关系等。随着数理化、信息和材料等学科的渗透以及具有时代特征的工业化技术管理模式的引进,HGP真正成为了生命科学领域的第一项大科学工程,其规模和意义远远超过阿波罗(Apollo)登月计划和曼哈顿(Manhatton)原子弹计划口HGP的正式启动也就标志着解码生命的真正开始也就很自然地成为人们关注的焦点。 历史的回顾 对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已形成一定规模,并在以下的几个事件的影响下形成了投资额最多、最具规模的美国人类基因组计划。 1984年在Utah州的Aita,White R和MendelSOIlhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景(Cook-y明n则,1989)。1985年5月在加州antaCruz由美国能说部的SindeimerRL主持的议上提出了测定人类基因组全序列的动议,由此形成了美国能源部的“人类基因组计划”草案。1986年3月,在新墨西哥州的Santa Fe 讨论了这一计划的可行性,随后美国能源部宣布实施这一草案。1986年著名遗传学家McK1Mick V 提出从整个基因组的层次研究遗传的科学称“基因组学"。1986年3月7日,诺贝尔奖获得者Dulbecco R在Science杂志上发表的一篇有关开展人类基因组计划的短文。1986年6月在美国冷泉港,另两位诺贝尔奖获得者GIbedW及Berg P主持了有关“人类基因组计划”的专家会议。1987年初,美国能源部与国家健康研究院(NIH)为“人类基因组计划"下拨了启动经费约550万美元(1987年全年1.66亿美元),并开始筹建人类基因组计划实验室。1988年2月,国家科学研究委员会(NRC)的专家撰写了“人类基因组的作图与测序(mapping andsequencing the human genome)”的报告,全面地介绍了有关这项史无前例的、看起来似“胆大妄为',计划的内容(Nati?ml Research Council,1988)。同年,美国成立了“国家人类基因组研究中心",由因提出DNA 分子双螺旋模型的贡献而获诺贝尔奖的沃森(Watson J)出任第一任主任。 Duibeeco短文的功绩 Dulbecco R于1986年在Science杂志上发表的题为“癌症研究的转折点——人类基因组的全序列分析”的短文,回顾了70年代以来癌症研究的进展,使人们认识到包括癌症在内的人类疾病的发

人类基因组计划及其意义一概

人类基因组计划及其意义 一、概述人类基因组计划 首先我们看一下百度词条上对于人类基因组计划的解释 人类基因组计划 定义:于20世纪80年代提出,由美、英、日、中、德、法等国参加并于2001年完成的针对人体23对染色体全部DNA的碱基对序列进行排序,对大约25 000个基因进行染色体定位,构建人类基因组遗传图谱和物理图谱的国际合作研究计划。 研究内容 HGP 的主要任务是人类的DNA 测序,同时绘制人类基因图谱(遗传图谱、物理图谱、序列图谱和基因图谱),此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等内容。 遗传图谱 遗传图谱是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000 多个遗传标记,能够把人的基因组分成6000 多个区域,可把某一致病基因定位于一定的已知区域,再对基因进行分离和研究。能够提高寻找基因和基因分析的效率,对于疾病而言,找基因和分析基因是个关键。 物理图谱 物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA 分子进行测定而绘制的,主要使用限制性内切酶水解DNA片段,再通过酶切片段在DNA链上的定位将DNA链上的限制性内切酶酶切片段排列起来从而把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来所形成的图谱。DNA物理图谱是DNA分子结构的特征之一。由于首先要解决限制性内切酶在DNA 片段中所处的位置关系才能绘制出物理图谱,所以,在绘制DNA物理图谱的同时也要进行DNA序列的分析。DNA测序从物理图谱制作开始,它是测序工作的第一步。 序列图谱 随着遗传图谱和物理图谱的完成,测序就成为最重要的的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。 通过测序得到基因组的序列图谱。目前普遍使用的DNA测序技术主要有:逐个克隆法、全基因组鸟枪法等方法。 基因图谱 基因图谱是在识别基因组外显子的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA 反追到染色体的位置。 主要用途 对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。 对制药的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。 生物技术贡献 对基因工程药物、诊断和研究试剂产业,胚胎和成年期干细胞、克隆技术、器官再造等都有贡献。 人类基因组计划的意义 人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨

人类基因组计划(Human Genome Project)

人类基因组计划 (Human Genome Project,HGP) 1.什么是人类基因组计划: 人类基因组计划是由美国能源部和NIH联合做出的,自1990年开始,争取在15年内完成的目标。 即:鉴定人体DNA估计约8万个基因,测序构成人DNA的30亿个碱基,贮存这些信息于databases(数据库)并发展data analysis的工具。 (1)实际包括两部分工作,一是mapping,一是sequencing,故先前叫做“Mapping and Sequencing the human genome”.而Mapping又分为遗传连锁图谱和物理图谱。(2)HGP是第一个庞大的科学事业,会引起一些由此计划暴发出来的伦理、法律、社会学上的诸多争论。(DOE熟悉大科学模式;生物学家习惯小科学模式,应完美结合。 该计划会引发出许多商业和法律,社会学和论理学方面的问题。) (3)为了有助于这些目标的实现,还要研究一些非人生物体的遗传图谱。(包括E.coli、酵母、秀丽隐杆线虫、果蝇、实验用小鼠等模式生物。) (4)在植物方面,美国农业部集中研究玉米和南芥菜(Arabidopsis)基因组,我国科学家提出了水稻基因组计划。 2.背景: 早在1984年Utah州Alta城的专业会议(DOE环境与健康研究办公室,OHER 和国际环境诱变剂和致癌物防护委员会,ICPEMC协办)。开始讨论HG DNA全序列测定的前景。 1985年5月由Sinsheimer组织专门会议提出测定HG全序的动议。 DOE为何操办:(1)DOE承担低水平辐射和其它环境因素引起的遗传性损伤的监测,即需要在108bp的DNA中检测出一个碱基的改变,此项任务与HG全序列测定有关并且

相关文档