文档库 最新最全的文档下载
当前位置:文档库 › PCB导线设计技术

PCB导线设计技术

PCB导线设计技术
PCB导线设计技术

?PCB导线设计技术

?来源:中国PCB技术网作者:San 发布时间:2007-04-25 16:40:47 评论(0条) ?本文汇集国外厂商的设计数据,分成(上)、(中)、(下)三集、六个单

元,详细介绍电路基板导线Layout技巧,包括:微电脑周边电基板路导线设计、模拟电路基板导线设计、宽带与高频电路基板导线设计、电源与功率电路基板导线设计、数字电路基板导线设计,以及Video应用电路基板导线设计。本篇先将介绍计算机周边、模拟电路基板,及宽带与高频电路基板的导线设计技巧。

微电脑周边电基板路导线设计

a. LED电流导线的设计

LED 组件广泛应用在微电脑接口设备,不过大部份的LED封装位置,距离计算机本身相当远。LED只要维持适当亮度即可的同时,某些情况要求在明亮环境下能够轻易判别LED的辉度,然而即使相同的驱动电流IF,LED的辉度随着发光色出现差异(表1)。如图1所示LED的电流高达数十mA,随着LED电流导线长度与路径的延伸,LED的ON/OFF经常成为周边电路发生切换噪讯(switching noise)的诱因。

表1 LED的发光色与辉度关系

图1 典型LED驱动电路

因此封装时驱动晶体管必需尽量靠近LED,藉此缩减LED电流IC的流动路径。LED的辉度与驱动电流呈比例,一般设计上是以绿色LED作基准,依照表1的设定值改变各色的电流值。LED电路基板图案可依照图2的矩阵(matrix)方式排列,如此一来外观上显得非常简洁,驱动晶体管则当作数字晶体管(digital

transistor),串联电阻一般是设在电路基板背面。

图2 典型LED驱动电路板的图案(双面电路板)

b.7时段LED的common端子设计

图3是利用微处理器控制的 open drain端子动态驱动阳极(anode)common type 7时段(segment)LED电路图,从电源到7时段LED common端子的导线,基于全时段点灯时电流高达40~100mA的考虑,因此设计上尽量加粗电路基板的图案(pattern)导线宽度。使用双面电路基板与disc lead的场合,组件必需设在显示器的外侧,如此才能避免影响7时段LED的封装作业。芯片(chip)组件若设在基板背面时,如图4所示可以消除显示器周围的组件,如果加上连接器(connector)cn1,封装后的LED模块可以直接固定在微电脑内。

图4是利用电路板图案设计CAD EAGLE软件自动布线,该软件具备全自动自动Layout功能,而且可以不限次数变更设计,此外自动routing可透过试算错误寻求各种路径 (route),不过笔者建议初期设定时,基板背面的布线采直交方式,事后比较容易修改,尤其是类似这种电路,若未特定布线方向成功机率非常低。

图3 7时段LED的动态驱动电路图

图4 chip组件构成的7时段LED电路板图案(双面电路板)

c. 高湿度环境用的基板布线

照片1是内建周边电路的湿度传感器CHS-GSS实际外观,如图5所示相对湿度100%时CHS-GSS湿度传感器只有1V,所以可以当作数字电压计直接读取湿度。如果与微处理器的A-D converter连接时,必需转换成5v等级(range)。

照片1 湿度传感器CHS-GSS外观

图5 湿度传感器的相对-输出电压特性

图6的电路使用单电源,它是由rail to rail OP增幅器构成,可以将湿度传感器的1V转换成5V,此外利用图中的gain微调器VR1,可以使gain成为

(1+480/120)=5。

布线设计上为了降低高湿度环境时的漏电(leak)现象,必需避免在OP增幅器接地(ground)之间设置图案,同时尽量加大图案之间的间隔缩减图案导线的宽度。图中R1,R2使用1/4W±1%金属皮膜电阻;图7是auto router绘制的双面电路基板图案,焊接面为全接地(full ground),本电路基板封装测试试后再用树脂包覆防湿。

图6 扩大湿度传感器输出范围的电路

图7 湿度传感器周边电路的pattern

(双面电路板,未标示背面接地)

d. 微处理器内建A-D converter时,前置增幅器周边的模拟/数字分离技巧最近几年单片微机大多内嵌A-D Converter(以下简称为ADC),封装这类微处理器时,必需防止模拟ADC受到数字电路噪讯的影响。图8是小型单片微机与ADC 用置增幅器 (pre-amplifier)的电路图,图中的IC1为输出入rail to rail的OP增幅器,它是ADC前置增幅器的10倍电压gain非反相增幅电路;IC2是dropout定电压电源,它可以产生3.3V数字与模拟电路的电源;IC2使用Renasas

公司开发的R8C/Tiny系列小型微处理器,该芯片内建10位循序比较型ADC,第14号脚架(pin)除了可以输入模拟信号之外,同时也是ADC用模拟输入埠(port)。接着介绍除外的表面封装组件,封装在双面印刷电路基板的技巧。

图8 内嵌A-D converter的微处理器与前置增幅周边电路

图9是接地与电源电路的基板图案。接地图案设计上的重点,必需明确分离模拟接地(以下简称为AGND)与数字接地(以下简称为DGND),此处为配合电位因此采取单接点设计,如此设计可以防止数字电路的噪讯,造成 ADC的转换精度降低等问题,因此图9的AGND与DGND连接点设在IC3的Vss端子(5号脚架)附近。

图9 IC3周边电路的pattern 说明

本电路使用的微处理器接地端Vss子只有一条,不过其它型号的IC则将AGND

与DGND端子分离,因此必需将AGND与DGND的pattern 作明确的分离与单点连接(图11)。电源电路需注意的是与IC2输出入连接的C3,C5两电容的设置,因为未降低输出入端子的高频阻抗时,低 dropout电压的电源IC会有波动之虞,所以C3,C5尽量靠近IC2设置,同时还需要缩减导线长度加粗导线宽度。

图10 AGND与DGND明确分离作单点连接

图11是前置增幅周边电路的电路基板pattern,如图所示C2设置在IC1附近,由于电压复归型OP增幅器反相输入端子的输入阻抗很高,极易受到外部噪讯的影响,所以图11的电路基板图案,刻意缩短至反相输入端子(IC1的3号脚架)的导线长度,图中R3是分割容量性负载与OP增幅器输出端子的电阻,OP增幅器与微处理器之间的导线很长时,该电阻必需尽量设置在OP增幅器附近。

图11 前置增幅器周边电路的pattern

描绘AGND时必需尽量降低AGND本身的阻抗,实际布线图案除了采用full pattern之外,前置增幅器的输出入导线应用贯穿孔(through hole)设计,使导线绕到AGND背面藉此降低AGND的阻抗。此外包含前置增幅器在内封装模拟电路

的基板背面,不可有任何数字信号(包含DGND)流通,主要目的是要防止容量结合,造成数字电路的信号变成噪讯影响模拟电路的动作。

模拟电路基板导线设计

a. OP增幅器构成的全波形整流电路patterning

图 12的全波形整流电路,经常因正端(plus side)与负端(minus)gain的未整合,导致波形不均衡,所以决定gain值的电阻使用误差为±1%的金属皮膜电阻。本电路可以使IC1b作差动动作,因此能够减缓高频时波形不均衡现象。虽然OP

增幅器采用LF412,不过可以根据设计需求,改用与OP增幅器脚架相容的LM358。

图12 利用OP差动增幅器作全波整流的电路

IC1 的1、2号脚架至5、6号脚架路径(route)是本电路基板主要设计重点,如图13所示如果导线绕过IC的外侧,路径会变长所以采取IC下方布线设计,正、负电源的图案导线宽度完全相同,信号则沿着箭头方向流动,二极管(diode)等整流电路则整合在基板左侧,电源导线加粗的同时接地采取full ground设计,如此一来双面电路基板就可以满足以上所有的要求。

图13 利用OP差动增幅器作全波整流的电路基板图案

b.光学耦合器的基本周边导线

接着介绍封装光学耦合器(photo coupler)的电路基板分离图案设计技巧。光学耦合器主要功能是将board或是设备之间绝缘,主要原因是为了保障各组件保证的绝缘耐压特性,因此电路基板出现所谓的分离图案设计。图14的电路12V的输入单元与5V的输出单元就是采用分离图案设计,它使用四个编号为的

PS2801-4光学耦合器。

图14 使用photo coupler的电压转换电路

如图15所示为确保1次端(发光侧)与2次端(收光侧)的沿面距离,所以设计上分成表层图案与内层图案,内层图案若是full pattern时,与一般full pattern 一样需作除料设计。所谓沿面距离是线导体之间的指导,沿着绝缘物通行时最短距离而言,有关耐压与沿面距离,UL、VDE等各国的安全规范都有严谨的规定与说明。

(a)pattern的间隔过窄设计例(b)pattern的间隔适当设计例

图15 photo coupler正下方的1次端与2次端图案必需确实分离

I/O点数很多而且使用复数个光学耦合器的场合,必需将散热问题一并列入考虑。图16是根据以上需求,兼具散热效果的pattern设计范例,由图可知1次端与

2次端的接地共通时,利用full pattern连接可以提高散热效果;内层有接地

时可以在full pattern设置数个via与内层接地连接。

如上所述根据1次端与2次端的电流值与散热要求,最后才能决定电阻的定额与pattern宽度。

图16 兼具散热效果的pattern设计

c. 100V以上商用电源线的图案

图17是已经绝缘可输出脉冲的商用交流zero cross point电路。TLP626 LED两者未点灯时,光学耦合器的光学晶体管(photo transistor)成为OFF,输出正极性的脉冲。

图17 商用交流zero cross point检测电路

由于商用交流的输入线相当危险,因此设计电路基板图案时必需充分考虑绝缘与

安全性。图18所示虽然R1单独一个电阻电气上动作完全相同,不过与商用交流的输入直接连接的图案变长,或是流入电阻的电压变高时,电阻的耐电压特性会出现问题,因此建议读者最好分成数个电阻。

图19的输入电压变高时,R1电力损失会以电压的二次方增加,此时必需改佣可以封装更大阻抗的电路基板图案。

图18 以R1取代图17的R1-1 R1-2 图18 以R1取代图17的R1-1 R1-2

图19 加大图17的R1-1 R1-2容许电力可支持大电压范围

设计图20的电路基板图案,必需考虑下列事项:

①采用full pattern设计,组件尽量紧凑封装。

②R1等发热组件附近设置低高度R1,同时尽量远离C1。

③R1设置复数个可以封装1W,2W,3W电力阻抗的land。

图20电路基板图案最大缺点是封装2W,3W电阻时,会因为实际电阻封装情况,造成未使用的land太接近胴体部位;图21是设计变更后的电路基板图案,如此一来R1封装在任何位置,组件下方不会出现land。

图20 商用交流zero cross point检测电路基板图案图21 设计变更后的基板图案

d.可发挥24位分辨率的A-D converter周边电路基板图案

图 22是由复数个24位A-D converter构成,具备电压测试精度与SN比最佳化,与直流甚至20kHz信号的多频道数据记录前置器(multi channel data recorder front end)电路图。本电路亦可应用在3频数据记录器,为达成目的因此将成为ADC的转换基准的参考(reference)电源REF3125 IC(以下简称为REF)当作ADC 与pair使用,虽然如此设计ADC频道之间的gain误差会增大,不过复数ADC

使用共通同的REF,图案的设计自由度提高,而且容易获得理想的基板布线设计。

图22 复数个24位A-D converter构成的多频数据记录器电路

图23是从信号源一直到电源的过程中产生的接地电位差统计一览、上述电路为模拟/数字混载电路,因此接地会有模拟/数字电流流动,如果处理错误的话数字电路的return电流,会混入模拟接地变成噪讯源。

图23 接地电流的种类与接地电位差的统计一览

此外各电路的电流是由电源的正极提供,再折返至供给元的负极,因此设计上利用此特性,设置return电流合流点与分歧,点使通行路径明确分隔。初段的模拟电路(前置增幅器)根据本身的电位基准点接受信号电压,信号源与该电位基准点若与接地的同电位时,正确信号电压会传递至前置增幅器。

图23是表示电流的合流与分歧电位差。此外ADC包含模拟/数字两种电路两者的接地之间电位若有动态变化的话,模拟单元会出现耦合 (coupling)造成SN比恶化现象,所以图23的ADC直接连接在与地电位上完全相同位置。图24是充分反映以上构想的数据记录器电路基板图案,如图所示宽幅的接地图案在ADC与OP 增幅器正下方通行,它除了达成低接地阻抗化之外,还兼具对IC芯片的遮蔽(shield)效果,尤其是电路内层或是背面设有可以传输脉冲信号的图案时,通常

都可以获得极佳低接地阻抗与遮蔽效果。

图24 充分反映图23的构想的数据记录器电路基板图案

图25是基板背面图案,图中的补充图A又称为remote sensing手法。虽然OP 增幅器的输出部设置利用电容负载防止波动的电阻,不过只要插入包含该电阻与VrefP电位的复归loop,就能够正确将参考电压传至VrefP。补充图B则称为Kelvin连接手法,由于OPA2346的第2与第3脚架之间会产生参考(reference)基准电压,因此直接在VrefP至VrefN之间铺设电压传输线,如此就可以防止return电流波动产生电压误差。

图25 可以提供A-D converter良好参考电压的电路基板

宽频与高频电路基板导线设计

a.输入阻抗1MHz,平滑性(flatness)50MHz的OP增幅器电路基板

图26是由FET输入的高速OP增幅器OPA656构成的高输入阻抗OP增幅电路,它的gain取决于R1、R2,本电路图的电路定数为2倍。

此外为改善平滑性特别追加设置可以加大噪音gain,抑制gain-频率特性高频领域时峰值的R

3

图26 高输入阻抗的宽频OP增幅电路

图27是高输入阻抗OP增幅器的电路基板图案。降低高速OP增幅器反相输入端子与接地之间的浮游容量非常重要,所以本电路的浮游容量设计目标低于0.5pF。

如果上述部位附着大浮游容量的话,会成为高频领域的频率特性产生峰值的原因,严重时频率甚至会因为feedback阻抗与浮游容量,造成feedback信号的位相延迟,最后导致频率特性产生波动现象。

此外高输入阻抗OP增幅器输入部位的浮游容量也逐渐成为问题,图27的电路基板图案的非反相输入端子部位无full ground设计,如果有外部噪音干扰之虞时,接地可设计成网格状(mesh)。

图28是根据图26制成的OP增幅器Gain-频率特性测试结果,由图可知即使接近50MHz频率特性非常平滑,-3dB cutoff频率大约是133MHz。

图27 高输出入阻抗OP增幅器的电路基板图案

图28 根据图26制成的OP增幅器Gain-频率

b. 可发挥50MH z~6GHz宽频增幅特性的电路基板图案

图29是由单晶片微波(MMIC: Monolithic Micro wave device)积体电路

NBB-310(RFMicro Devices)构成的频宽50MHz~6GHz宽频高频增幅器,NBB-310高频元件采用AlGaAs HBT制程制作,因此可靠性相当高。

使用MMIC的增幅器时,必需搭配适合的电路基板图案阻抗与元件,例如耦合电容、高频扼流圈(choke)、线圈(coil)(以下简称为RFC)时,才能发挥元件具有的功能。如NBB-310技术资料的记载,偏压(bias)电流只需利用电阻与RFC即可,不过本电路使用复合型电晶体构成的current mirror电路,加上 NBB-310输出脚架的直流电压Level,会随着高频输入电力Level的变化,使用上述电阻与RFC 简易偏压电路的话,输入电力变时输出脚架的直流电压会降低,NBB-310可能会有过电流流动之虞,所以偏压电路使用current mirror电路,藉此防止发生过电流现象。

图29 频宽50MHz~6GHz宽频高频增幅器的电路

频率超过2~3GHz必需谨慎选择印刷电路基板的材质,基本上不可使用传统FR4玻璃环氧树脂,因此无铅且高频特性与FR4玻璃环氧树脂相同的高T

g

玻璃环氧树脂使用可能性大幅增加。一般而言高频电路通常会选用高频用低tan的基板材质,此外为抑制周围温湿度造成高频特性变动,因此必需将基板的温湿度一併列入考虑。图30是频宽50MHz~6GHz宽频高频增幅器的电路基板图案,如图所

示micro strip line上方的2个耦合电容C

1、C

2

与C

4

、C

5

,并联设在线路端缘

(edge)可以改善insertion loss与return loss等高频特性。

图30 频宽50MHz~6GHz宽频高频增幅器的电路基板图案

频率超过GHz等级时,电容器的高频特性随着厂牌出现极大差异,虽然指定厂牌对资材采购单位相当困扰,不过它是OP增幅性能上重要元件之一,重视应用性能时就不应该妥协让步。

封装NBB-310的接地面必需与周围接地面分离,如此才能够防止在NBB-310接地面流动的接地电流迷走在full ground面上,这种技巧经常被应用在改善OP增幅器的绝缘特性。

自制线圈时使用FT23-61 type的troy dull core,与直径ψ0.3polyurethane,靠近NBB-310端紧密绕卷5圈,接着均匀粗绕卷10圈;如果使用市售的线圈必需透过测试寻找特性符合要求的产品,笔者认为若使用WD0200A(冈谷电机)可以充分发挥NBB-310的性能。

c. 可以从直流切换成2.5GHz的RF切换电路

以往RF信号切换开关大多使用PIN二极管(diode),目前GaAs与CMOS专用IC

已经成为市场主流,此处以μPD5710TK为例,介绍可以切换直流~2.5GHz的宽频切换电路(图31)。

图31 可从直流切换成2.5GHz的RF切换电路

图中的μPD5710TK采用CMOS制程制作,点线表示直流cut用电容,其它切换

IC的端子偏压(bias)Level是以直流性定义,所以几乎都是用电容直流cut,不过本电路无法使用直流电。图32是RF切换电路基板图案,图案宽度为1.8mm

如此便可以成为Z

=50Ω的micro strip line的传输线路,电路基板厚度t=1.0mm。

Layout基板时尽量让切换IC的的接地在附近流入背面的端子接地,如此切换控制线在端子附近强制性控制阻抗(impedance),所以没有长度与宽度等限制。

图32 可从直流切换成2.5GHz的RF切换电路基板图案

为避免切换控制端子影响IC的动作,因此作业上必需谨慎处理。图31的电容

C 1、C

2

与接地作交流性连接,可以降低电容对连接控制电路与电源图案的影响(图

案成为等价性线圈,图案长度与频率关系的阻抗,从0到无限大巨大变动)。此外电容本身具备共振频率,所以本电路采用高自我共振频率与高定数电容,晶片电容一般都在100pF~1000pF左右。

d. 4GHz VCO的电路基板图案

图33是4GHz为中心可作500MHz宽频振荡的VCO(Voltage Controlled Oscillator)电路,外观上看似可洱必兹基本电路,不过却无可洱必兹电路必要的C-C-L结构,然而本电路却显示负性阻抗而且还可以作振荡动作,一般的VCO 为了要减轻负载,通常都会设置缓冲器(buffer),不过本电路50Ω负载时仍拥有良好的负性阻抗,所以直接连接至50Ω传输线路。

图33 4GHz为中心可作500MHz宽频振荡的VCO电路

图34是电路基板图案。VCO的基板图案重点必需考虑决定振荡频率的元件,以及振荡电晶体的电流流动特性,依此才能设计最短的图案长度。如上所述电路

=50Ω的micro strip 50Ω负载时显示良好的负性阻抗,所以输出直接连接至Z

利用外部PLL电路以模拟电压控制,所line的传输线路,此外控制电压端子V

r

作高频性降至ground,避免受到电路基板布线的影响。

以用C

7

电路板设计的预先准备工作

一、电路板设计的预先准备工作 1、绘制原理图,并且生成对应的网络表。已有了网络表情况下也可以不进行原理图的设计,直接进入PCB设计系统。 2、手工更改网络表将一些元件的固定用脚等原理图上没有的焊盘定义到与它相通的网络上。将一些原理图和PCB封装库中引脚名称不一致的器件引脚名称改成和PCB封装库中的一致,特别是二、三极管等。 二、画出自己定义的非标准器件的封装库 建议将自己所画的器件都放入一个自己建立的PCB 库专用设计文件。 三、设置PCB设计环境和绘制印刷电路的板框含中间的镂空等。 1、进入PCB系统后的第一步就是设置PCB设计环境,包括设置格点大小和类型,光标类型,板层参数,布线参数等等。大多数参数都可以用系统默认值,而且这些参数经过设置之后,符合个人的习惯,以后无须再去修改。 2、规划电路版,主要是确定电路板的边框,包括电路板的尺寸大小等等。在需要放置固定孔的地方放上适当大小的焊盘。对于3mm 的螺丝可用6.5~8mm 的外径和3.2~3.5mm 内径的焊盘。 四、打开所有要用到的PCB 库文件后,调入网络表文件和修改零件封装 这一步是非常重要的一个环节,网络表是PCB自动布线的灵魂,也是原理图设计与电路版设计的接口,只有将网络表装入后,才能进行电路板的布线。 在原理图设计时,零件的封装可能被遗忘,但可以在引进网络表时根据设计情况来修改或补充零件的封装。 五、布置零件封装的位置,也称零件布局 Protel99可以进行自动布局,也可以进行手动布局。如果进行自动布局,运行"Tools"下面的"Auto Place",用这个命令,你需要有足够的耐心。布线的关键是布局,多数设计者采用手动布局的形式。用鼠标选中一个元件,按住鼠标左键不放,拖住这个元件到达目的地,放开左键,将该元件固定。Protel99在布局方面新增加了一些技巧。新的交互式布局选项包含自动选择和自动对齐。使用自动选择方式可以很快地收集相似封装的元件,然后旋转、展开和整理成组,就可以移动到板上所需位置上了。当简易的布局完成后,使用自动对齐方式整齐地展开或缩紧一组封装相似的元件。 注意:零件布局,应当从机械结构散热、电磁干扰、将来布线的方便性等方面综合考虑。先布置与机械尺寸有关的器件,并锁定这些器件,然后是大的占位置的器件和电路的核心元件,再是外围的小元件。 六、根据情况再作适当调整然后将全部器件锁定 假如板上空间允许则可在板上放上一些类似于实验板的布线区。对于大板子,应在中间多加固定螺丝孔。板上有重的器件或较大的接插件等受力器件边上也应加固定螺丝孔,有需要的话可在适当位置放上一些测试用焊盘,最好在原理图中就加上。将过小的焊盘过孔改大,将所有固定螺丝孔焊盘的网络定义到地或保护地等。 放好后用VIEW3D 功能察看一下实际效果,存盘。

今天终于弄懂了PCB高速电路板设计的方法和技巧

[讨论]今天终于弄懂了PCB高速电路板设计的方法和技巧受益匪浅啊 电容, 最大功率, 技巧 高速电路设计技术阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,并且得到最大功率输出的一种工作状态。高速PCB布线时,为了防止信号的反射,要求线路的阻抗为50Ω。这是个大约的数字,一般规定同轴电缆基带50Ω,频带75Ω,对绞线则为100Ω,只是取整数而已,为了匹配方便。根据具体的电路分析采用并行AC端接,使用电阻和电容网络作为端接阻抗,端接电阻R要小于等于传输线阻抗Z0,电容C必须大于100pF,推荐使用0.1UF的多层陶瓷电容。电容有阻低频、通高频的作用,因此电阻R不是驱动源的直流负载,故这种端接方式无任何直流功耗。 串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。耦合分为容性耦合和感性耦合,过大的串扰可能引起电路的误触发,导致系统无法正常工作。根据串扰的一些特性,可以归纳出几种减小串扰的方法: 1、加大线间距,减小平行长度,必要时采用jog 方式布线。 2、高速信号线在满足条件的情况下,加入端接匹配可以减小或消除反射,从而减小串扰。 3、对于微带传输线和带状传输线,将走线高度限制在高于地线平面范围要求以内,可以显著减小串扰。 4、在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线,可以起到隔离的作用,从而减小串扰。传统的PCB设计由于缺乏高速分析和仿真指导,信号的质量无法得到保证,而且大部分问题必须等到制版测试后才能发现。这大大降低了设计的效率,提高了成本,在激烈的市场竞争下显然是不利的。于是针对高速PCB设计,业界人士提出了一种新的设计思路,成为“自上而下”的设计方法,经过多方面的方针分析和优化,避免了绝大部分可能产生的问题,节省了大量的时间,确保满足工程预算,产生高质量的印制板,避免繁琐而高耗的测试检错等。利用差分线传输数字信号就是高速数字电路中控制破坏信号完整性因素的一项有效措施。在印制电路板(PCB抄板)上的差分线,等效于工作在准TEM模的差分的微波集成传输线对。其中,位于PCB顶层或底层的差分线等效于耦合微带线,位于多层PCB内层的差分线,等效于宽边耦合带状线。数字信号在差分线上传输时是奇模传输方式,即正负两路信号的相位差是180,而噪声以共模的方式在一对差分线上耦合出现,在接受器中正负两路的电压或电流相减,从而可以获得信号消除共模噪声。而差分线对的低压幅或电流驱动输出实现了高速集成低功耗的要求。

DDR3内存的PCB仿真与设计

本文主要使用时域分析工具对DDR3设计进行量化分析,介绍了影响信号完整性的主要因素对DDR3进行时序分析,通过分析结果进行改进及优化设计。 1 概述 当今计算机系统DDR3存储器技术已得到广泛应用,数据传输率一再被提升,现已高达1866Mbps。在这种高速总线条件下,要保证数据传输质量的可靠性和满足并行总线的时序要求,对设计实现提出了极大的挑战。 本文主要使用了Cadence公司的时域分析工具对DDR3设计进行量化分析,介绍了影响信号完整性的主要因素对DDR3进行时序分析,通过分析结果进行改进及优化设计,提升信号质量使其可靠性和安全性大大提高。 2 DDR3介绍 DDR3内存与DDR2内存相似包含控制器和存储器2个部分,都采用源同步时序,即选通信号(时钟)不是独立的时钟源发送,而是由驱动芯片发送。它比DR2有更高的数据传输率,最高可达1866Mbps;DDR3还采用8位预取技术,明显提高了存储带宽;其工作电压为1.5V,保证相同频率下功耗更低。 DDR3接口设计实现比较困难,它采取了特有的Fly-by拓扑结构,用“Write leveling”技术来控制器件内部偏移时序等有效措施。虽然在保证设计实现和信号的完整性起到一定作用,但要实现高频率高带宽的存储系统还不全面,需要进行仿真分析才能保证设计实现和信号质量的完整性。 3 仿真分析 对DDR3进行仿真分析是以结合项目进行具体说明:选用PowerPC 64位双核CPU 模块,该模块采用Micron公司的MT41J256M16HA—125IT为存储器。Freescale 公司P5020为处理器进行分析,模块配置内存总线数据传输率为1333MT/s,仿真频率为666MHz。 3.1仿真前准备 在分析前需根据DDR3的阻抗与印制板厂商沟通确认其PCB的叠层结构。在高速传输中确保传输线性能良好的关键是特性阻抗连续,确定高速PCB信号线的阻抗控制在一定的范围内,使印制板成为“可控阻抗板”,这是仿真分析的基础。DDR3总线单线阻抗为50Ω,差分线阻抗为100Ω。 设置分析网络终端的电压值;对分析的器件包括无源器件分配模型;确定器件类属性;确保器件引脚属性(输入\输出、电源\地等)……

高速PCB设计指南

高速PCB设计指南 第一篇 PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个

pcb电路板设计报告

首先打开"Altium Designer Summer 09 "下图为软件初始界面 新建pcb 工程 Clrf+ ^ ■cia cuiBr±.-v wcrinjnr 」CA HB mcdv iKC-rt* til .1 cs*^e*w?st aTAJIwm DetijtHi 1 冲呻 i 朱从存 矶崛艸?■如和*科 !r*^5* yptfe-s >?iJ KXCJS 4I SuPMJftln?rr^i 何 Hills 眄fl ? ** 戶* Ah-ffl BnrniM 4*1 ph g aarili 丄

建好之后在新建原理图编辑 注意:文件名要保持一致(可以通过点击另存为改名,后缀用默认的就可以了,千万别改) 上图为原理图编辑界面 F 图为设计好的电路原理图 Ejt w W ■輕 玄十 决叫?^4?p+ff Kw 叭書A3 Qpe*- Hiqjpct. -MM MH F 4UM£-H Gpe*^ C^u* K>_R. *吃弾 ■ 迥efvuAc ! Vou ?re hot 9^r#d tn 1* 51J'J!hMR I GR^ Q CKUIKK OebiM* UnfcFit - !>?¥ 1 fiftK ■ E.HLAdrii1 h^infvri ■ *£<■?+ 111 U> c*^e*w*5rt DesijiHi i vppcrv hi MiijiR fichujn^ -felQirHf IBP ^ppn llg ^fK :" * b 时两 | *??r Ed amjss 1B hr SLWjtil 氓EI -m ■忖 wfi ? — w- iUwn ■rn ?E +?-nh ■** *>■!!" ■■DIEP 居学Irflr 叶* 恥两 叭申> ^ak 悩出附 |d?b A

030442003高速电路板设计与仿真

《高速电路板设计与仿真》课程教学大纲 课程代码:030442003 课程英文名称:High Speed Printed Circuit Board Design and Emulation 课程类别:专业基础课 课程性质:选修 适用专业:电子科学与技术 课程总学时:40 讲课:40 实验:0 上机:0 大纲编写(修订)时间:2011.7 一、大纲使用说明 (一)课程的地位及教学目标 本课程是电子科学与技术专业的专业任选课, 属于专业技术基础课,是一门重要的实践课程。通过本课程的学习,学生能够利用先进的高端软件设计高速电路板,绘制出具有实际意义的原理图和印刷电路板图,具有对设计中的信号完整性、电磁兼容性、电源完整性等问题的分析能力,熟悉一定的电子工艺和印刷电路板的布局布线知识,为今后从事高端设计工作打下一定的基础。 (二)知识、能力及技能方面的基本要求 在知识方面,要求学生具有初步的半导体工艺、印制电路、芯片封装等方面的知识,还要了解信号完整性、电磁兼容性、电源完整性等方面的基本概念,如此才能设计出高质量的高速PCB。在能力方面,要求学生具备一些计算机方面的操作技能。 (三)实施说明 1.教学内容:包括原理图设计、PCB设计、高速信号仿真三部分,其中PCB设计为重点内容。应突出高速和高质量PCB的讲解,以适应高端设计要求。讲课要理论联系实际,设计具有实际意义的原理图和印刷电路板图,而不只是空讲理论知识。 2.教学方法:采用启发式教学,提高学生分析问题和解决问题的能力。鼓励学生通过实践和自学获取知识,培养学生的自学能力,调动学生自行设计的学习积极性和创新能力。 3.教学手段:本课程属于技术基础课,在教学中可采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 4.大纲实施时应贯彻学院工程训练与工程教育相结合的特点,注重学生的能力培养和专业素质的提高,尤其是培养学生的实际动手设计和操作的能力。 (四)对先修课的要求 本课程的先修课为电路、模拟电子电路、数字电子电路、计算机基础知识。 (五)对习题课、实践环节的要求 每次课后留有一定量的操作练习,要求学生课后在自己的电脑上学习操作。本课程无实验。 (六)课程考核方式 1.考核方式:考查 2.考核目标:考核学生是否掌握了软件的基本操作方法,重点考核学生的原理图绘制和印刷电路板的设计能力,所设计的项目是否具有实际意义。 3.成绩构成:本课程的总成绩由两部分组成:平时成绩(包括平时自行练习、出勤等)占20%,期末验收成绩(以综合作业完成情况给出成绩)占80%。按优、良、中、及格、不及格五级给出最后成绩。 (七)参考书目 《Cadence SPB 15.7工程实例入门》于争著,电子工业出版社, 2010.5.

PCB电路板设计注意事项教学内容

P C B电路板设计注意 事项

作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。 原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 l、制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。 2、元件和网络的引入 把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些:元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。 3、元件的布局 元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则: 3.l放置顺序 先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。 3.2注意散热

高速PCB设计中终端匹配电阻的放置

高速PCB设计中终端匹配电阻的放置 胡为东1 (西安电子科技大学电子工程学院西安 710071) 摘要:本文简要的总结了在高速数字设计中串联终端匹配和并联终端匹配的优缺点,并对这两种匹配方式的终端匹配电阻处于不同位置时的匹配效果做了相应的仿真和深入的分析,得出了串联终端匹配电阻对位置的要求没有终端匹配电阻严格这一结论,给出了一些关于终端匹配电阻摆放位置的建议。为在PCB设计中如何放置终端匹配电阻提供了理论和实践上的指导。 关键词:并联终端匹配串联终端匹配放置 Termination Placement in High-Speed PCB Design HU Wei-dong (Electronic Engineering of Xidian University . Xi’an 710071) Abstract: This paper gives the advantages and disadvantages of the parallel and series termination in high-speed digital design. Proper simulation and deep analysis are done as terminations are located in different points. A conclusion is got that series terminated circuits are much less affected by placement compromises than parallel terminated circuits , and some suggestions are made on where termination should be located. A theoretic and practical direction is given on how to place the termination in high-speed PCB design. key words: Parallel Termination Series Termination Placement 1胡为东,男,1979年11月出生,西安电子科技大学硕士研究生。主要研究方向:高速板卡和高速PCB设计及仿真、信号完整性及电源完整性分析。

PCB仿真概述

随着信息宽带化和高速化的发展,以前的低速PCB已完全不能满足日益增长信息化发展的需要,人们对通信需求的不断提高,要求信号的传输和处理的速度越来越快,相应的高速PCB的应用也越来越广,设计也越来越复杂。高速电路有两个方面的含义,一是频率高,通常认为数字电路的频率达到或是超过45MHZ 至50MHZ,而且工作在这个频率之上的电路已经占到了整个系统的三分之一,就称为高速电路;二是从信号的上升与下降时间考虑,当信号的上升时小于6倍信号传输延时时即认为信号是高速信号,此时考虑的与信号的具体频率无关。高速PCB的出现将对硬件人员提出更高的要求,仅仅依靠自己的经验去布线,会顾此失彼,造成研发周期过长,浪费财力物力,生产出来的产品不稳定。 高速电路设计在现代电路设计中所占的比例越来越大,设计难度也越来越高,它的解决不仅需要高速器件,更需要设计者的智慧和仔细的工作,必须认真研究分析具体情况,解决存在的高速电路问题。一般说来主要包括三方面的设计:信号完整性设计、电磁兼容设计、电源完整性设计。 在电子系统与电路全面进入1GHz以上的高速高频设计领域的今天,在实现VLSI芯片、PCB和系统设计功能的前提下具有性能属性的信号完整性问题已经成为电子设计的一个瓶颈。从广义上讲,信号完整性指的是在高速产品中有互连线引起的所有问题,它主要研究互连线与数字信号的电压电流波形相互作用时其电气特性参数如何影响产品的性能。 传统的设计方法在制作的过程中没有仿真软件来考虑信号完整性问题,产品首次成功是很难的,降低了生产效率。只有在设计过程中融入信号完整性分析,才能做到产品在上市时间和性能方面占优势。对于高速PCB设计者来说,熟悉信号完整性问题机理理论知识、熟练掌握信号完整性分析方法、灵活设计信号完整性问题的解决方案是很重要的,因为只有这样才能成为21世纪信息高速化的成功硬件工程师。 信号完整性的研究还是一个不成熟的领域,很多问题只能做定性分析,为此,在设计过程中首先要尽量应用已经成熟的工程经验;其次是要对产品的性能做出预测和评估以及仿真。在设计过程中可以不断积累分析能力,不断创新解决信号完整性的方法,利用仿真工具可以得到检验。 第二章:Candence Allegro PCB简介

电源完整性与地弹噪声的高速PCB仿真

电源完整性与地弹噪声的高速PCB仿真 作者:Martin Vogel 和Brad Cole,Ansoft 公司使用基于电磁场分析的设计软件来选择退耦电容的大小及其放置位置可将电源平面与地平面的开关噪声减至最小。 随着信号的沿变化速度越来越快,今天的高速数字电路板设计者所遇到的问题在几年前看来是不可想象的。对于小于1纳秒的信号沿变化,PCB板上电源层与地层间的电压在电路板的各处都不尽相同,从而影响到IC芯片的供电,导致芯片的逻辑错误。为了保证高速器件的正确动作,设计者应该消除这种电压的波动,保持低阻抗的电源分配路径。 为此,你需要在电路板上增加退耦电容来将高速信号在电源层和地层上产生的噪声降至最低。你必须知道要用多少个电容,每一个电容的容值应该是多大,并且它们放在电路板上什么位置最为合适。一方面你可能需要很多电容,而另一方面电路板上的空间是有限而宝贵的,这些细节上的考虑可能决定设计的成败。 反复试验的设计方法既耗时又昂贵,结果往往导致过约束的设计从而增加不必要的制造成本。使用软件工具来仿真、优化电路板设计和电路板资源的使用情况,对于要反复测试各种电路板配置方案的设计来说是一种更为实际的方法。本文以一个xDSM(密集副载波多路复用)电路板的设计为例说明此过程,该设计用于光纤/宽带无线网络。软件仿真工具使用Ansoft的SIwave,SIwave基于混合全波有限元技术,可以直接从layout工具Cadence Allegro, Mentor Graphics BoardStation, Synopsys Encore和Zuken CR-5000 Board Designer导入电路板设计。图1是SIwave中该设计的PCB版图。由于PCB的结构是平面的,SIwave可以有效的进行全面的分析,其分析输出包括电路板的谐振、阻抗、选定网络的S参数和电路的等效Spice模型。 图1, SIwave中xDSM电路板的PCB版图,左边是两个高速总线,右边是三个Xilinx的FPGA。 xDSM电路板的尺寸,也就是电源层和地层的尺寸是11×7.2 英寸(28×18.3 厘米)。电源层和地层都是1.4mil厚的铜箔,中间被23.98mil厚的衬底隔开。 为了理解对电路板的设计,首先考虑xDSM电路板的裸板(未安装器件)特性。根据电路板上高速信号的上升时间,你需要了解电路板在频域直到2GHz范围内的特性。图2所示为一个正弦信号激励电路板谐振于0.54GHz时的电压分布情况。同样,电路板也会谐振于0.81GHz和0.97GHz以及更高的频率。为了更好地理解,你也可以在这些频率的谐振模式下仿真电源层与地层间电压的分布情况。 图2所示在0.54GHz的谐振模式下,电路板的中心处电源层和地层的电压差变化为零。对于一些更高频率的谐振模式,情况也是如此。但并非在所有的谐振模式下都是如此,例如在1.07GHz、1.64GHz和1.96 GHz的高阶谐振模式下,电路板中心处的电压差变化是不为零的。

pcb设计指南

mp3的设计原理及制作 高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程 限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布 线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生 反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般 先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要 断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技 术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过 程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影 响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~ 0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个 地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用 一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑 它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人 PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们 之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有 在PCB上不共地的,这由系统设计来决定。 3 信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量, 成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是 保留地层的完整性。 4 大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘 与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气 性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散 热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。 5 布线中网络系统的作用 在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对 设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的 焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来 支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数, 如:0.05英寸、0.025英寸、0.02英寸等。 6 设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的 需求,一般检查有如下几个方面: (1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要 求。 (2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地 方。 (3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 (4)、模拟电路和数字电路部分,是否有各自独立的地线。 (5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。 (6)对一些不理想的线形进行修改。 (7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影 响电装质量。 (8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。 Copyright by BroadTechs Electronics Co.,Ltd 2001-2002

PCB电路板设计的一般规范步骤

PCB设计步骤 一、电路版设计的先期工作 1、利用原理图设计工具绘制原理图,并且生成对应的网络表。当然,有些特殊情况下,如电路版比较简单,已经有了网络表等情况下也可以不进行原理图的设计,直接进入PCB设计系统,在PCB设计系统中,可以直接取用零件封装,人工生成网络表。 2、手工更改网络表将一些元件的固定用脚等原理图上没有的焊盘定义到与它相通的网络上,没任何物理连接的可定义到地或保护地等。将一些原理图和PCB封装库中引脚名称不一致的器件引脚名称改成和PCB封装库中的一致,特别是二、三极管等。 二、画出自己定义的非标准器件的封装库 建议将自己所画的器件都放入一个自己建立的PCB库专用设计文件。 三、设置PCB设计环境和绘制印刷电路的版框含中间的镂空等 1、进入PCB系统后的第一步就是设置PCB设计环境,包括设置格点大小和类型,光标类型,版层参数,布线参数等等。大多数参数都可以用系统默认值,而且这些参数经过设置之后,符合个人的习惯,以后无须再去修改。 2、规划电路版,主要是确定电路版的边框,包括电路版的尺寸大小等等。在需要放置固定孔的地方放上适当大小的焊盘。对于3mm的螺丝可用6.5~8mm的外径和3.2~3.5mm内径的焊盘对于标准板可从其它板或PCB izard中调入。 注意:在绘制电路版地边框前,一定要将当前层设置成Keep Out层,即禁止布线层。 四、打开所有要用到的PCB库文件后,调入网络表文件和修改零件封装 这一步是非常重要的一个环节,网络表是PCB自动布线的灵魂,也是原理图设计与印象电路版设计的接口,只有将网络表装入后,才能进行电路版的布线。 在原理图设计的过程中,ERC检查不会涉及到零件的封装问题。因此,原理图设计时,零件的封装可能被遗忘,在引进网络表时可以根据设计情况来修改或补充零件的封装。 当然,可以直接在PCB内人工生成网络表,并且指定零件封装。 五、布置零件封装的位置,也称零件布局 Protel99可以进行自动布局,也可以进行手动布局。如果进行自动布局,运行"Tools"下面的"Auto Place",用这个命令,你需要有足够的耐心。布线的关键是布局,多数设计者采用手动布局的形式。用鼠标选中一个元件,按住鼠标左键不放,拖住这个元件到达目的地,放开左键,将该元件固定。Protel99在布局方面新增加了一些技巧。新的交互式布局选项包含自动

高速高密度PCB设计的现状

高速高密度PCB设计的现状 随着电子产品功能的日益复杂和性能的提高,印刷电路板的密度和其相关器件的频率都不断攀升,工程师面临的高速高密度PCB设计所带来的各种挑战也不断增加。下面为大家准备了关于高速高密度PCB设计的现状,欢迎阅读。 随着竞争的日益加剧,厂商面临的产品面世时间的压力也越来越大,如何利用先进的EDA工具以及最优化的方法和流程,高质量、高效率的完成设计,已经成为系统厂商和设计工程师不得不面对的问题。 热点:从信号完整性向电源完整性转移 谈到高速设计,人们首先想到的就是信号完整性问题。信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。一般认为,当系统工作在50MHz 时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。 信号完整性技术经过几十年的发展,其理论和分析方法都已经较为成熟。对于信号完整性问题,陈兰兵认为,信号完整性不是某个

人的问题,它涉及到设计链的每一个环节,不但系统设计工程师、硬件工程师、PCB工程师要考虑,甚至在制造时也不能忽视。解决信号完整性问题,必须借助先进的仿真工具,如Cadence的SPECCTRAQuest 就是不错的仿真工具,利用它可以在设计前期进行建模、仿真,从而形成约束规则指导后期的布局布线,提高设计效率。随着Cadence 在今年6月推出的专门针对千兆赫信号的仿真器MGH——它是业界首个可以在几秒之内完成数万BIT千兆赫信号的仿真器——信号完整性 技术更臻完善。 相对于信号完整性,电源完整性是一种较新的技术,它被认为是高速高密度PCB设计目前最大的挑战之一。电源完整性是指在高速系统中,电源传输系统(PDS power deliver system)在不同频率上,阻抗特性不同,使PCB板上电源层与地层间的电压在电路板的各处不尽相同,从而造成供电不连续,产生电源噪声,使芯片不能正常工作;同时由于高频辐射,电源完整性问题还会带来EMC/EMI问题。如果不能很好地解决电源完整性问题,会严重影响系统的正常工作。 通常,电源完整性问题主要通过两个途径来解决:优化电路板的叠层设计及布局布线,以及增加退耦电容。退耦电容在系统频率小于300 ~ 400MHz时,可以起到抑止频率、滤波和阻抗控制的作用,在恰当的位置放置合适的退耦电容有助于减小系统电源完整性的问题。但是当系统频率更高时,退耦电容的作用很小。在这种情况下,只有通过优化电路板的层间距设计以及布局布线或者其他的降低电

allegro_PCB_SI仿真

随着微电子技术和计算机技术的不断发展,信号完整性分析的应用已经成为解决高速系统设计的唯一有效途径。借助功能强大的Cadence公司SpecctraQuest 仿真软件,利用IBIS模型,对高速信号线进行布局布线前信号完整性仿真分析是一种简单可行行的分析方法,可以发现信号完整性问题,根据仿真结果在信号完整性相关问题上做出优化的设计,从而缩短设计周期。 本文概要地介绍了信号完整性(SI)的相关问题,基于信号完整性分析的PCB 设计方法,传输线基本理论,详尽的阐述了影响信号完整性的两大重要因素—反射和串扰的相关理论并提出了减小反射和串扰得有效办法。讨论了基于SpecctraQucst的仿真模型的建立并对仿真结果进行了分析。研究结果表明在高速电路设计中采用基于信号完整性的仿真设计是可行的, 也是必要的。 【关键字】 高速PCB、信号完整性、传输线、反射、串扰、仿真 Abstract With the development of micro-electronics technology and computer technology,application of signal integrity analysis is the only way to solve high-speed system design. By dint of SpecctraQuest which is a powerful simulation software, it’s a simple and doable analytical method to make use of IBIS model to analyze signal integrity on high-speed signal lines before component placement and routing. This method can find out signal integrity problem and make optimization design on interrelated problem of signal integrity. Then the design period is shortened. In this paper,interrelated problem of signal integrity, PCB design based on signal integrity, transmission lines basal principle are introduced summarily.The interrelated problem of reflection and crosstalk which are the two important factors that influence signal integrity is expounded. It gives effective methods to reduce reflection and crosstalk. The establishment of emulational model based on SpecctraQucst is discussed and the result of simulation is analysed. The researchful fruit indicates it’s doable and necessary to adopt emulational design based on signal integrity in high-speed electrocircuit design.

硬件电路板设计规范

硬件电路板设计规范(总36 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

0目录 0目录............................................... 错误!未定义书签。

1概述............................................... 错误!未定义书签。 适用范围............................................ 错误!未定义书签。 参考标准或资料 ...................................... 错误!未定义书签。 目的................................................ 错误!未定义书签。2PCB设计任务的受理和计划............................ 错误!未定义书签。 PCB设计任务的受理................................... 错误!未定义书签。 理解设计要求并制定设计计划 .......................... 错误!未定义书签。3规范内容........................................... 错误!未定义书签。 基本术语定义........................................ 错误!未定义书签。 PCB板材要求: ....................................... 错误!未定义书签。 元件库制作要求 ...................................... 错误!未定义书签。 原理图元件库管理规范:......................... 错误!未定义书签。 PCB封装库管理规范............................. 错误!未定义书签。 原理图绘制规范 ...................................... 错误!未定义书签。 PCB设计前的准备..................................... 错误!未定义书签。 创建网络表..................................... 错误!未定义书签。 创建PCB板..................................... 错误!未定义书签。 布局规范............................................ 错误!未定义书签。 布局操作的基本原则............................. 错误!未定义书签。 热设计要求..................................... 错误!未定义书签。 基本布局具体要求............................... 错误!未定义书签。 布线要求............................................ 错误!未定义书签。 布线基本要求................................... 错误!未定义书签。 安规要求....................................... 错误!未定义书签。 丝印要求............................................ 错误!未定义书签。 可测试性要求........................................ 错误!未定义书签。 PCB成板要求......................................... 错误!未定义书签。

相关文档
相关文档 最新文档