文档库 最新最全的文档下载
当前位置:文档库 › 微机保护基础

微机保护基础

微机保护基础
微机保护基础

课题一

微机保护基础

微机保护基础

定义

基本原理

微机保护的发展概括

微机保护的特点

微机保护工作流程

微机保护装置的硬件结构

不正常工作状态、故障、事故

不正常工作状态

指由于各种原因使电气设备或系统的运行参数偏离了规定允许值的情况,又称为异常状态。如变压器的过负荷等。

故障

指系统内各种短路、断线、短路加断线等。最严重最危险且最常见的故障是各种短路,如相间短路(三相和两相)、接地短路(单相和两相)、匝间短路等。

事故

指系统的正常工作遭到破坏,以致造成对用户的体停电或少送电、电能质量下降到不允许程度,甚至造成人身伤亡及电气设备的损坏。(前者称为停电事故,后者称为人身和设备事故)。继电保护装置及继电保护

继电保护装置:

能够反应被保护设备(元件)所发生的故障或出现的不正常工作状态,并作用于断路器跳闸或发出信号的自动装置。(又称为反事故装置)

继电保护:

对保护装置构成原理的研究、动作行为的分析以及整定计算等内容,统称为继电保护。

基本原理

利用被保护设备(元件)在正常运行与发生故障或出现不正常工作状态时参数变化的特点构成;将设备(元件)的参数与整定值进行比较,当满足条件时保护启动,瞬时或延时动作,跳闸或发信号。

例如:

L1:线路正常运行时;负荷电流值小

线路相间短路时:短路电流值大

利用线路故障时电流增大的特点可以构成电流保护。

电流保护的整定值即动作电流用Idz表示

电流保护:

①瞬时电流速断保护

当Id≥Idz时,保护启动,瞬时动作跳QF1

②定时限过电流保护

当Id≥Idz时,保护启动,延时动作跳QF1

微机保护的发展概括

1984年由华北电力学院研制的微机距离保护MDP-1型经试运行后通过科研鉴定并于1987年投入批量生产。其特点是采用单CPU 结构及多路转换的ADC模数变换模式。

1990年由华北电力学院北京研究生部首先研制的11型微机保护投入试运行,其代表产品WXH-11、WXB-11等。其特点是采用多

单片机并行工作,总线不引出插件,采用VFC模式变换方式。

第三代产品由北京四方公司与华北电力大学联合研制生产的CS系列产品,如线路保护CSL-101系列、变压器保护CST-200系列。其特点是采用不扩展的单片机,总线不引出芯片及较先进的网络通信结构技术。

国家电力公司电力自动化研究院研制的LEP-900系列保护装置。(反映故障分量的高速继电保护软件原理)

在综自站,微机保护装置与监控系统形成一个网络系统。保护装置通过微机监控系统的通信网络,将保护的状态、动作、信号等传送给集控站或调度所,值班员可以在远方投切保护装置、查看保护状态,修改保护定值等。

微机保护的特点

微机保护装置

①硬件:重要元件为单片机或数字处理器

②软件(程序):实现保护各种功能

1.维护和调试方便

给电源→自诊→无报警,说明装置是完好的。因此对微机保护装置而言,除了输入和修改定值及检查外部接线外几乎不用调试,从而大大减轻了运行维护的工作量。

2.可靠性高

具有在线自检功能,可以检查出硬件的异常,从而可避免由于硬件异常引起的保护误动作或拒动;软件在编程上可实现自动识别和排除干扰信号,防止保护误动作。

3.易于获得附加功能

装置通常配有通信接口,可连接打印机或其它显示设备,在系统发生故障后可提供多种信息,有助于事故后的分析及判定保护的动作情况。

4.灵活性大

当硬件设计尽量相同时,只要改变软件就可以改变保护的特性和功能,从而可灵活地适应电力系统发展对保护要求的变化。

5.保护性能得到很好改善

微处理器的使用,使得在保护中可以引入人工智能技术或复杂的算法,从而解决了常规保护中所存在的很多技术问题。

6.具有远方监控特性

微机保护装置都具有串行通信功能,与变电所微机监控系统的联络使微机保护具有远方监控的特点并将微机保护纳入变电所综合自动化系统。

微机保护工作流程

微机保护装置的硬件结构 典型结构

1.信号输入部分:

妥善处理模拟量信号和开关量信号,完成单片微机系统输入信号接口功能。

模拟量信号→数字量信号(模拟量输入系

统)

开关量信号→电平转换

整形、延时、光电隔离

2.单片微机系统部分:

硬件-单片微机和扩展芯片

软件系统

完成数值测量、计算、逻辑运算及控制和

记录等智能任务,并具有远方功能

EPROM:紫外线可擦除可编程只读存储器

用存放保护程序。

EEPROM:电可擦除可编程只读存储器

用来存放保护定值。

RAM:随机存取存储器用来存放A/D转换来的

数据及保护动作的故障报告等。

MPU:微处理器(习惯称CPU芯片,中央处理器)执行存放在EPROM中的程序,对由A/D→RAM

的原始数据进行分析处理,以完成各种保护功能。

定时器/计数器:

计时、触发采用脉冲信号、计数。

3.人机接口部分:

在CPU控制下,完成操作人员对CPU系统的干预,如整定值的输入、工作方式的变更、对

CPU系统的检查等。通常通过键盘、汉化液晶显

示、打印及信号灯、音响或语音告警等实现。

4.输出通道部分:

对控制对象(例如断路器)实现控制操作的出口电路。

小信号→大功率

防干扰→光电隔离

5.电源部分:

逆变电源直流→交流→直流

+5V供各保护CPU等芯片电源

±15V供运算放大器及VFC模数变换芯片电源

+24V启动、跳闸及信号、告警继电器电源

各电源均有发光二极管作正常运行指示信号

面板上设有各路电源测试的转接插孔及电源控

制开关

成套的微机保护、各种线路和元件的保护

软件系统及硬件模块化的组合与数量不同

不同的保护用不同的软件来实现

模拟量输入系统

将输入的模拟信号转换成数字信号。这一过程又称为输入信号的预处理。

电压形成回路

低通滤波器ALF

采样及采样保持

多路转换开关

MPX

模数变换

电压形成回路

将输入的电流、电压线性的转换成电压并变小即实现输入模拟信号的电平变换。

变换器:变换、隔离、屏蔽

电压变换器

电流变换器

低通滤波器:滤除频率f>fs/2的高次谐波

1.在微机保护中有两种滤波方式:

模拟滤波→ALF(两级RC滤波电路)→f>fs/2

数字滤波→程序或算法→非周期分量及f<fs/2

2.采样频率fs fs=Nf

f-工频50Hz N-工频一周采样点数

如WXH-11A型线路微机保护N=12

则fs=12×50=600(Hz)

目前微机保护的采样频率约在240~2000Hz之间

3.fs的选取应满足采样定理及变换的原理算法的要求,还要考虑硬件的速度问题

4.采样定理:

为了能根据采样信号完全重现原来的信号(采样前的信号),fs必须大于输入连续信号最高频率的2倍

即fs>2fmax

采样及采样保持

采样-在极短的时间内测量模拟输入量在该时刻的瞬时值。

多路转换开关MPX

1.多路模拟通道共用一个A/D,经MPX切换,实现多路同时采样,顺序转换即时分复用,以节省A/D

2.多路转换开关包括选择接通路数的二进制译码电路和由它控制的各路电子开关,集成在一个集成电路芯片中。以16路多路转换开关芯片AD7506为例,其内部电路组成框图如下:

EN为芯片选择线,EN为高电平时芯片开始工作

A0~A3四个路数选择线,用二进制表示0000~1111(0~15)AS1~AS16 16路电子开关

A0~A3赋以不同的二进制码即选通一路电子开关,将被选中的一路模拟通道接至公共的输出端,共给A/D转换器。如:A0A1A2A3赋以0000则选中AS1

模数转换:

将离散的模拟信号转换为数字信号。

目前微机保护常用压频式ADC(简称VFC)

1.VFC原理:将电压转换为与之成正比的脉冲频

率数字脉冲式的频率),计数器对

数字脉冲计数,CPU每隔一个采样

间隔时间Ts读取计数器的脉冲计数

值并根据比例关系算出输入电压的

数字量完成模数变换。

2.VFC变换关系:

3.量化:将离散的采样信号瞬时值与A/D转换器

中的基准电压的分层进行比较,并按

舍五入的原则用幅度不连续的电平表示

输入信号的相对幅值。

4.编码:用二进制码表示。码位数愈高,基准分

层愈多,量化误差愈小,分辨率愈高。

微机保护通常取12位的A/D转换器,也有采用16位的A/D 转换器,采用二进制补码形式。以12位为例:

D11D10D9D8D7D6D5D4D3D2D1D0分辨率为4.88mv

符号位

“0”表示正

“1”表示负

按一般输入信号电平幅值最大值为±10v为例,采

用12位编码与A/D转换器构成的对应数值如下表:

在实际应用中,微机保护装置分为单CPU和多CPU的结构方式。单CPU结构:

单CPU的微机保护装置是指整套微机保护装

置共用一个单片微机,数据采集、开关量采

集、人机接口及出口信号等均由一个单片微机

控制。

CPU通过AB地址总线选通各功能芯片,通过CB控制总线控制各功能芯片的工作方式,由DB数据总线传送数据和信息。

容错能力不高→中、低压保护装置

可靠性低

多CPU结构:

指在一套微机保护装置中,按功能配置有多个CPU模块,分别完成本体原理的主保护和后备保护及人机接口等功能。

微机保护实验报告

微机保护实验报告 The Standardization Office was revised on the afternoon of December 13, 2020

微机继电保护实验报告 项目名称:微机距离保护算法(1)姓名:陈发敏 学号:K03134163 班级:K0313416 实验时间: 实验地点:实验楼五楼 实验成绩:

一、 实验目的 1.熟悉MATLAB 桌面和命令窗口; 2.通过编写滤波程序、阻抗计算程序以及距离保护动作判据程序,了解微机保护工作原理。 3.定性分析各种算法的优缺点。 二、 实验内容 1、用“load ”函数导入短路电流数据和短路电压数据,对其进行滤波处理,要求滤除直流分量和二次谐波分量。注意观察数据的特征,数据第一列为时间,第二列为A 相值,第三列为B 相值,第三列为C 相值。观察滤波前后的波形。 2、编写微机保护算法程序,包括短路阻抗算法和动作判据算法(判据为相间距离保护判据),阻抗继电器的动作特性采用方向圆特性。并利用该程序对步骤1处理后的数据进行计算,观察保护的动作情况。距离保护的整定值为:Z set =+ 。 三、 实验模型及程序 1、 绘制滤波前后的电流、电压波形,并进行对比分析; 电流波形滤波前,短路瞬间电流幅值变大,到短路后的稳态呈曲线变化;经过滤波后,短路后的稳态比较平稳。 电压波形滤波前,短路瞬间电压幅值急剧变小;经过滤波后,短路后的稳态比较平稳,且短路后电压波形变化没有电流波形变化大。 4 4 4 4 4 4 5 5 5 5 5 5

2、 设计编写保护算法程序,绘制阻抗幅值变化的波形,并分析保护的动作情况。 由阻抗幅值变化的波形和保护的动作情况可知:左图的B 相的阻抗值太低,所以致使B 相动作有明显的变化。 附MATLAB 程序如下: %实验3程序 clc; clear; %电压电流数据导入 a=load('H:\To be completed\微机保护\jibao3_4\'); %导入电压量 b=load('H:\To be completed\微机保护\jibao3_4\'); %导入电流量 t=a(:,1)'; UA=a(:,2)'; UB=a(:,3)'; UC=a(:,4)'; IA=b(:,2)'; IB=b(:,3)'; IC=b(:,4)'; Ts=t(1,2)-t(1,1); N=Ts; m=size(t); %滤波处理 %%电流滤波 IIA=zeros(1,m(2)); IIB=zeros(1,m(2)); IIC=zeros(1,m(2)); for jj=101:m(2); IIA(jj)=(IA(jj)-IA(jj-100))/2; IIB(jj)=(IB(jj)-IB(jj-100))/2; IIC(jj)=(IC(jj)-IC(jj-100))/2; end subplot(3,1,1); plot(t,IIA,'r') title('电流滤波') subplot(3,1,2);

S690U系列微机综合保护装置校验规程(参考Word)

PS690U系列微机综合保护装置校验规程 一、总则 1.1 本检验规程适用于PS690U系列微机型保护的全部检验以及部分检验的内 容。 1.2本检验规程需经设备维修部电气试验专业点检员编制,设备维修部检修专工、生产设备技术部责工审核后由生产厂长或总工批准后方可使用。 1.3检验前,工作负责人必须组织工作人员学习本规程,要求熟悉和理解本规程。 1.4保护设备主要参数: CT二次额定电流Ie : 5A;交流电压:100V, 50Hz;直流电压:220V。 1.5 本装置检验周期为: 全部检验:每6年进行1次; 部分检验:每3年进行1次。 二、概述 PS690U系列综合保护测控装置是国电南京自动化股份有限公司生产的,是一种集保护、测量、计量、控制、通讯于一体的高性能微机综合保护测控装置。本规程规定了PSM692U型电动机微机综合保护,PST692U型低压变压器微机综合保护,PSM691U型电动机微机差动保护,PST691U型低压变压器差动微机保护。 三、引用文件、标准 3.1 继电保护和电网安全自动装置现场工作保安规定 3.2设备制造厂的使用说明书和技术说明书 3.3 电力系统继电保护及安全自动装置反事故措施要点 3.4继电保护和自动装置技术规程GB/T 14285—2006 3.5微机继电保护装置运行管理规程DL/T 587—1996 3.6 继电保护及电网安全自动装置检验规程DLT995-2006 3.7 电力系统继电保护及安全自动装置运行评价规程DL/T 623—1997 3.8 火力发电厂、变电所二次接线设计技术规定NDGJ 8-89 四、试验设备及接线的基本要求 4.1 试验仪器应检验合格,其精度不低于0.5级。 4.2 试验回路接线原则,应使加入保护装置的电气量与实际情况相符。应具备对保护装置的整组试验的条件。 4.3试验设备:继电保护测试仪。 五、试验条件和要求注意事项 5.1交、直流试验电源质量和接线方式等要求参照《继电保护及电网安全自动装置检验规程》有关规定执行。 5.2 试验时如无特殊说明,所加直流电源均为额定值。 5.3 加入装置的的试验电压和电流均指从就地开关柜二次端子上加入。 5.4 试验前应检查屏柜及装置接线端子是否有螺丝松动。 5.5 试验中,一般不要插拨装置插件, 不触摸插件电路, 需插拨时, 必须关闭电源。 5.6 使用的试验仪器必须与屏柜可靠接地。 5.7 为保证检验质量,对所有特性试验中的每一点,应重复试验三次,其中每次试验的数据与整定值的误差要求<5%,保护逻辑符合设计要求。

微机继电保护设计研究

https://www.wendangku.net/doc/0710888278.html, 微机继电保护设计研究 运行过程中的电力系统,由于雷击、倒塌、内部过压或者错误的运行操作等都会造成故障及危害,一旦发现故障,我们就必须迅速采取并确保系统的可靠运行。当电气设备出现问题时,应根据系统运行的维护要求,确定出相应的保护动作。为了确保电力系统能够安全可靠的运行,继电保护装置就此运应而生。 随着计算机技术和电子技术的发展,使电力系统的继电保护突破了传统的电磁型、晶体管型及集成电路型继电保护形式,出现了微型机、微控制器为核心的继电保护形式,这种保护形势称为电力系统微机继电保护。 微机继电保护的原理和特点 传统的模拟式继电保护是根据电力系统中的模拟量(电压U、电流I)进行工作的,也就是将采集的模拟量与给定的机械量(弹簧力矩)、电气量(门槛电压)进行对比和逻辑运算,做出判断,从而完成相应的保护。 机电保护装置满足的四项基本要求依次是灵敏性、选择性、速动性、可靠性。 继电保护装置工作原理包括以下三部分:1.信号检测部分、2.逻辑判断部分、3.保护动作部分。其具体工作流程如下:信号检测部分从被保护侧采集相应的模拟量和开关量,传送到逻辑判断部分,通过算法进行处理,将所得结果与给定的整定值进行对比,判断系统是否出现故障并发出相应的动作命令,最终再由保护动作部分执行相应的动作。 现代微机保护则是将电力系统的模拟量(电压U、电流I)进行采样和编码之后,转换成数字量,通过微型计算机进行分析、运算和判断,从而实现电力系统的继电保护。 微机继电保护具有的特点:稳定性好、逻辑判断准确、设备维护方便、设备附加值高、适应性强。 微机继电保护的设计 微机继电保护的设计分为硬件设计和软件设计两部分。微机继电保护的硬件设计,从功能上讲,微机保护装置包括五个部分:数据采集单元,数据处理单元(CPU),开关量输入输出回路,人机接口部分和电源回路。 微机继电保护的软件设计中,系统软件是整个保护装置的灵魂,基于各个硬件设备的基础之上实现线路继电保护及监控的各种功能。这里以微机三段式电流保护为例主要介绍微机保护的主程序设计与自检模块。 随着电力自动化技术的日益发展,微机继电保护装置取代传统继电保护装置是个必然的趋势。通过引进微机控制技术,可使电力系统的运行更加安全、可靠、稳定、高效率。总之,随着微电子技术、计算机技术、网络技术和通信技术的发展,微机继电保护和变电站自动化系统在逐渐向智能化与网络化方向发展。

微机继电保护实验报告

本科实验报告 课程名称:微机继电保护 实验项目:电力系统继电保护仿真实验 实验地点:电力系统仿真实验室 专业班级:电气1200 学号:0000000000 学生:000000 指导教师:000000 2015年12 月 2 日

微机继电保护指的是以数字式计算机(包括微型机)为基础而构成的继电保护。众所周知,传统的继电器是由硬件实现的,直接将模拟信号引入保护装置,实现幅值、相位、比率的判断,从而实现保护功能。而微机保护则是由硬件和软件共同实现,将模拟信号转换为数字信号,经过某种运算求出电流、电压的幅值、相位、比值等,并与整定值进行比较,以决定是否发出跳闸命令。 继电保护的种类很多,按保护对象分有元件保护、线路保护等;按保护原理分有差动保护、距离保护和电压、电流保护等。然而,不管哪一类保护的算法,其核心问题归根结底不外乎是算出可表征被保护对象运行特点的物理量,如电压、电流等的有效值和相位以及视在阻抗等,或者算出它们的序分量、或基波分量、或某次谐波分量的大小和相位等。有了这些基本电气量的计算值,就可以很容易地构成各种不同原理的保护。基本上可以说,只要找出任何能够区分正常与短路的特征量,微机保护就可以予以实现。 由此,微机保护算法就成为了电力系统微机保护研究的重点,微机保护不同功能的实现,主要依靠其软件算法来完成。微机保护的其中一个基本问题便是寻找适当的算法,对采集的电气量进行运算,得到跳闸信号,实现微机保护的功能。微机保护算法众多,但各种算法间存在着差异,对微机保护算法的综合性能进行分析,确定特定场合下如何合理的进行选择,并在此基础上对其进行补偿与改进,对进一步提高微机保护的选择性、速动性、灵敏性和可靠性,满足电网安全稳定运行的要求具有现实指导意义。 目前已提出的算法有很多种,本次实验将着重讨论基本电气量的算法,主要介绍突变量电流算法、半周期积分算法、傅里叶级数算法。 二、实验目的 1. 了解目前电力系统微机保护的研究现状、发展前景以及一些电力系统微机保护装置。 2. 具体分析几种典型的微机保护算法的基本原理。 3. 针对线路保护的保护原理和保护配置,选择典型的电力系统模型,在MATLAB软件搭建仿真模型,对微机保护算法进行程序编写。 4. 对仿真结果进行总结分析。 三、实验容 1、采用MATLAB软件搭建电力系统仿真模型 2、采用MATLAB软件编写突变量电流算法 3、采用MATLAB软件编写半周积分算法 4、采用MATLAB软件编写傅里叶级数算法算法

微机保护测控装置

微机保护测控装置 一、微机保护装置特点 1)维护调试方便 2)可靠性高 3)动作正确率高 4) 易于获得各种附加功能 5)保护性能容易得到改善 6)使用灵活、方便 7)具有远方监控特性 二、微机线路保护硬件结构 1、硬件软件结构 ①微机保护硬件分为:人机接口、保护; ②微机保护软件分为:接口软件、保护软件; ③保护软件三种工作状态:运行、调试、不对应状态; ④实时性:在限定的时间内对外来事件能够及时作出迅速反应的性; ⑤微机保护算法主要考虑:计算机精度和速度; 2、继电保护的基本结构大致上可以分为三部分: ①信息获取与初步加工;②信息的综合、分析与逻辑加工、决断;③决断结果的执行 3、微机保护装置实质是一种依靠单片微机智能地实现保护功能的工业控制装置:

①信号输入回路(模拟量、开关量);②单片微机统;③人机接口部分; ④输出通道回路;⑤电源 4、微机保护装置输入信号主要有两类:开关量、模拟信号; 5、目前微机保护的数据采集系统主要有两种方案: ①采用逐次逼近原理的A/D芯片构成的数据采集系统 ②采用VFC芯片构成的积分式数据采集系统 6、变换器:电流变换器(TA),电压变换器(TV),电抗变换器(TL) 7、采样保持器的作用: ①对各个电气量实现同步采样;②在模数变换过程中输入的模拟量保持不变; ③实现阻抗变换; 8、微型计算机中的总线通常分为: ①地址总线(AB);②数据总线(DB);③控制总线(CB) 三、电力变压器微机线路保护 1、比率制动式差动保护的基本概念:比率制动式差动保护的动作电流是随外部短路电流按比率增大,既能保证外部短路不误动,又能保证内部短路有效高的灵敏度; 2、二次谐波制动原理: 在变压器励磁涌流中含有大量的二次谐波分量,一般占基波分量的40%以上。利用差电流中二次谐波所占的比率作为制动系数,可以鉴别变压器空载合闸时的励磁涌流,从而防止变压器空载合闸时保护的误动。 3、变压器零序保护 主变零序保护适用于110KV及以上电压等级的变压器。主变零序保护由主变零序电流、主变零序电压、主变间隙零序电流元件构成,根据不同的主变接地方式分别设置如下三种保护形式: ①中性点直接按接地保护方式 ②中性点不接地保护方式 ③中性点经间隙接地保护方式 4、在放电间隙放电时。应避免放电时间过长。为此对于这种接地式应装设专门的反应间隙放电电流的零序电流保护,其任务是即时切除变压器,防止间隙长时间放电

微机继电保护装置的维护及常见故障

微机继电保护装置的维护及常见故障 微机继电保护装置的优点: 微机继电保护装置与传统的继电保护装置相比最大特点就是应用了微机技术,拥有巨大的计算、分析和逻辑判断能力,带有储存记忆功能,可以实现任何性能完善且复杂的保护原理。微机继电保护装置在可靠性、功能扩展性、工艺结构条件等方面有较大优势,其极强的综合分析和判断能力,可以实现常规模拟保护很难做到的自动纠错,即自动识别和排除干扰,防止由于干扰而造成的误动作。同时,微机继电保护装置具有自诊断能力和使用方便灵活、调试维护简便、功耗及体积小等特点。 微机继电保护装置的日常巡检维护: 1、检查微机保护装置外观及模块背板有无异常,液晶显示是否正常,接线是否有松动或脱落,有无发热、异味、冒烟等异常现象; 2、检查微机保护装置的运行状态、运行监视情况,如采集的电压、电流数据是否正确,三相是否平衡;装置的开关状态输入量显示与实际情况是否相符,如储能机构位置、断路器分合位、接地刀闸分合位、操作把手远近控位置等是否显示正确; 3、检查微机保护装置屏上各操作把手、旋转开关的位置是否正确;微机保护装置有无异常信号,如装置是否发跳闸或告警信号,如有故障信号要及时查明原因; 4、对微机保护装置定值进行核对,看是否与所下定值相符。检查整定电流、电压及时限值的输入是否正确,保护硬压板、软压板的投退是否满足定值的逻辑关系等; 5、对微机保护装置的动作报告记录进行查看; 微机继电保护装置的定期校验: 为保证微机保护装置可靠动作,应对继电保护装置及二次回路进行定期的停电校验,一般校验周期为一年,主要做以下内容: 1、对二次回路绝缘电阻的测试; 2、用继电保护测试仪输入标准的电流、电压模拟量,校验微机保护装置的电流、电压采样精度及功率角是否正确; 3、校验微机保护装置的就地或远控操作按键是否正常工作; 4、根据保护定值单,用继电保护测试仪输入模拟动作值进行开关二次整组保护动作试验。检验装置的动作可靠性及定值保护动作逻辑关系是否满足定值单要求; 微机继电保护装置常见故障:

继电保护实验

实验一:微机型电网电流、电压保护实验 实验台工作原理及接线 实验台一次接线如图,它是单侧电源供电的输电线路,由系统电源,AB 、BC 线路和负载构成。系统实验电源由三相调压器TB 调节输出线电压100V 和可调电阻R s 组成;线路AB 和BC 距离长短分别改变可调电阻R AB 、R BC 阻值即可;负载由电阻和灯组成。A变电站和B变电站分别安装有S300L 微机型电流电压保护监控装置。线路AB 、BC 三相分别配置有保护和测量用的电流互感器,变比15/5。 图 电流、电压实验台一次接线 线路正常运行时:线电压100V ,2,8,15,28s AB BC f R R R R =Ω=Ω=Ω=Ω 实验台对应设备名称分别是: (1)1KM 、2KM :分别为A 变电站和B 变电站模拟断路器; (2)R AB 、R BC :分别是线路AB 和BC 模拟电阻; (3)3KM 、4KM :分别是线路AB 和BC 短路实验时模拟断路器; (4)3QF 、4QF :分别是线路AB 和BC 模拟三相、两相短路开关; 实验内容: 1、正确连接保护装置A 站、B 站的电流保护回路和测量回路,注意电流互感器接线。 2、合上电源开关,调节调压器电压从0V 升到100V ,根据计算得到: A 站=set A I I . 7 A ,=set A II I . 3 A ,=set A III I . 2 A ,t =I A 0 s , t =II A s , t =III A 1 s ; B 站=set B I I . 3 A ,=set B III I . 2 A ,t =I B 0 s ,t =III B s ,将整定值分别在S300L 保护监控装置A 站、B 站保护中设定。注:A 站保护配置电流I 、II 、III 段保护,B 站只配置电流I 、III 段保护。 3、正常运行:调节Ω=Ω=Ω=15,8,2BC AB s R R R ,分别合上1KM 、2KM ,使A 站、B 站投入运行,此时指针式电流、电压表及S300L 保护监控装置显示正常运行状态的电气量。

微型机继电保护基础 课本 重点

第一章 1、微机保护的硬件:①数据采集系统②微型机主系统③开关量输入/输出系统④电源系统 2、采样保护电路的作用:在一个极短的时间内测量模拟输入量在该时刻的瞬时值,并在模拟—数字转换器进行转换的时间内保持其输出不变 3、采样频率的选择原则:采样定理fs>2fmax,如果被采样信号中所含最高频率成分的频率为fmax,则采样频率fs必须大于fmax的2倍 4、模拟低通滤波器的应用:将高频分量滤掉,这样就可以降低fs,从而降低对硬件的要求 5、模数转换器的评价指标:①转换时间②数字输出的位数 6、开关量输出类型:①保护的跳闸出口②本地和中央信号③通信接口④打印机接口 7、光电耦合器的作用:可以实现两侧电路之间的电气隔离,可以用来传递模拟信号,也可以作为开关器件使用 第二章 1、数字滤波器:将输入模拟信号X(t)经过采样和模数转换变成数字量后,进行某种数字处理以去掉信号中的无用成分,然后再经过数模转换得到模拟量输出Y(t) 2、时不变系统:满足T[x(t-t1)]=y(t-t1)即如果输入信号推迟一个时间t1,则输出也将推迟同一个时间t1,但波形不变 3、因果系统:是指输出变化不会发生在输入变化之前的系统 4、P50 5、频率特性是冲激响应的傅氏变换 6、滤波器的响应时间:一个滤波器的输入从一个稳态变到另一个稳态时,其输出要经过一个过渡过程的延时才能达到新的稳态输出,这种延时称为滤波器的响应时间 7、离散时间信号的傅氏变换定义式:P56 8、Z变换定义式:P59 9、非递归型数字滤波器是将输入信号和滤波器的单位冲激响应作卷积而实现的一类滤波器。是无限冲激响应滤波器(FIR):对单位冲激的输入信号的响应为无限长序列的数字滤波器 递归型滤波器是用前几次的输出值作为输入来求下一次的输出。是有限冲激响应滤波器:对单位冲激的输入信号的响应为有限长序列的数字滤波器 10、计算:P69 第三章 1、评价算法的标准:精度、速度 速度包括:①数据窗的长度Dw②运算工作量(乘除法的次数) 2、导数法的优缺点:优①需要的数据窗短②算式和乘积法相似,不复杂 缺①要求数字滤波器有良好的滤去高频分量的能力 ②要求有较高的采样率 3、半周积分算法的依据:一个正弦量在任意半个周期内绝对值的积分为一常数S,即S= 半周积分算法需要的数据窗长度为10ms

微机继电保护装置的调试技术

微机继电保护装臵的调试技术 1 引言 近年来,随着微机型继电保护装臵的普遍使用,种类、型号、产地之多,给许多设计和现场调试人员带来很大困难。根据现场实例,针对SEL-587型微机型继电保护装臵的调试,详细介绍微机型变压器差动保护装臵的原理和调试方法。 2 微机型变压器差动保护装臵的实现原理 差动保护采用分相式比率差动,即A、B、C任意一相保护动作就有跳闸出口。以下判据均以一相为例,当方程(1)、(2)同时成立时差动元件保护动作。 I DZ>I DZ0(I ZD<I ZD0)(1) I DZ>I DZ0+K(I ZD-I ZD0)(I ZD≥I ZD0)(2) I2DZ>K2×I DZ 其中:I DZ为差动电流 I DZ0为差动保护门坎定值 I ZD为制动电流 I ZD0为拐点电流 I2DZ为差动电流的二次谐波分量 K为比率制动特性斜率 K2为二次谐波制动系数 国内生产的微机型变压器差动保护装臵中,差动元件的动作特性多采用具有二段折线式的动作特性曲线(如图1所示)。SEL-587型装臵采用三段折线式动作曲线,但可根据实际情况只采用二段式动作特性曲线。 图1 采用二段折线式差动动作特性曲线 3装臵在实际应用中需要解决的问题

3.1解决变压器差动保护中不平衡电流的措施 (1)解决变压器两侧绕组结线不同所产生电流相位不同 微机型差动保护装臵中各侧不平衡电流的补偿是由软件完成的。变压器各侧CT二次电流由于接线造成的相位差由装臵中软件校正,变压器各侧CT二次回路都可接成Y形(也可选择常规继电器保护方式接线),这样简化了CT二次接线。SEL-587型装臵中提供了14种类型的变压器两侧CT二次不同接线的设臵(国产装臵通常仅有两种方式选择),通过对TRCON和CTCON整定值的正确设臵和选择相对应的计算常数A和B,装臵就完全解决了变压器差动保护中的不平衡电流问题。如图2为某冷轧带钢工程35/10KV主变压器两侧电流互感器二次接线图(这种接线方式属于装臵中B13类型)。 图2 B13型Δ-Y变压器带有Y-Y的CT连接 (2)解决变压器两侧电流互感器变比不能选得完全合适 微机型差动保护装臵是采用设臵不平衡系数,通过软件计算来调节。通常以高压侧为基准,高压侧不平衡系数固化为“1”,低压侧不平衡系数则按该装臵要求的特定计算公式计算后将参数设臵在装臵中。SEL-587型装臵采用两侧分别计算不平衡系数的办法,装臵内部设臵了TAP1和TAP2两个参数来进行电流的调整,参数的计算是通过该装臵的特定计算公式来进行。 3.2解决变压器励磁涌流 在变压器空载投入和外部故障切除后电压恢复的过程中,将会产生很大的励磁涌流。涌流中含有数值很大的非周期分量,其二次谐波分量占有一定数量,常规差动继电器则是采用速饱和变流器来消除它的影响,而微机型差动保护装臵是

微机保护的原理与试验大全

输电线路的电流、电压微机保护(一)目的 1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。 2.研究电力系统中运行方式变化对保护的影响。 3.了解电磁式保护与微机型保护的区别。 4.熟悉三相一次重合闸与保护配合方式的特点。 (二)原理 关于三段式电流保护和电流电压联锁保护的基本原理可参考第三章有关内容,以下着重介绍本试验台关于微机保护的原理。 1.微机保护的硬件 微型机保护系统的硬件一般包括以下三大部分。 (1)模拟量输入系统(或称数据采集系统)。包括电压的形成,模拟滤波,多路转换(MPX)以及模数转换(A/D)等功能块,完成将模拟输入量准确的转换为所需要的数字量的任务。 (2)CPU主系统。包括微处理器(80C196KC),只读存储器(EPROM),随机存取存储器(RAM)以及定时器等。CPU执行存放在EPROM中的程序,对由数据采集系统输入至RAM的原始数据进行分析处理,以完成各种继电保护的功能。 (3)开关量(或数字量)输入/输出系统。由若干并行接口适配器(PIO),光电隔离器件及有触点的中间继电器组成,以完成各种保护的出口跳闸,信号报警,外部接点输入及人机对话等功能。 微机保护的典型结构图5-1所示。

图5-1 微机保护典型硬件结构图 2.数据采集系统 微机保护要从被保护的电力线路或设备的电流互感器﹑电压互感器或其他变换器上获取的有关信息,但这些互感器的二次数值﹑输出范围对典型的微机电路却不适用,故需要变换处理。在微机保护中通常要求模拟输入的交流信号为±5V 电压信号,因此一般采用中间变换器来实现变换。交流电流的变换一般采用电流中间变换器并在其二次侧并电阻以取得所需要的电压的方式。 对微机保护系统来说,在故障初瞬电压、电流中可能含有相当高的频率分量(例如2KHZ 以上),而目前大多数的微机保护原理都是反映工频量的,为此可以在采样前用一个低通模拟滤波器(ALF )将高频分量滤掉。 对于反映两个量以上的继电器保护装置都要求对各个模拟量同时采样,以准确的获得各个量之间的相位关系,因而对每个模拟量设置一套电压形成。但由于模数转换器价格昂贵,通常不是每个模拟量通道设一个A/D ,而是公用一个,中间经模拟转换开关(MPX )切换轮流由公用的A/D 转换成数字量输入给微机。模数转换器(A/D 转换器或称ADC )。由于计算机只能对数字量进行运算,而电力系统中的电流。电压信号均为模拟量,因此必须采用模数转换器将连续的模拟量变为离散的数字量。模数转换器可以认为是一编码电路。它将输入的模拟量UA 相当于模拟参考量UR 经一编码电路转换成数字量D 输出。 3.输入输出回路 (1)开关量输出回路 开关量输出主要包括保护的跳闸以及本地和中央信号等。一般都采用并行的输出口来控制有触点继电器(干簧或密封小中间继电器)的方法,但为了提高抗干扰能力,也经过一级光电 隔 离,如图5-2所示。 (2)定值输入回路 对于某些保护装置,如果需要整定的项目很有限,则可以在装置面板上设置定值插销或拨轮开关,将整定值的数码的每一位象接点那样输入。对于比较复杂的保护装置,如果需要整定的项目很多时,可以将定值由面板上的键盘输入,并在装置内设置固化电路,将输入定值固化在E 2PROM 中。本装置采用键盘输入方式设置定值,整定方法详见附录二中的有关使用说明。 4.CPU 系统 选择什么级别的CPU 才能满足微机保护的需求,关键的问题是速度。也就是 -E 图5-2 装置开关量输出回路接线图

电力系统微机综合保护装置用途

微机综合保护装置用途 微机型保护装置是用于测量、控制、保护、通讯一体化的一种经济型保护;针对配网终端高压配电室量身定做,以三段式无方向电流保护为核心,配备电网参数的监视及采集功能,可省掉传统的电流表、电压表、功率表、频率表、电度表等,并可通过通讯口将测量数据及保护信息远传上位机,方便实现配网自动化;装置根据配网供电的特性在装置内集成了备用电源自投装置功能,可灵活实现进线备投及母分备投功能。 保护类型:定时限/反时限保护、后加速保护、过负荷保护、负序电流保护、零序电流保护、单相接地选线保护、过电压保护、低电压保护、失压保护、负序电压保护、风冷控制保护、零序电压保护、低周减载保护、低压解列保护、重合闸保护、备自投保护、过热保护、逆功率保护、启动时间过长保护、非电量保护等。 监控系统适用范围:变电站综合自动化系统、配电室综合自动化系统、泵站综合自动化系统、水电站综合自动化系统、工业/工厂自动化系统。 微机保护与测控装置采用了国际先进的DSP和表面贴装技术及灵活的现场总线(CAN)技术,满足变电站不同电压等级的要求,实现了变电站的协调化、数字式及智能化。此系列产品可完成变电站

的保护、测量、控制、调节、信号、故障录波、电度采集、小电流接地选线、低周减载等功能,使产品的技术要求、功能、内部接线更加规范化。产品采用分布式微机保护测控装置,可集中组屏或分散安装,也可根据用户需要任意改变配置,以满足不同方案要求。 微机保护装置适用于110KV及以下电压等级的保护、监控及测量,可用于线路、变压器、电容器、电动机、母线PT检测、备用电源自投回路及主变保护、控制与监视。单元化的设计使其不但能方便地配备于一次设备,也可以集中组屏、集中控制。规范的现场总线接口支持多个节点协调工作,实现系统级管理和综合信息共适用范围 随着科学技术手段的进步,和对适用环境更高要求,微机保护功能性也越趋完善。通用型微机综合保护装置可作为35KV及以下电压等级的不接地系统、小电阻接地系统、消弧线圈接地系统、直接接地系统的各类各类电器设备和线路的保护及测控,也可作为部分66KV、110KV电压等级中系统的电压电流的保护及测控其它自动控制系统。 随着技术进步和市场的需求,我公司对微机保护装置的硬件和软件进行了升级,推出了微机保护装置。CPU采用美国德州仪器的DSP数字中央处理器,具有先进内核结构、高速运算能力和实时信号处理等优良特性新型保护装置已通过测试及检验,开始投入批量生产

微机型继电保护装置的抗干扰措施

微机型继电保护装置的抗干扰措施 点击:19 添加时间: 2007-8-2 16:47:25 近年来,微机型继电保护装置在电力系统中得到了广泛的运用。和常规保护相比,微机保护具有先进的原理及结构,安装调试简单,运行维护方便,保护动作迅速灵敏可靠,能自动记录故障信息等显著的优点。但是在现场运行过程中,如果运行环境差,抗干扰措施落实不当,则很容易受到外界环境的干扰,造成保护不正常,甚至发生保护误动作,严重威胁到电网的安全运行。 1 常见二次回路干扰的种类及传播途径 一般情况下,由于系统内发生接地故障、倒闸操作或者雷击等原因都将产生较强的电磁干扰。干扰电压主要是通过交流电压、电流回路,信号及控制回路的电缆进入保护二次设备,使装置的“读程序”或者“写程序”出错,导致CPU执行非预定的指令,或者使微机保护进入死循环。常见的干扰有以下几种: (1) 变电站内发生单相或者多相接地故障时,强大的故障电流沿着接地点进入变电站的地网,使得地网上任意不同的两点之间产生很高的地电位差。这种干扰通常称之为50 Hz工频干扰。 (2) 当操作变电站内的开关设备,比如高压隔离开关切合带电母线时,将在二次回路上引起高频干扰。干扰电压通过母线、电容器等设备进入地网,产生频率为50 Hz~1 MHz不等的高频振荡, 在二次回路上引起较强的高频干扰。 (3) 每当进入雨季,发生雷击时,由于电与磁的耦合,也会在高压导线和大地之间感应出干扰电压,称之为雷电干扰。 (4) 当断开接触器或者继电器的线圈时,会产生宽频谱的干扰波,其干扰频率甚至可达到50 MHz。另外,在高压区使用对讲机、移动电话等通讯工具,也将产生高频电磁场干扰。 2 抗干扰措施的实施情况 抗干扰的最基本措施就是防止干扰进入弱电系统。一方面是通过改进装置的硬件部分,增加其抗干扰能力;另一方面可以从外部环境着手,通过各种屏蔽、隔离措施,切断干扰的传播途径。 根据省公司的“反措”要求,淮北供电局对集成电路保护采取了沿电缆沟铺设截面为100 mm2接地铜排的措施,这为微机保护的反措提供了条件。并针对上述干扰问题,按“电力系统继电保护及安全自动装置反事故措施”的要求,采取了以下几种抗干扰措施。 2.1 对微机保护硬件采取相应的抗干扰措施 目前生产厂家在产品的研制过程中采取了各种优异的抗干扰措施,比如采用VFC数据采集系统,使模拟系统和数字系统在电气上完全隔离,大大增强了装置硬件的抗干扰能力。以WXB-11型微机保 护为例,装置硬件采取的抗干扰措施有: (1) CPU插件的总线不出芯片; (2) 模拟量的输入通道加光耦; (3) 所有的开入、开出加光隔; (4) 引入装置的电源加滤波措施; (5) 增加对RAM、EPROM的自检功能; (6) 装置背板的走线采用抗干扰措施。 2.2 保护屏的接地措施 微机保护屏内所有的隔离变压器一、二次绕组间应当有良好的屏蔽层,并可靠接地。微机保护装置的箱体必须经试验确定可靠接地;将保护屏底部的漆、铁锈等清除干净以后,将保护屏和底部槽钢用焊接或者螺栓固定的方式可靠连接。微机保护屏之间用不小于50 mm2的多股铜芯线将其底部的接 地小铜排相串连,而后接于截面不小于100 mm2的接地铜排上,再将接地铜排和主控室电缆层的接地网可靠连接。

微机保护实验指导书

微机保护(演示)实验提纲(暂用) 实验基本内容: ●微机保护装置硬件结构认识与基本接线 ●微机保护操作界面熟悉与整定操作 ●微机保护定值检验 实验项目 ●三段式微机电流保护实验 ●微机重合闸实验 ●微机变压器差动保护实验 实验设备: ●南瑞继电保护屏 ●LHDJZ-ⅢB试验台 实验地点: 电力实训中心9318,9227 南京工程学院电力学院继电保护教研室

1 观察微机保护装置的硬件结构 1.1观察对象: 220kV线路保护屏,110kV线路保护屏,主变保护屏,母线保护屏2.2内容及步骤: 观察各保护屏外部结构; 观察保护装置的面板及部件; 背板插件插拔,观察插件上的内容; 端子排,接口及连接片(压板)等。

2 三段式电流微机保护实验 2.1实验目的 熟悉微机保护调试过程和操作方法;学习微机电流保护定值调整的方法;研究系统运行方式对保护的影响;熟悉重合闸与保护配合方式。 2.2电流保护流程

2.3实验接线 电流、电压保护实验一次系统图 微机电流保护实验原理接线图 2.4实验步骤 (1) 按图接线,同时将变压器原方CT (TA )的二次侧短接。 (2)将模拟线路电阻滑动头移动到0欧姆处。 (3)运行方式选择,置为“最小”处。 (4)合上三相电源开关,调节调压器输出,使台上电压表指示从0V 慢慢升到100V ,注意此时的电压应为变压器二次侧电压,其值为100V 。 (5)合上微机保护装置电源开关,利用菜单整定有关定值。 (6)微机电流保护Ⅰ段(速断)、Ⅱ、Ⅲ段投入,将LP1接通(微机出口连接片投入)。 (7)合上直流电源开关,合上模拟断路器,负荷灯全亮。 (8)任意选择两相短路,如果选择AB 相,合上AB 相短路模似开关。 (9)合上故障模拟断路器3KO ,模拟系统发生两相短路故障,此时负荷灯部分熄灭,电流表读数约为7.14A 左右,大于速断(Ⅰ段)保护整定值,I 段保护动 2A 2B 2C (来自PT 测量) (来自2CT 互感器二次侧)

采用微机保护装置的注意事项

编号:SM-ZD-94216 采用微机保护装置的注意 事项 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

采用微机保护装置的注意事项 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 微机型继电保护装置具有功能多、灵活性好、可实现在线自动监测等优点,目前已在继电保护中广为采用。为了充分发挥其功能,保证电力系统的安全运行,笔者认为在采用微机型继电保护装置时应注意以下事项。 1 继电保护设计中应注意的事项 (1) 设计人员必须熟悉微机保护装置的型号、原理、适用范围、技术要求、软件版本号。了解线路对侧保护的程序版本。 (2) 设计过程中,必须考虑强电对弱电回路的干扰。强电、弱电不得合用一根电缆,排列保护屏端子排时,强电、弱电端子要隔开。 (3) 为防止交流电流、交流电压、直流回路进入的干扰,引起微机保护装置工作不正常,在保护的交流、直流电源入口处设计加装抗干扰电容,保护装置的电流、电压和信号引入线一定要选用屏蔽电缆。

微机继电保护设计

基于89c51单片机的继电保护装置的硬件设计 张银龙200901100329电气09-3(订单) 1.1继电保护的发展趋势 继电保护技术未来趋势是向计算机化、网络化、智能化,保护、控制、测量和数据通信一体化发展。 1)计算机化 计算机硬件迅猛发展,系统集成度越来越高。单一处理器的处理速度和处理能力不断提高,处理速度的不断提高为单一芯片作为微机继电保护技术奠定了基础。89C51作为32位芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU寄存器、数据总线、地址总线都是32位,具有存储器管理功能和任务转换功能,并将高速缓存和浮点数部件都集成在CPU内。 2)网络化 计算机网络作为信息和数据通信的工具已成为信息时代的技术支柱,使人类生产和社会生活面貌发生了根本变化。它深刻影响着个个工业领域,也为各个领域提供了强有力的通信手段。继电保护作用不只是限于切除故障元件和限制事故影响范围,还要保证全系统与重合闸装置分析这些信息和数据基础上协调动作,保证系统安全稳定运行。显然,实现这种系统保护基本条件是将全系统各主要设备保护装置用计算机网络联系起来,亦即实现微机保护装置网络化。 3)保护、控制、测量、数据通信一体化 实现继电保护计算机化和网络化条件下,保护装置实际上市一台高性能,多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可以将它所获被保护元件任何信息和数据传送给网络控制中心或任一终端。每个微机保护装置可完成继电保护功能,无故障正常运行下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化、 4)智能化 今年来,人工智能技术在电力系统等各个领域都得到了应用,继电保护领域应用研究也已开始。神经网络是一种非线性映射方法,很多难以列出方程或难解的复杂问题,应用神经网络方法则可迎刃而解。 1.2继电保护的基本任务 继电保护的基本任务包括: 1)自动、迅速、有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分恢复正常运行。 2)反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号、减轻负荷或跳闸。 2.1继电保护的基本原理和保护装置的组成 2.1.1继电保护的基本原理 利用正常运行与区内外短路故障电气参数变化的特征构成保护的判据,根据不同的判据就构成不同原理的继电保护。例如: (1)电流增加(过电流保护):故障点与电源直接连接的电气设备的电流会增加电压降低(低电压保护):各变电站母线上的电压将在不同程度上有很大的降低,短路点得电压降到零。 (2)电流与电压的相位角会发生变化(方向保护):正常20°左右,短路时60°~85°

微机线路继电保护装置功能介绍及作用

微机线路继电保护装置功能介绍及作用 微机线路继电保护装置功能介绍及作用 线路保护装置主要功能有: u u u u u u u u u u u u u u 三段式过流保护(方向闭锁、低电压闭锁)过负荷保护反时限过流保护(3种标准特性方程)三段式零序方向过流保护低电压保护零序过压保护非电量保护小电流接地低压解载保护断线报警三相二次重合闸(检无压、同期、不检);独立整定的合闸加速保护(前/后加速);独立的操作回路及故障录波。 测控功能有: u u u u 16路遥信开入采集正常断路器遥控分合闸;模拟量的遥测;开关事故分合次数统计 保护信息功能有:

u u u u 保护定值远方/就地查看、修改;保护功能远方/就地查看、修改;装置状态的远方 /就地查看;装置保护动作信号的远方/就地复归。 以上各种保护均有软件开关,可分别投入和退出。 录波功能: 装置具有故障录波功能,记忆最新8套故障波形,记录故障前3个周波,故障后5个 周波,进行故障分析,上传当地监控或调度。微机线路保护装置解决策略 我国微机保护装置经过近二十年的发展、更新、升级,其理论、原理、性能、功能、 硬件已经相当完善,能够最大程度适应电力系统运行需要,过多对微机保护装置的干预, 对电网的安全运行反而是不利的。目前,我们运行管理的理念和观念却还处在一个趋向保 守的状态,在微机保护装置运行、管理上存在不少的误区,已经严重影响到变电站自动化 进程。本文主要分析了微机线路保护装置重合闸的充电条件及发生“异常自动重合”的主 要原因,并提出了相应的现场解决方案。 1. 故障事例 电力系统的故障中,大多数是送电线路的故障(特别是架空线路),电力系统的运行 经验表明架空线路的故障大都是瞬时的,因此, 线路保护动作跳开开关后再进行一次合闸,就可提高供电的可靠性。进入20世纪90 年代后,微机保护装置开始推广应用,继电保护微机化率已达100%。但多年的现场实际 应用中,发现中低压线路微机保护(如:10KV 线路微机保护)的控制回路与重合闸回路 之间的配合有问题,导致微机线路保护出现多次“异常自动重合”的现象。事例1:2019 年10月28日,某110kV 变电站1台10kV 出线开关(该开关为SIEMENS-8BK20手车开关,保护配置为LFP-966微机线路保护)在线路故障时重合未成,调度发令将该开关置于“试验”位置(即将线路转为检修状态),值班员在将手车开关由“工作”位置移至“试验” 位置后开关即自行合上,保护装置的保护动作报告为重合闸动作。 2019年11月1日,事例2:某220kV 变电站1台110kV 出线开 关(该开关为GIS 组合电气开关,保护配置110KV 微机线路保护)在线路故障时重 合未成,调度发令该出线改线路检修状态,值班员在将该单元的线路刀闸拉开后,将GIS 汇控柜内的“远方/就地”开关切至“远方”时开关自行合上,保护装置的保护动作报告 亦为重合闸动作。

川大微机保护实验报告 2

微机保护实验报告 学院:电气信息学院 姓名:雷锋 学号: 班级:

实验一微机线路相间方向距离保护实验 一、实验目的 1、掌握微机相间方向距离保护特性的检验方法。 2、掌握微机相间方向距离保护一、二、三段定值的检验方法。 3、掌握微机保护综合测试仪的使用方法。 4、熟悉微机型相间方向距离保护的构成方法。 二、实验项目 1、微机相间方向距离保护特性实验 2、微机相间方向距离保护一、二、三段定值实验 三、实验步骤 1、实验接线图如下图所示: 2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的15(I-7)、14(I-6)、13(I-5)、20(I-12)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-15)、2(I-16)、3(I-17)、6(I-18)号端子;K1、K2分别接到保护屏端子排对应的60(I-60)、71(I-71)号端子;n1、n2分别接到保护屏端子排对应的76(220VL)和77(220VN)号端子。 3、微机相间方向距离保护特性的测试 第一步:连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,进入距离保护测试主界面。(参见M2000使用手册)

第二步:设置测试方式及各种参数。 将测试方式设置成自动搜索方式, 时间参数设置:包括故障前时间、最长故障时间、间隔时间。 固定值:用户可以设置固定电压或电流及其大小。 间隔时间:是每一个脉冲后的停顿时间,在该时间内没有电压电流输出;若不希望在测试过程中有电压失压的情况,可将间隔时间设为 0 。 开关量输出:用户可以定义在故障发生时的开关量输出。 跳闸开关量:每个开关量输入通道以图形方式显示该通道的设定状态,设定状态包括:不选、断开、闭合三种。您可以用鼠标点击相应开关的图形的中心即可切换开关状态。在开关图形的右边有两个单选框分别为:与或,这是所有设定的开关量应满足的动作逻辑关系,与为所有设定的开关状态必须同时满足,或为设定的所有开关中某一个满足条件即可。 故障:设置故障类型。设置成相间故障类型(如两相短路或三相短路)。 固定值:用户可以设置固定电压或电流及其大小。 扫描半径:相对于扫描原点的扫描圆半径。 精度:有相对精度和绝对精度。当两点的Z值差小于绝对值或相对值中大者时,则停止在这两点间的搜索。 时间阶梯:每一段之间的最小时间差,小于这个值,就认为在一段内。 K:零序补偿系数的计算公式,前面是实部,后面是虚部。 角度设置:相对于扫描原点的扫描角度的设置。 扫描原点:扫描辐射线的中心点,此点必须位于封闭边界内,否则无法扫描出边界。 初始时间:整个测试开始前的予故障时间,与故障前时间概念不同,只是针对特殊的继电器,用户可以不管。 第三步:开始试验 点击主窗体上的开始按钮开始测试。用户可在状态界面的Z平面页下,看到整个试验过程。第四步:补充点

相关文档
相关文档 最新文档