文档库 最新最全的文档下载
当前位置:文档库 › 基于热敏电阻的数字温度计

基于热敏电阻的数字温度计

基于热敏电阻的数字温度计
基于热敏电阻的数字温度计

微型计算机控制技术大作业

设计题目:基于热敏电阻的数字温度计

院系:计算机科学与信息工程学院

学生姓名:丁宏盟

学号:201103010029

专业班级:计算机科学与技术(嵌入式方向)11-1

指导教师:赵凯

2014.06.07

目录

1、概述 (1)

2、设计要求 (1)

3、课程设计目的: (2)

4、性能指标: (2)

5、原理框图 (2)

6.1热敏电阻温度转换原理 (3)

6.2 热敏电阻仿真电路图: (4)

6.3 热敏电阻程序代码: (4)

7、实验总结及心得体会 (10)

6、参考文献 (11)

基于热敏电阻的数字温度计

1、概述

随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

2、设计要求

使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来:

●测量温度范围?50℃~110℃。

●精度误差小于0.5℃。

●LED数码直读显示。

本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。

采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。

3、课程设计目的:

1.通过课程设计实践,树立正确的设计思想,培养综合运用专业课程和其他选修课程的理论与生产实际知识来分析和解决电子设计问题的能力。

2.学习电子设计的一般方法、步骤,掌握电子设计的一般规律。

3.进行电子设计基本技能的训练,培养查阅资料的技能、掌握Protel 2004的工作流程和调试方法。

4.学习掌握单片机设计原理和设计思路。

4、性能指标:

设计温度测量电路,量程为0-100摄氏度,精度为0.5摄氏度,实现温度的数字显示。

5、原理框图

传感器

信号放大电路

A/D转换电路

单片机系统

数码管显示

测量部分可以采用热敏电阻,热电偶及温度传感器。由于精度要求不高,故我们通过热敏电阻实现温度的测量功能。

信号放大部分为使信号不失真,就得保证电路的对称性,所以我们采用单端输入双端输出的差动放大电路进行信号的变换,同时用高精度,低漂移的运放来代替晶体三极管。

A/D转换部分CPU8051通过P0口P0.0-P0.2向A/D发送模拟的地址编码信息,并通过地址线P2.0和写控制线控制地址编码信号的锁存。选通相应的模拟输入通道,然后启动A/D转换。当转换结束后,A/D经过EOC发出标志信号,经反相后送入8051的向8051发出中断请求,当8051响应请求后,通过P2.0的读控制端使A/D的OE端变为高电平,从而控制转换器的三态数据输出,锁存器通过P0口P0.0-P0.7向8051输出。

数码显示部分用74LS164驱动显示,另外我们用一个PNP型的三极管来控制数码管的电源,是因为164没有数据锁存端,数据在传送过程中,对输出端来说是透明的,这样,数据在传送过程中,数码管上有闪动现象,驱动的位数越多,闪动现象越明显。为了消除这种现象,在数据传送过程中,关闭三极管使数码管没电不显示,数据传送完后立刻使三极管导通,这样就实现锁存功能。

6、电路实现

6.1热敏电阻温度转换原理

热敏电阻是近年来发展起来的一种新型半导体感温元件,由于它具有灵敏度高,体积小,重量轻,热惯性小,寿命长,以及价格便宜等优点,因此应用非常广泛。热敏电阻具有负的温度特性,当温度升高时,电阻值减小。热敏电阻的阻值――温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理。

热敏电阻的温度特性曲线

热敏电阻的使用是为了感知温度,为此给热敏电阻通以恒定的电流,测量电阻两端就得到一个电压,然后即可通过下列公式求得温度值:

其中的参数如下:

T:被测温度

T0:与热敏电阻特性有关的温度参数

K:与热敏电阻特性有关的系数

:热敏电阻两端的电压

根据这一公式,如果能测得热敏电阻两端的电压并知道参数T0和K,则可以计算出热敏电阻的环境温度,即:被测温度,这样就把电阻随温度的变化关系转化为电压随温度变化的关系。数字式热敏电阻温度计设计工作的主要内容就是把热敏电阻两端电压值经A/D转换为数字量,通过软件方法计算得到温度值,然后进行显示处理。

6.2 热敏电阻仿真电路图:

6.3 热敏电阻程序代码:

#include

#include

#define uchar unsigned char

sbit STAR=P2^4;

sbit EOC=P2^6;

sbit CLOCK=P2^5;

sbit OE =P2^7;

sbit P20=P2^0;

sbit P21=P2^1;

sbit P22=P2^2;

sbit P23=P2^3;

uchar dispbuf[6];

uchar code

table1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar code

table2[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xdf}; void TimeInitial()

{

TMOD=0x10;

TH1=(65536-200)/256;

TL1=(65536-200)%256;

EA=1;

ET1=1;

TR1=1;

}

void Delay(uchar i)

{

unsigned int j;

for(;i>0;i--)

{

for(j=0;j<125;j++)

{;}

}

}

void t1(void) interrupt 3 using 0 {

TH1=(65536-200)/256;

TL1=(65536-200)%256;

CLOCK=~CLOCK;

}

void Display()//

{

P0=table1[dispbuf[1]]; P20=0;

P21=1;

P22=1;

P23=1;

Delay(10);

P0=0x00;

P0=table2[dispbuf[2]];

P20=1;

P21=0;

P22=1;

P23=1;

Delay(10);

P0=0x00;

P0=table1[dispbuf[1]]; P20=1;

P21=1;

P22=0;

P23=1;

Delay(10);

P0=0x00;

P0=table1[dispbuf[0]]; P20=1;

P21=1;

P22=1;

P23=0;

Delay(10);

P0=0x00;

}

void main()//主函数

{

uchar getdata,temp; uchar count=0;

uchar i=0;

TimeInitial();

while(1)

{

STAR=0;//关闭转换

OE=0;//关闭输出

STAR=1;//开启转换

STAR=0;//关闭转换

while(EOC==0)

{

OE=1;//开启数据输出允许

Delay(10);

getdata=P1;

OE=0;

temp=getdata*1.0/255*500;

dispbuf[0]=temp%10;

dispbuf[1]=temp/10%10;

dispbuf[2]=temp/100%10;

Display();

}

}

}

7、实验总结及心得体会

在这次课程设计中,感受很多,收获很很多,主要在一下几个方面:

(1)由于时间紧迫,因此指导老师布置课题后,我就开始制定整个课程设计的时间安排表。在计划表中,我确定了整个课程设计的步骤和时间安排,这也使我在接下来的设计过程中更有效率,忙而不乱。

(2)在设计过程中,需要用到keil和protues这两款软件进行调试和仿真,通过这次课程设计,我从不了解这两款软件到对他们的基本功能有了掌握,这对我以后对这两种软件的使用有很大帮助。

(3)课程设计过程中,程序的调试和仿真并不是很顺利,但是经过多次调试和修改后,程序满足了设计要求,后来经过不断的改进,程序终于更加简洁明了。这个过程也让我明白,软件设计过程并不是一次就能成功的,需要不断调试、改进,使程序有条理,简洁易读。

(4)当遇到自己不懂的问题时,我会查阅相关的资料。在现在信息高速发展的时代,各种信息资料充斥,我们不能全盘接受,需要我们仔细甄别和筛选,找到对自己有用的信息,而不是盲目接受。这个过程中也锻炼了我对信息的辨别和搜索能力,对我以后的自学至关重要。

(5)在设计过程中,遇到了自己无法解决的问题,我就向指导老师请教或者和同学们互相讨论,在这个过程中不仅使问题得到解决,有时还会产生一些新的想法和灵感,更重要的是,在讨论的过程中,我学会了团队协作,知道了团队精神的重要性,这对我以后的工作有着重要的意义。

(6)虽然这是个看似简单的课程设计,但是它包含了在设计过程中的完整步骤,我们也要对它重视,以严谨的态度来对待,熟悉产品的开发和生产过程。当进行多次尝试仍然没有得到预期的效果时,不能失去信心,更不能轻易放弃。

总而言之,这次课程设计将理论知识和实际应用联系在一起,使我们不仅巩固了课堂上学的理论知识,而且熟悉了产品的开发和生产过程,更重要的是,它使我们各方面都得到了锻炼,对我们以后的生活和学习都有极其重要的作用。

6、参考文献

[1]《单片机原理及应用(第二版)》张毅刚彭喜元彭宇高等教育出版社

[2]余发山.单片机原理及应用技术.中国矿业大学出版社,2003.21-45,98-118,185-198

[3]刘和平. 单片机编程与入门.重庆大学出版社,2002.68-99,111-122

[4]陈明荧. 89C51单片机课程设计实训教材.清华大学出版社,2003.38-67,102-118

1、

#include

#include

#define uchar unsigned char

sbit STAR=P2^4;

sbit EOC=P2^6;

sbit CLOCK=P2^5;

sbit OE =P2^7;

sbit P20=P2^0;

sbit P21=P2^1;

sbit P22=P2^2;

sbit P23=P2^3;

uchar dispbuf[6];

uchar code table1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar code table2[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xdf}; void TimeInitial()

{

TMOD=0x10;

TH1=(65536-200)/256;

TL1=(65536-200)%256;

EA=1;

ET1=1;

TR1=1;

}

void Delay(uchar i)

{

unsigned int j;

for(;i>0;i--)

{

for(j=0;j<125;j++)

{;}

}

}

void t1(void) interrupt 3 using 0

{

TH1=(65536-200)/256;

TL1=(65536-200)%256;

CLOCK=~CLOCK;

}

void Display()//

{

P0=table1[dispbuf[1]];

P20=0;

P21=1;

P22=1;

P23=1;

Delay(10);

P0=0x00;

P0=table2[dispbuf[2]];

P20=1;

P21=0;

P22=1;

P23=1;

Delay(10);

P0=0x00;

P0=table1[dispbuf[1]]; P20=1;

P21=1;

P22=0;

P23=1;

Delay(10);

P0=0x00;

P0=table1[dispbuf[0]]; P20=1;

P21=1;

P22=1;

P23=0;

Delay(10);

P0=0x00;

}

void main()//主函数

{

uchar getdata,temp; uchar count=0;

uchar i=0;

TimeInitial();

while(1)

{

STAR=0;//关闭转换

OE=0;//关闭输出

STAR=1;//开启转换

STAR=0;//关闭转换

while(EOC==0)

{

OE=1;//开启数据输出允许

Delay(10);

getdata=P1;

OE=0;

temp=getdata*1.0/255*500;

dispbuf[0]=temp%10;

dispbuf[1]=temp/10%10;

dispbuf[2]=temp/100%10;

Display();

}

}

}

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108 组内成员:罗良李登宇李海先 指导老师:张华 日期: 2014年6月12日

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2设计方案 2.1设计目的 利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度 2.2设计要求 使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。

3系统的设计及实现 3.1系统模块 3.1.1 AT89C51 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

温度传感器报告

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量范围和特点是不同的。 几种重要类型的温度传感器的温度测量范围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

【大学物理实验】 热敏电阻温度计的设计 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 姓 名 学号 实验台号 实验时间 年 11 月 25 日,第14周,星期 二 第 5-6 节 实验名称 热敏电阻温度计的设计 教师评语 实验目的与要求: (1) 掌握电阻温度计测量温度的基本原理和方法。 (2) 设计和组装一个热敏电阻温度计。 主要仪器设备: 稳压电源, 自制电桥盒(如右下图所示), 直流单臂电桥箱和热敏电阻感温原件等。 实验原理和内容: 热敏电阻温度计的工作原理 由于热敏电阻的阻值具有随温度变化而变化的性质, 我们可以将热敏电阻作为一个感温原件, 以阻值的变化来体现环境温度的变化。 但是阻值的变化量以直接测量的方式获得可能存在较大的误差, 因此要将其转化为一个对外部条件变化更加敏感的物理量; 本实验中选择的是电流, 通过电桥可以将电阻阻值的变化转化为电流(电压)的变化。 电桥的结构如右图所示, R1、R2、R3为可调节电阻, Rt 为热敏电阻。 当四个电阻值选择适当时, 可以使电桥达到平衡, 即AB 之间(微安表头)没有电流流过, 微安表指零; 当Rt 发生变化时, 电桥不平衡, AB 间有电流流过, 可以通过微安表读出电流大小, 从而进一步表征温度的变化。 成 绩 教师签字

当电桥不平衡时, 可以描绘成如右侧的电路图。 根据基尔霍夫定律和R1=R2的条件, 能够求得微安表在非平衡状态下的电流表达式: t t g t t cd g R R R R R R R R R U I ++++- =33132 2)21( 式中, Ucd 为加载在电桥两端的电压, Rg 为微安表头的内阻值。 可以见到, 为使Ig 为相关于Rt 的单值函数, R1、R2、R3和Ucd 必须为定值, 而其定制的大小则决定于以下两个因素: 1) 热敏电阻的电阻-温度特性。 2) 所设计的温度计的测温上限t1和测温下限t2。 步骤与操作方法: 1. 温度计的设计 (1) 测出所选择的热敏电阻Rt-t 曲线(或由实验室给出)。 (2) 确定R1、R2、R3的阻值。 具体方法如下: 该实验中, t1=20℃,t2=70℃, 对应R t -t 曲线可以得到R t1和R t2; Rg 由实验室给出, U cd 取值为1.3V , 由微安表面板上可读出I gm =50μA 。 根据电桥关系, 有R 1=R 2, R 3= R t1, R t = R t2, I g =I gm ; 再将以上量代入关系式:)(2)21(2 12121221t t t t g t t t gm cd R R R R R R R R I U R R ++-+-==, 计算得到R1和R2的值。 2. 温度计的调试 (1) 将面板上的开关扳向下方, 将R1和R2调节到方才的计算值之后, 保持不变。 (2) 将微安表接入电路, Rt 先用一个四位旋钮式的电阻箱代替接入E 、D 两点, 并链接其 余电路和电源。 (3) 将电阻箱调至R t1的计算值, 打开电源,调节R3使微安表指零,此时R3调节完毕, 有 R3= R t1。

基于PT100热敏电阻的数字温度计

嵌入式设计 基于热敏电阻的数字温度计设计 院(系) 专业 班级 指导老师 学生姓名 成绩 2015年 7月 10日

目录 第一章绪论 (1) 第二章设计要求及构思 (2) 2.1设计要求 (2) 2.2设计构思 (2) 第三章总体程序流程图 (4) 第四章原理框图 (5) 4.1PT100铂热电阻: (5) 4.2信号放大电路 (5) 4.4主芯片电路图 (7) 4.5 四位数码管 (8) 第五章仿真电路图 (9) 第六章心得体会 (11) 参考文献 (12) 附录程序代码 (13)

第一章绪论 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

第二章设计要求及构思 2.1设计要求 1.系统硬件设计 (1)使用热敏电阻PT100; (2)单片机采用MCS51系列; (3)LED数码管显示温度。 2.系统软件设计 (1)温度可以通过PT100热敏电阻实调程序; (2)AD转换芯片检测温度的模拟量程序; (3)LED显示程序; 3.系统功能 (1)测量温度范围?50℃~110℃; (2)精度误差小于0.5℃; (3)LED数码管显示。 2.2设计构思 (1)本题目使用铂热敏电阻PT100,其阻值会随着温度的变化而改变,PT100后的100即表示它在0℃时阻值为100欧姆,在110℃时它的阻值约为142.29欧姆,在-50℃它的电阻值为80.31欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在0℃到110℃电阻的变化率为(142.29-100)/110≈ 0.3845Ω/℃,在-50到0℃电阻的变化率为(100-80.31)/50=0.3938Ω/℃。向PT100输入稳恒电流,使PT100输出的电压与其内部电阻成线性关系变化。 (2)其输出的的电压是模拟信号,需要进行模数转换后才能被有效显示。查找相关模数转换元器件后暂选ADC0808进行模数转换,其有效电压为0~5V。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 (3)由于0.385Ω相对于100多欧姆的电阻来说很小,即温度变化1℃时输出的电压变化量很小,这么小的电压不能改变ADC0808输出的一个数字信号。所以要对PT100输出的电压进行放大。放大倍数是根据最大测量温度确定的,即110℃时输出的电压不能超过+5V,否则测量不到110的温度,最终经调试后取放大倍数为36。再将放大后的电压输入ADC0808模数转换器。 (4)综上所述。采用2.49V的电压与运算放大器搭建成的恒流源对PT100进行供电,然后用运算放大器OP07搭建的同相放大电路将其电压信号放大36倍后输入到ADC0808中。ADC0808根据输入0到5V的电压,转换成对应的十进制0到255数字。再利用电阻变化率的特性,计算出当前温度值,数码管直接显示温度。

打印版热敏电阻改装成温度计

评分:大学物理实验设计性实验实验报告 实验题目:热敏电阻改装温度计 班级: 姓名:学号: 指导教师: **学院物理系大学物理实验室 实验日期:2010年12 月10 日 实验6 《用热敏电阻改装温度计》实验提要

实验课题及任务 热敏电阻是阻值对温度变化非常敏感的一种半导体。不同于导体的阻值——温度特性(温度升高,阻值增大),半导体热敏电阻的阻值——温度特性是当温度升高,阻值降低。产生这种现象的原因是由于半导体中的载流子数目随着温度升高而按数激烈地增加,载流子的数目越多,导电能力越强,电阻率就越小。热敏电阻温度计是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。用半导体热敏电阻作为传感器,设计制作一台测温围为40℃~90℃的半导体温度计。 《用热敏电阻改装温度计》实验课题任务是:根据所学的知识,设计实验把所给的热敏电阻改装成热敏温度计。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用热敏电阻改装温度计》的整体方案,容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验容和步骤。),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等 实验所改装的温度计的要求 (1)要求测量围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 评分参考(10分) ⑴正确写出实验原理和计算公式,2分。 ⑵正确的写出测量方法,1分。 ⑶写出实验容及步骤,1分。

热电阻温度计的结构和原理

热电阻温度计的结构和原理 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。 热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、 体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有

负的电阻温度特性,当温度升高时,电阻值减小热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数k,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就 是把热敏电阻两端电压值经a/d转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。1、热电阻测温原

理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加 这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。2、热电阻的类型1)普通型热电阻从热电阻的测温 2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击; ③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于bla--b3c级区内具有爆炸危险场所的温度测量。铠

热敏电阻温度-阻值表

柜机、分体、窗机、TMC、变频空调(除压缩机排气处)热敏电阻 温度/阻值表(R25=5KΩB25/50=3470K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -30.0 63.7306 14.0 7.7643 58.0 1.5636 -29.0 60.3223 15.0 7.4506 59.0 1.5142 -28.0 57.1180 16.0 7.1513 60.0 1.4666 -27.0 54.1043 17.0 6.8658 61.0 1.4206 -26.0 51.2686 18.0 6.5934 62.0 1.3763 -25.0 48.5994 19.0 6.3333 63.0 1.3336 -24.0 46.0860 20.0 6.0850 64.0 1.2923 -23.0 43.7182 21.0 5.8479 65.0 1.2526 -22.0 41.4868 22.0 5.6213 66.0 1.2142 -21.0 39.3832 23.0 5.4048 67.0 1.1771 -20.0 37.3992 24.0 5.1978 68.0 1.1413 -19.0 35.5274 25.0 5.0000 69.0 1.1068 -18.0 33.7607 26.0 4.8108 70.0 1.0734 -17.0 32.0927 27.0 4.6298 71.0 1.0412 -16.0 30.5172 28.0 4.4566 72.0 1.0100 -15.0 29.0286 29.0 4.2909 73.0 0.9800 -14.0 27.6216 30.0 4.1323 74.0 0.9509 -13.0 26.2913 31.0 3.9804 75.0 0.9228 -12.0 25.0330 32.0 3.8349 76.0 0.8957 -11.0 23.8424 33.0 3.6955 77.0 0.8695 -10.0 22.7155 34.0 3.5620 78.0 0.8441 -9.0 21.6486 35.0 3.4340 79.0 0.8196 -8.0 20.6380 36.0 3.3113 80.0 0.7959 -7.0 19.6806 37.0 3.1937 81.0 0.7730 -6.0 18.7732 38.0 3.0809 82.0 0.7508 -5.0 17.9129 39.0 2.9727 83.0 0.7293 -4.0 17.0970 40.0 2.8688 84.0 0.7086 -3.0 16.3230 41.0 2.7692 85.0 0.6885 -2.0 15.5886 42.0 2.6735 86.0 0.6690 -1.0 14.8913 43.0 2.5816 87.0 0.6502 0.0 14.2293 44.0 2.4934 88.0 0.6320 1.0 13.6017 45.0 2.4087 89.0 0.6144 2.0 1 3.0057 46.0 2.3273 90.0 0.5973 3.0 12.4393 47.0 2.2491 91.0 0.5808 4.0 11.9011 48.0 2.1739 92.0 0.5647 5.0 11.3894 49.0 2.1016 93.0 0.5492 6.0 10.9028 50.0 2.0321 94.0 0.5342 7.0 10.4399 51.0 1.9656 95.0 0.5196 8.0 9.9995 52.0 1.9015 96.0 0.5055 9.0 9.5802 53.0 1.8399 97.0 0.4919 10.0 9.1810 54.0 1.7804 98.0 0.4786 11.0 8.8008 55.0 1.7232 99.0 0.4658 12.0 8.4385 56.0 1.6680 100.0 0.4533 13.0 8.0934 57.0 1.6149 借助上表,用万用表测量热敏电阻的阻值,比较实际温度,可以判断热敏电阻的好坏,也可以通 过测量热敏电阻的阻值来简单测量温度。 变频空调压缩机排气处热敏电阻 温度/阻值表(R25=50.000KΩB25/50=3950K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -40.0 2009.2 0.0 168.10 40.0 26.507 80.0 6.3515 -39.0 1869.0 1.0 159.46 41.0 25.464 81.0 6.1541

半导体温度计的设计与制作(已批阅)

实验题目:半导体温度计的设计与制作 实验目的:测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路(或选用你认为更好 的测温电路)来设计一半导体温度计。进一步理解热敏电阻的伏安特性和惠斯通电桥测电阻的原理,学习非电学量的电测法,了解实验中的替代原理的应用。 实验原理:(1)半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏 电阻为传感器,通过测量其电阻值来确定温度的仪器。这种测量方法为非电量的电测法。 (2)由于金属氧化物半导体的电阻值对温度的反应很灵敏(参见实验3.5.2),因此可以作为温传感器。 为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值, 还需要了解热敏电阻的伏安特性。由图1可知,在曲线的起始 部分,曲线接近线性,此时,热敏电阻的阻值主要与外界温度 有关,电流的影响可以忽略不计。 (3)半导体温度计测温电路的原理图如图2所示,当电桥平衡时, 表的指示必为零,此时应满足条件T R R R R 321=,若取R 12,则R 3的数值即为的数值。平衡后,若电桥某一臂的电阻又发生改变(如), 则平衡将受到破坏,微安计中将有电流流过,微安计中的电流的 大小直接反映了热敏电阻的阻值的大小。 (4)当热敏电阻的阻值在测温量程的下限1时,要求微安计的 读数为零(即0),此时电桥处于平衡状态,满足平衡条件。若 取R 12,则R 31,即R 3就是热敏电阻处在测温量程的下限温度时的 电阻值,由此也就决定了R 3的电阻值。 (5)当温度增加时,热敏电阻的电阻值就会减小,电桥出现不平衡,在微安计中就有电流流过。当热敏电阻处在测温量程的上限温度电阻值2时,要求微安计的读数为满刻度。由于 G T I I >>,则加在电桥两端上的电压近似有:)(3R R I V T CD += (1) 根据图2的电桥电路,由基尔霍夫方程组可以求出

基于热敏电阻的数字温度计报告

信电学院 电子信息工程专业CDIO二级项目项目设计说明书(2012/2013学年第二学期) 项目名称:基于热敏电阻的数字温度计设计 专业班级: 小组成员: 指导教师:吴开兴马永强 马小进刘会军 设计周数:4月8号—6月15号 设计成绩: 2011年6月15日 项目分工表:

目录 1 概述 (2) 2总体设计方案 (2) 2.1设计目的 (2) 2.2设计任务 (2) 3系统的硬件设计及实现 (3) 3.1系统各模块介绍 (3) 3.2电路系统设计 (11) 4系统软件设计 (11) 5设计总结 (18) 6参考文献 (19)

1、概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2 总体设计方案 2.1 设计目的 通过本次CDIO利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度。 2.2 设计任务 1、根据技术要求和现有开发环境,分析设计题目 2、设计系统实现方案 3、设计并绘制电路原理图 4、画出功能模块的程序流程图 5、使用汇编语言(或C语言)编写实现程序 6、结合硬件调试、修改并完善程序;

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

基于热敏电阻的数字温度计课程设计报告书

目录 1 绪论1 2 系统硬件电路设计3 2.1 测温电桥电路3 2.2 信号放大电路 (6) 2.3 AD转换电路 (7) 2.4 控制电路 (9) 2.5 声光报警电路 (10) 2.6 显示电路 (11) 2.7 电源电路 (12) 3 系统软件设计15 4 总结与展望 (16) 参考文献 (17)

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计按测使用的温度计种类繁多,应用围也比较广泛,大致可以包括以下几种方法: 1,利用物体热胀冷缩原理制成的温度计 2,利用热电效应技术制成的温度检测元件 3,利用热阻效应技术制成的温度计 4,利用热辐射原理制成的高温计 5,利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片, 进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 系统硬件原理图如图1—1

图1—1系统框图 系统硬件原理图如图1—1所示,由热电阻传感器测的外界温度,经过信号放大,然后送给模数转换,将原有的模拟信号转换为可以贝单片机识别和运算的数字信号,然后在通过软件编程通过显示电路显示出来当前所测得的温度。 它的各部分电路说明如下: (1).测温模块: 该部分电路主要使用测温电桥,当温度变化时,电桥处于不平衡状态,从而输出不平衡电压,为测温的基础。 (2).信号处理部分: 该部分电路包括电压信号的放大和AD 转换,实现模数变换,以及硬件滤波。

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V , 这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

-热敏电阻测温度值概论

条形码粘贴区 测试技术综合实验 实验报告书 姓名:林志豪 学号:201430118310 班级:14机械一班 任务:热敏电阻测温度阻值 年月日

目录 目录--------------------------------------------------------------2 实验报告---------------------------------------------------------3 文献综述----------------------------------------------------------6

实验报告 基于LABVIEW及ARDUNIO的环境监控系统设计实训 一、实验目的: 1.运用所学知识,根据现场可提供的硬件设备对环境监控系统进行设计。二、实验仪器: 实验台主要由ardunio学习套件一套及安装有LABVIEW软件的电脑一台。 三、实验原理: 利用热敏电阻对环境温度敏感的特性,将热敏电阻接到ardunio上,ardunio板做下位机采集和传输数据,labview做上位机,上位机接收并处理数据,将温度显示在前面板上。 四、实验现场数据采集 五实验步骤 将热敏电阻、导线在面包板上和ardunio板上连接好。 打开labview后面板,调用ardunio控件,连好线。

六实验结果与分析 一、在labview中进行串口通讯的基本步骤分为3步: (1)、串口初始化,利用VISA Configure Serial Port 节点设定串口的端口号、波特率、停止位、校验位、数据位。 (2)、利用VISA Read节点和VISA Write节点对串口进行读写。 (3)、关闭串口,停止所有读写操作。 二、labview是使用的语言是G语言,是图形化的编程语言。这种语言相比其他语言有明显的优势,它直观并且开发周期短,是一种十分强大编程语言。 三、在水银温度计里面放入导线,水银是导体,当温度达到目的时,水银就会与导线接触,接通电路从而达到检测温度的目的。

相关文档
相关文档 最新文档