文档库 最新最全的文档下载
当前位置:文档库 › 一、函数与映射的基本概念

一、函数与映射的基本概念

一、函数与映射的基本概念
一、函数与映射的基本概念

一、函数与映射的基本概念

一、基本概念

1.函数的定义:

设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ?. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.

2、对应法则

是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。

3、同一个函数

两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.

4、变换字母

在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数

本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.

5、区间及其表示方法.

区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,

规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|, 半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.

符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(

6.映射的概念:

映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.

7、映射与函数的关系

函数是映射,但映射不一定是函数。由映射的概念可知,函数本质上是定义在两个非空数集上的一类特殊的映射:当A 、B 是两个非空数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,并记作y =f (x ),其中x ∈A ,y ∈B .原象的集合A 叫做函数的定义域,象的集合C 叫做函数的值域,显然C ?B .

8、函数的三种表示法及其优缺点

(1)、解析法

用一个含有这两个变量及数学运算符号的等式表示两个变量间的函数关系,,这种表示法叫

做解析法.例如,代数式,y =-2x -1,y =22

-+x x ,y =

x

1

,y =3-x 等等都是函数解析式.一般的可表示为)(x f y =。解析法简单明了,能准确地反映整个变化过程中自变量与函数的相依关系,即给出了由x 求y 的方法,但求对应值时,往往要经过比较复杂的计算,而且在实际问题中,有的函数关系不一定能用解析式表达出来. (2)、列表法

把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法.如平方表、平方根表等.列表法一目了然,表格中已有自变量的每一个值,不需计算就可以直接查出与它对应的函数值,使用起来很方便,但列表法有局限性,因为列出的对应值是有限的,而且在表格中也不容易看出自变量与函数之间的对应规律.而且是近似值 (3)、图象法

用平面直角坐标系中的曲线表示函数关系的方法叫做图象法.图象法形象直观,通过函数的图象,可以直接、形象地把函数关系表示出来,能够直观地研究函数的一些性质,例如函数有没有最大值(或最小值)?最大(小)值是多少?函数值是随自变量增大而增大,还是随自变量的增大而减小等等,函数图象是研究函数性质的有力工具.但是,由图象观察只能由x 的值量出y 的近似值

使函数有意义的自变量的取值的全体,叫做函数的自变量的取值范围. 注意:

(1)当函数是由一个解析式表示时,欲求函数值,实质就是求代数式的值.

(2)当已知函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程. (3)当已知函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式.

9、分段函数

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量

代入相应的表达式

例:求分段函数的函数值 已知函数

求f{f[f(a)]} (a<0)的值。

分析 求此函数值关键是由内到外逐一求值,即由

a<0, f(a)=2a ,又0<2a <1, ,

, 所以,

注:求分段函数值的关键是根据自变量的取值代入相应的函数段的表达式.

二、典型例题解析

例1 在对应法则“f ”下,给出下列从集合A 到集合B 的对应: (1)A =N ,B =R ,f :x →y =

x

1; (2)A =N ,B =Z ,f :x →y =x )1(-;

(3)A ={x ∣x 是平面内的三角形},B ={y ∣y 是平面内的圆},f :x →y 是x 的外接圆. 其中能构成映射的是 ( )

A .(1)、(2)

B .(1)、(3)

C .(2)、(3)

D .(2)

分析 判断一个对应是不是映射,应紧扣映射的定义,即在对应法则f 下,对于集合A 中的任一..

元素在B 中是否都有唯一..

的象. 解 : 在(1)中,元素“0”在B 中没有象,不满足“任意性”,故不能构成映射.

在(2)中,当x 为偶数时,其象为1;当x 为奇数时,其象为-1,而1,-1∈B ,即A 中任一元素在B 中都有唯一的象.

在(3)中,因为任一三角形都有唯一的外接圆,所以(2)、(3)能构成映射.答案选C .

点评 ①判断一个对应是否能构成映射,应紧扣映射定义.②在课本中,已规定0是自然数,忽视

了这一点,将误认为对应(1)是映射.③在映射f :A →B 中,A 、B 的地位是不对等的,它并不要求B 中元素均有原象,或有原象也未必唯一.一般地,若A 中元素的象的集合为C ,则C ?B .如(2)中除1,-1以外的任何元素均无原象,(3)中任一圆的内接三角形都有无数个.④映射中的集合元素的对象是任意的,可以是数集、点集或其他任意对象,如(3)中的集合对象是几何图形.

变题 设集合A ={x ∣x 是平面内的圆},B ={y ∣y 是平面内的矩形},f :x →y 是x 的内接矩形.试问

它能否构成映射?

答案:不能。因为圆的内接矩形有很多个,与映射要求的通过对应关系只有唯一的元满足关系不符

例2 已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映

射f 下的象,且对任意a ∈A ,在B 中和它们对应的元素是|a |,则集合B 中元素的个数是 ( ) A .4 B .5 C .6 D .7

分析 本题主要考查映射的概念及对对应概念的理解.解本题应抓住:

①对应法则f 是什么?②集合B 中的具体元素是什么?而②的解决由①来决定.

解: 依题意,由A →B 的对应法则为f :a →|a |.于是,将集合A 中的7个不同元素分别取绝对值后

依次得3,2,1,1,2,3,4.由集合元素的互异性可知,B ={1,2,3,4},它有4个元素,答案选A .

点评 ①准确理解题目本身所给的信息,捕捉对解题有用的成份,是解决问题的关键. ②不能忽视

集合元素的三大特性在解题中的应用.本题中如果忽视集合元素的互异性,将导致错选D .

例3 设A ={(x ,y )∣x ∈R ,y ∈R }.如果由A 到A 的一一映射,使象集合中的元素(y -1,x +2)和原象

集合中的元素(x ,y )对应,那么象(3,-4)的原象是 ( ) A .(-5,5) B .(4,-6) C .(2,-2) D .(-6,4) 分析 由象与原象的概念可知,本题中的对应法则是f :(x ,y )→(y -1,x +2),

问题即:当点(y -1,x +2)是(3,-4)时,对应的x ,y 的值分别是多少?于是由

??

?-=+=-4231x y ?

??=-=?46

y x ,即象(-3,4)的原象是(-6,4),选D .

点评 ①已知原象要求象,只需根据对应法则直接代入计算;已知象元素,反求原象,需逆向思考,

通常借助方程思想,通过解方程组来解决.②在映射f :A →B 中,A 是原象集合,B 是象的集合,对应法则是f :原象→象,二者顺序不能颠倒,否则将误选A ;点(x ,y )是有序数对,x ,y 的顺序不能搞错,否则将误选B .

例4 设A ={x ∣0≤x ≤2},B ={y ∣1≤y ≤2},图1中表示A 到B 的函数是( )

分析 可根据映射观点下的函数定义直接求解.首先C 图中,A 中同一个元素x (除x =2)与B 中两个

元素对应,它不是映射,当然更不是函数;其次,A 、B 两图中,A 所对应的“象”的集合均为{y ∣0≤y ≤2},而{y ∣0≤y ≤2}? B ={y ∣1≤y ≤2},故它们均不能构成函数.从而答案选D . 点评 函数首先必须是映射,是当集合A 与B 均为非空数集时的映射.因此,判断一个对应是否能构

成函数,应判断:①集合A 与B 是否为非空数集;②f :A →B 能否为一个映射.另外,函数f :A →B 中,象的集合M 叫函数的值域,且M ?B .

变题 已知函数y =f (x ),集合A ={(x ,y )∣y =f (x )},B ={(x ,y )∣x =a ,y ∈R },其中a 为常数,

则集合A ∩B 的元素有 ( C ) A .0个 B .1个 C .至多1个 D .至少1个

提示 设函数y =f (x )的定义域为D ,则当a ∈D 时,A ∩B 中恰有1个元素;当a ∈/D 时,A ∩B 中没有

元素.

例5 集合A ={3,4},B ={5,6,7},那么可建立从A 到B 的映射个数是__________,从B 到A 的映射个数是__________.

剖析:从A 到B 可分两步进行:第一步A 中的元素3可有3种对应方法(可对应5或6或7),第二步A 中的元素4也有这3种对应方法.由乘法原理,不同的映射种数N 1=3×3=9.反之从B 到A ,道理相同,有N 2=2×2×2=8种不同映射. 答案:9 , 8

例6、某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市 时

间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (1)写出图一表示的市场售价与时间的函数关系式)(t f p =; (2)写出图二表示的种植成本与时间的函数关系式)(t g Q =;

解:(Ⅰ)由图一可得市场售价与时间的函数关系为???≤<-≤≤-= 300t 200 3002 200,t 0

,300)(t t t f

由图二可得种植成本与时间的函数关系为300t 0 ,100)150(20

1

)(2≤≤+-=t t g

例7、若f :y =3x +1是从集合A ={1,2,3,k }到集合B ={4,7,a 4,a 2+3a }的一个映射,求自然数a 、k

的值及集合A 、B.

解:∵f (1)=3×1+1=4,f (2)=3×2+1=7,f (3)=3×3+1=10,f (k )=3k +1,由映射的定义知

(1)?????+=+=,133,1024k a a a 或(2)??

???+==+.13,10342k a a a

∵a ∈N ,∴方程组(1)无解. 解方程组(2),得a =2或a =-5(舍),3k +1=16,3k =15,k =5 .∴A ={1,2,3,5},B ={4,7,10,16}.

三、基本概念练习题

1.对于映射f :A →B ,下列说法正确的是 ( ) A .A 中某一元素的象可以不止一个 B .B 中某一元素的原象可以不止一个 C .A 中两个不同元素的象必不相同 D .B 中两个不同元素的原象可能相同

2.设集合A ={a ,b ,c },B ={m ,n ,p },那么从集合A 到B 可以建立 个一一映射.

3.已知A =B =R ,x ∈A ,y ∈B ,且f :x →y =ax +b ,若5和20的原象分别是5和10,则7在f 下的象为 .

4.下列函数中,表示同一函数的是 ( )

A .f (x )=1,g (x )=x °

B .f (x )=x +1,g (x )= x 2-1

x -1

C .f (x )= x 2,g (x )=|x |

D .f (x )=x ,g (x )=(x )2

5.函数y =x -1,x ∈Z 且x ∈[-1,5 ],则函数的值域为 . 6.给出三个命题:

①映射f :A →B 是函数,则A 叫做函数的定义域,B 叫做函数的值域; ②x x x f -+-=34)(是函数;

③函数y =3x (x ∈Z )的图象是一条直线.

其中正确的有 ( ) A .0个 B .1个 C .2个 D .3个

7、集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0, 那么映射f :M →N 的个数是多少?

参考答案 1.B 2.6 3. 11 4. C

5. {-2,-1,0,1,2,3,4}

6.A (定义域对,值域不一定对,值域是B 的真子,第二个定义域空,第三是点) 7、解:∵f (a )∈N ,f (b )∈N ,f (c )∈N ,且f (a )+f (b )+f (c )=0,

∴有0+0+0=0+1+(-1)=0.

当f (a )=f (b )=f (c )=0时,只有一个映射; 当f (a )、f (b )、f (c )中恰有一个为0,而另两个分别为1,-1时,共有3*2=6个映射. 因此所求的映射的个数为1+6=7.

评述:本题考查了映射的概念和分类讨论的思想.

四、小结

1.理解映射的概念,应紧紧抓住映射的两个特性:①任意性;②唯一性. 2.判断一个对应是不是映射或一一映射,应“回到定义去”;说明一个对应不是映射或一一映射,

只须找出一个反例.

3.深化对函数概念的理解,能从函数三要素(定义域、值域与对应法则)的整体上去把握函数概念.在函数三要素中,定义域和对应法则是函数的两大要素,对应法则是核心。

五、检测题:

选择题:

1.在映射f :A →B 中,“B 中每一元素在A 中都有原象”是“该映射为一一映射”的 ( )

A .充分非必要条件

B .必要非充分条件

C .充分必要条件

D .既非充分又非必要条件

2.下列各图形中,是函数的图象的是 ( )

3.下列对应能构成映射的是 ( ) A .A =N ,B =N +,f :x →∣x ∣ B .A =N ,B =N +,f :x →∣x -3∣

C .A ={x ∣x ≥2,x ∈N },B ={y ∣y ≥0,y ∈Z },f :x →y =x 2-2x +2

D .A ={x ∣x >0,x ∈R },B =R ,f :x →y =±x

4.设f 、g

设a =g [f (3)],b ( )

A .a =b ≠c

B .a =b =c

C .b =c ≠a

D .c =a ≠b

5、已知集合M={a ,b ,c},N={-1,0,1},若f 是M →N 的映射,且f(a)=f(b)+f(c),则这样的映射共有

[ ]

A.4个

B.6个

C. 7个

D.27个

6、{}{}

20,20≤≤=≤≤=y y N x x M 给出的四个图形,其中能表示集合M 到N 的函数关系的有

A

、 0个 B 、1个 C 、2个 D 、3个

填空题:

7.已知集合A ={x ∣0≤x ≤4},B ={y ∣0≤y ≤2},下列从A 到B 的对应f : ①f :x →y =

x 21 ②f :x →y =x 31 ③f :x →y =x 32 ④f :x →y =28

1x (1)其中不是映射的是 ;

(2)其中是一一映射的是 .

8.映射f :A →B ,其中A ={三角形},B =R ,f 是使三角形对应到它的外接圆半径.则边长为3的正三角形的象是 .

9.已知f :A →B 是一一映射,其中A ={1,2,3,4,5},B ={0,7,26,63,124}, 则对应法则f :x →y = .

10.给定映射:(,)(2,)f x y x y xy →+,点11(,)66

-的原象是.

11.设函数3,(10)

()((5)),(10)x x f x f f x x -≥?=?+

,则(5)f =.

解答题:

12.已知集合A ={1,2,3,k },B ={4,7,a 3,a 2+3a },且a ∈Z ,k ∈Z .映射f :x →y =3x +1,x ∈A ,y

∈B ,求实数a 、k 的值.

13.已知映射f :A →B 中,A =B ={(x ,y )∣x ∈R ,y ∈R },f :(x ,y ) →(x +2y +2,4x +y ). (1)求A 中元素(5,5)的象;(2)求B 中元素(5,5)的原象;

(3)是否存在这样的元素(a ,b ),使它的象仍是自己?若有,求出这个元素. 14.已知f (x )= ?

?

?<≥)0(,1)0(2x x ,,g (x )= 3f (x -1) + f (x -2)

2 (x >0),求y =g (x )的解析式.

参考答案: 1.B 2.D 3.C 4.B 5.C 考察f(c),

f(c)有三种取值,根据三种取值来分类讨论: ①f(c)=-1

此时,f(a)=-1,f(b)=0;或者f(a)=0,f(b)=-1 所以有两种映射: f(a)=-1,f(b)=0,f(c)=-1; f(a)=0,f(b)=-1,f(c)=-1; ②f(c)=0

此时,f(a)=-1,f(b)=1;或者f(a)=0,f(b)=0;或者f(a)=1,f(b)=-1 所以有三种映射: f(a)=-1,f(b)=1,f(c)=0; f(a)=0,f(b)=0,f(c)=0; f(a)=1,f(b)=-1,f(c)=0; ③f(c)=1

此时,f(a)=0,f(b)=1;或者f(a)=1,f(b)=0 所以有两种映射:

f(a)=0,f(b)=1,f(c)=1; f(a)=1,f(b)=0,f(c)=1;

所以,满足要求的映射有2+3+2=7(个 6、B 7、(1)③(2)①④ 8、1

9. x 3-1(注:答案不唯一,如y =x 3-1+(x -1)(x -2)(x -3)(x -4)(x -5)) 10、11(,)32-或12

(,)43

-

11、8 12.a =–5,k = -42.提示:10∈{a 3,a 2+3a }?a 2+3a =10?a =2或a = -5.当a =2时,方程3k +1=8无整

数解;当a = -5时,解方程3k +1= -125,得k = -42.

13.(1)(17,25);(2)(1,1);(3)(0,-1).提示:(3)解方程组???x = x +2y+2,

y = 4x +y .

即可.

14.???????≥<≤<<=)

2(,4)21(,27

)10(,2)(x x x x g

函数的基本概念练习

第 1 页 共 1 页 函数的基本概念 一、知识归纳: 1、映射: 2、函数的定义: 3、函数的三要素: 4、函数的表示: 二、题型归纳: 1、有关映射概念的考察; 2、求函数的定义域; 3、求函数的解析式: 4、求函数的值域。 三、练习: 1、设B A f →:是集合A 到集合B 的映射,则下列命题正确的是( ) A 、A 中的每一个元素在B 中必有象 B 、B 中的每一个元素在A 中必有原象 C 、B 中的每一个元素在A 中的原象是唯一的 D 、A 中的不同元素的象不同 3、已知A={1、2、3、 4、5},对应法则f :1)3(2 +-→x x ,设B 为A 中元素在f 作用下的象集,则B = 。 4、设函数f(x)=132 +-x x ,则f(a)-f(-a)= 。 5、设(x ,y )在映射f 下的象是(x +y ,x -y ),则象(1,2)的原象是 ( ) A .(3,1) B .)21,23 (- C .(-1,3) D .)2 3,21(- 6、已知函数 =???>+-≤+=)]25([,) 1(3)1(1)(f f x x x x x f 则 . 7、函数y =f(x)的图像与直线x =4的交点个数为 ( ) (A )至多一个(B )至少一个(C )必有一个(4)一个、两个或无穷多个 8、由函数1)(2++= mx mx x f 的定义域是一切实数,则m 的取值范围是 ( ) A .(0,4] B .[0,1] C .[0,4] D .[4,+∞) 9、下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 10、函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1} 3、已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1] 6、已知y=f(x)的定义域为R ,f(x+2)=-f(x),f(1)=10,则f(9)的值为( ) A .10 B .-1 C .0 D .不确定 7、设f (x -1)=3x -1,则f (x )=__ _______. 8、已知函数f ( 2x + 1 )的定义域为(0,1),则f ( x ) 的定义域为 。 9、函数)1(-x f 的定义域是[0,2],则)2(+x f 的定义域是 。 11、已知f ( x ) = 2 21x x +,那么f ( 1 ) + f ( 2) + f (2 1) + f ( 3 ) + f( 31 ) + f ( 4 ) + f ( 4 1 ) = 。 13、 14、 ). ()1(x f x x x f ,求已知函数满足+=+的解析式。,求已知函数)(1 2)1(2 x f x x x f +=

第2讲函数与映射的概念复习.docx

第2讲函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则于,对于集合A中的每一个数x ,在集合B中都冇唯一确定的数和它对应,那么这样的对应叫做从4到B的一个函数,通常记为y = /(x),x G A (2)函数的定义域、值域 在函数y = /(x),x G A中,x叫做口变量,x的取值范碉A叫做y = /0)的定义域;与x的值和对应的y值叫做函数值,函数值的集介{f(x)卜e A}称为函数y = f(x)的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念:设A、B是两个集合,如果按照某种对应法则/,对于集合A中的任意元素,在集合B小都有唯-确泄的元素与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f : A — B ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象两数的定义域 重难点:1?关于抽象函数的定义域 求抽象函数的定义域,如果没冇弄清所给函数Z间的关系,求解容易出错误问题1:已知函数y = /(x)的定义域为[a, b],求y = /(x + 2)的定义域. 问题2:己知y = /(x + 2)的定义域是[d, b],求函数y = f (x)的定义域. 1.求值域的几种常用方法 (1 )配方法:对于(可化为)'、二次函数型〃的函数常用配方法,如求函数y = -sin2兀一2cosx + 4, 变为y = - sin? x-2cosx + 4 = (cosx-1)2 + 2解决. (2)基本函数法:一些由基木函数复合而成的函数可以利用基本函数的值域来求,如函数y = log j (-x2 + 2x + 3)就是利用函数y = log丨u和u = -x2 + 2兀+ 3的值域来求. 2 2 2JC + 1 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数/ 的值域 兀'―2兀+ 2 山),=严+1得y/—2(y + i)x + 2y — l = 0,若y = 0 ,则得 % = 所以y = 0 x - 2x + 2 2 是函数值域中的一个值;若y ^0 ,则由△ = [—2(y + l)『—4y(2y —1)? 0得

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

函数、映射的概念

函数、映射的概念 ?1、映射: (1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应, 那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。 (2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。 2、函数: (1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。 (2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。显然值域是集合B的子集。 3、构成函数的三要素: 定义域,值域,对应法则。 值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。 4、函数的表示方法: (1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法; (2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法; (3)图象法:就是用函数图象表示两个变量之间的关系。 注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。?映射f:A→B的特征: (1)存在性:集合A中任一a在集合B中都有像; (2)惟一性:集合A中的任一a在集合B中的像只有一个; (3)方向性:从A到B的映射与从B到A的映射一般是不一样的; (4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。 ?(1)函数两种定义的比较: ①相同点:1°实质一致2°定义域,值域意义一致3°对应法则一致 ②不同点:1°传统定义从运动变化观点出发,对函数的描述直观,具体生动. 2°近代定义从集合映射观点出发,描述更广泛,更具有一般性.

函数与映射的概念及其表示方法

函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{} A x x f ∈)(称为函数)(x f y =的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为 B A f →: ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域 求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 [误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a [正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a 即本题的实质是求b x a ≤+≤2中x 的范围 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域 [误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数与映射概念的理解

玩转函数第一招 第1招:函数与映射概念的理解【知识点理解】 ①映射.映射f : A→B 的概念。 对于两个集合A,B 如果按照某种对应法则f,对于集合A中的任.何.一.个.元素在集合 B 中都有唯一的元素和它对应,这样的对应(包括A、B 及f)叫做从集合 A 到集合B的映射. 记作:f:A→B. 对于映射这个概念,应明确以下几点: ①映射中的两个集合A 和B 可以是数集,点集或由图形组成的集合以及其它元素的集合. ②映射是有方向的,A 到 B 的映射与 B 到 A 的映射往往是不相同的. ③映射要求对集合 A 中的每一个元素在集合 B 中都有象,而这个象是唯一确定的.这种集合 A 中元素的任意性和在集合 B 中对应的元素的唯一性构成了映射的核心. ④映射允许集合B 中的某些元素在集合A 中没有原象,也就是由象组成的集合 C B. ⑤映射允许集合A 中不同的元素在集合B 中有相同的象,即映射只能是“多对一”或“一对一”,不能是“一对多”. 一一映射:设 A ,B 是两个集合,f :A → B 是从集合 A 到集合 B 的映射,如果在这个映射的作用下,对于集合A 中的不同的元素,在集合B中有不同的象,而且 B 中每一元素都有原象,那么这个映射叫做从.A.到.B.上.的一一映射. 一一映射既是一对一又是 B 无余的映射. 在理解映射概念时要注意:⑴A 中元素必须都有象且唯一; ⑵B中元素不一定都有原象,但原象不一定唯一。总结:取 元任意性,成象唯一性。 【精准训练】

(1)设f :M→N是集合M到N的映射,下列说法正确的是 A、M中每一个元素在N中必有象 B、N中每一个元素在M中必有原象 C、N中每一个元素在M中的原象是唯一的 D、N是M中所在元素的象的集合(答:A); (2)、若从集合A 到集合B 的映射 f满足 B 中的任何一个元素在 A中都有原象,则称映射 f 为从集合 A 到集合 B 的满射,现集合 A 中有 3 个元素,集合 B 中有 2 个元素,则从集合 A 到集合 B 的满射 f 的个数是: A 、 5 B 、6 C、 8 D、 9 (答:B )(3)点(a,b)在映射f的作用下的象是(a-b,a+b),则在f作用下点(3,1)的原象为点 _______ (答:(2,-1)); (4)a、b为实数,集合M{b ,1}, N ={a,0}, f : x→ x表示把集合M中的元素x映射到集合N中a 仍为x,则a +b= A、1 B、0 C、-1 D、±1 (5)若A = {1,2,3,4},B ={a,b,c},a,b,c R,则A到B的映射有个,B到A的 映射有个,A到B的函数有个(答:81,64,81); (6)设集合M={-1,0,1},N={1,2,3,4,5},映射f :M→ N满足条件“对任意的x M,x+ f(x)是奇数”,这样的映射f有_____ 个(答:12); (7)设f :x→ x2是集合A到集合B的映射,若B={1,2},则A B一定是_______ (答: 或{1}). 8)、已知集合A = {1, 2,3} ,B={-1,0,1},则满足条件f(3)=f(1)+f(2)的映射f : A→ B的个数是()(A)2 (B)4 (C)5 (D)7 (9)、从集合A={1,2,3}到B={3,4}的映射f : A→ B中满足条件f(3)= 3个数是()(A )2 (B )3 (C )4 (D)6 (10)、已知集合A={1,2,3},在A→ A的映射中满足条件f(3)=3,f(2)=1个数是() (11)、.A={1,2,3,4,5,},B={6,7,8,}从集合A到B的映射中满足f(1)≤f (2)≤f(3)≤f(4)≤f(5)的映射有() A、27 B、9 C、21 D、12 解:(1)当一个不等号也没有时,(即与B中的一个元素对应),则f有C13个

第一节映射与极限

第一章 教学内容与基本要求: 1、理解函数的概念。了解函数奇偶性、周期性、单调性和有界性。理解复合函数的概念、了解反函数概念。熟练掌握基本初等函数的性质及其图形。会建立简单实际问题中的函数关系式。 2、理解极限的概念(对极限ε─N ,ε─δ定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求),了解极限的性质。 3、掌握极限四则运算法则。 4、了解极限存在的两个准则(夹逼准则和单调有界准则),会用两个重要极限求极限。 5、了解无穷小、无穷大的概念,会讨论无穷小的比较,会用等价无穷小求极限。 6、理解函数在一点连续的概念,了解函数在区间上连续的概念。了解间断点的概念,并会判别间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大最小值定理)。 第一节 映射与函数 ㈠.本课的基本要求 理解函数的概念。了解函数的基本性态。理解复合函数的概念、了解反函数概念。熟练掌握基本初等函数的性质及其图形。会建立简单实际问题中的函数关系式。 ㈡.本课的重点、难点 重点是复合函数的概念,难点是函数的基本性态。 ㈢.教学内容 引言──微积分的主要内容和思想方法 微积分是现代数学的第一个伟大成就,不仅对于数学本身的发展具有十分巨大的影响,而且作为强有力的工具,在几乎所有的科学(自然科学、社会科学和人文科学)领域里得到了广泛的应用。 微积分诞生于17世纪下半叶,但其思想的萌芽可追溯到2500多年关的古希腊人,我国古代也有一些精妙的思想和做法。在对由直线围成的图形面积计算的同时,人们一直试图计算由曲线围成的图形的面积,计算圆的周长、圆的面积等这样一些著名问题一直吸引着许许多多的智者。在两千多年不屈不挠的努力过程中,人们对许多具体问题建立了一些富有创见的解法。经过反复认识和不断积累,人类对运动、变化、弯曲、连续等客观世界模式终于有了比较清晰的认识。随着生产的发展和科学的进步,到17世纪时,求运动物体的速度和位移、求曲线的切线和曲线的长度、求由曲线所围的平面图形的面积和由曲面所围的空间立体的体积、求物体之间的引力等问题成为当时迫切需要解决的一些主要科学问题。伟大的物理学家Newton 和哲学家Leibniz 由于本身科学工作的需要(例如Newton 计算瞬时速度和万有引力,Leibniz 计算曲线的切线等),在前人思想方法和计算方法的基础上,分别独立地建立了用于解决一类广泛问题的普遍方法和计算法则──微积分,极大地影响了数学以及整个科学的发展。微积分的建立是人类头脑最伟大的创造之一。 现今,微积分已成为现代科学技术必备的一块“敲门砖”,是大学数学基础教育最基本的组成部分之一。微积分的学习,不应该仅仅局限于学会一些计算方法,其间的思想方法将更有益于我们去认识客观世界。 一.介绍函数、极限、连续在本课程的地位 集合与映射我们在中学已经学过,以后也不用,这里就不再介绍。 二.邻域 邻域是一个经常用到的概念。以点0x 为中心的任何开区间称为点0x 的邻域,记为)(0x U 。

高三数学 2010年高考数学试题汇编:第二章 函数 第一节 映射与函数

第二章 函数 一 映射与函数 【考点阐述】映射.函数 【考试要求】(1)了解映射的概念,理解函数的概念. 【考题分类】 (一)选择题(共6题) 1.(安徽卷理6文6)设0abc >,二次函数()2f x ax bx c =++的图象可能是 A 、 B 、 C 、 D 、 【答案】D 【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02b b a <- >,选项(D ) 符合 【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑.另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置 等. 2.(广东卷文2)函数,()lg(1)f x x =-的定义域是 A .(2,+∞) B .(1,+∞) C .[1,+∞) D .[2,+∞) 解:01>-x ,得1>x ,选B. 3.(湖北卷文3)已知函数3log ,0()2,0x x x f x x >?=?≤?,则1(())9f f = A.4 B. 1 4 C.-4 D-14 【答案】B

【解析】根据分段函数可得311()log 2 99f ==-,则 211(())(2)294f f f -=-== , 所以B 正确. 4.(湖北卷文5)函数 0.5log (43) y x = -的定义域为 A.( 3 4,1) B(3 4,∞) C (1,+∞) D. ( 3 4,1)∪(1,+∞) 【答案】A 5.(陕西卷理5)已知函数f(x)= 2 32,1,,1,x x x ax x +??=2 2 2,(,1)(2,)2,(1,2)x x x x x x ?++∈-∞-?+∞??--∈-?? =2217(),(,1)(2,)2419(),(1,2)24x x x x ? ++∈-∞-?+∞??? ?--∈-??,所以当(,1)(2,)x ∈-∞-?+∞时,()f x 的值 域为(2,)+∞;当(1,2)x ∈-时,()f x 的值域为9 [,0) 4-,故选D 。 【命题意图】本题考查分段函数值域的求法,考查分类讨论的数学思想。 (二)填空题(共2题)

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

3.映射函数的定义

映射函数的定义 1.设是集合A 到集合B 的映射,且集合B 中的每一个元素都有原象,若,则等于( ) A .{0} B .{2} C .{0,2} D .{-2,0} 2.下列各对应中,构成映射的是 ( ) 3.设集合A =B ={(,),}x y x R y R ∈∈,从A 到B 的映射在映射下,B 中的元素为(4,2)对应的A 中元素为 ( ) A .(4,2) B .(1,3) C . (3,1) D .(6,2) 4.设集合和集合都是自然数集合,映射,把集合中的元素映射到集合中的元素 ,则在映射下,象20的原象是( ) A.2 B.3 C.4 D.5 5.设A={|02x x ≤≤}, B={y | 0≤y ≤3 }, 下列各图中不能表示从集合A 到B 的映射是( ) A . B . C . D . :||f x x →{2,0,2}A =-A B ) ,(),(:y x y x y x f -+→

6.下列图像表示函数图像的是() y x y x y x y x A B C D 7.下列图像中,是函数图像的是() A. (1) (2) B.(2) (3) C.(2)(4) D.(1) (3) 8.下列各图像中,不可能 ...是函数 ()x f y=的图像的有几个() A.1个 B.2个 C.3个 D.4个 9.集合A 中含有2个元素,集合A到集合A可构成个不同的映射. 10.已知集合A={1,2,3,4},B={-1,-2},设映射f:A→B, 如果集合B中的元素都是A中元素在f下的象,那么这样的映射有 _________________________个. o x y ① o y x ② o y x ③ o y x ④ 试卷第2页,总2页

教案1 映射与函数 (教师用)

函数 知识网络 教案1:映射与函数 一、课前检测 1.设集合A =R ,集合B =正实数集,则从集合A 到集合B 的映射f 只可能是( ) A.:f x y x →= B. :f x y →= C. :3x f x y -→= D. ()2:log 1f x y x →=+ 解析:指数函数的定义域是R ,值域是(0,+∞),所以f 是x →y =3- x . 答案:C 2. 函数253)(2+-=x x x f ,]2,0[∈x 的值域是( ) A .]4,2[ B .),121[+∞- C .]2,121[- D .]4,12 1[-

答案:D 3. 设函数22,(1)()2,(12)(2)2 x x f x x x x x ??+≤-?=-<k 评析与简答:本例的选择,旨在使同学们理解映射与函数的关系,即如果A 、B 是非空数集, A 到B 的映射即是A 到B 的函数,这样,我们就可以从二次函数2 ()22f x x x =-+有最小值1的角度,得到集

第一节 映射与函数

第一节 映射与函数 一、选择题 1. 在R 上,下列函数为有界函数的是 ( ) A . e x ; B . 1 + sin x ; C . ln x ; D . tan x . 2. 设f (x )的定义域是[0, 4], 则f (x 2)的定义域是 ( ) A . [0, 16]; B . [0, 2]; C . [-2, 2] ; D . [-16, 16]. 3. 下列函数中为奇函数的是 ( ) A . y = cos 3x ; B . y = x 2 + sin x ; C . y = ln(x 2 + x 4); D . y =11+-x x e e . 4. 设f (x + 2) = x 2 - 2x + 3, 则f [f (2)] = ( ) A . 3; B . 0; C . 1; D . 2. 二、填空题 1. 设f (x ) =x x -1, g (x ) = 1-x , 则f (g(x )) = . 2. 函数y = 2 ln -x x 的定义域是 . 3. 设y = f (x )在区间[0,1]上有定义,则)4 1 ()41(-++x f x f 的定义域是 . 4. y =的反函数是x x 3 23+ . 三、解答题 1. 求函数y =x -1+ arcos 2 1 +x 的定义域. 2. 设???≤<-≤=,21,2, 1,)(2x x x x x f 求f (x - 1). 3. 设?(x )、f (x )、g (x )是单调增加函数, 证明: 若?(x ) < f (x ) < g (x ), 则?(?(x )) < f ( f (x )) < g (g (x )).

函数概念的产生及其历史演变

《函数》整体学习指导 函数的概念和基本性质(单调性、奇偶性) 解读:该部分学习意在通过对函数基本概念的理解(函数的概 念)、巩固(分段函数)和加深(映射的概念)(教材中先函数后映 射遵循概念发展的历史过程);基本性质的学习(为什要只重点研 究函数的这几个性质?水浒传里有108将,但是只对武松、鲁智深、 林冲等十几个人着力刻画,这是文学家的方法,也是数学家的方法。函数(Function)本部分学习的目的是通过学习形成函数研究的一般方法和套路。 基本初等函数(指数、对数、幂函数) 解读:该部分学习是在形成函数研究的一般方法之后对方法的 有力尝试,在尝试中不断加深对函数研究一般方法的认识和理解。 数学内部发展(函数的零点、二分法求方程近似解) (数学发展的两条主线都涉及了) 社会现实需要(解决社会与生活中的实际问题) 第一节:函数概念的起源及其历史演变 我们要参观的景点:(The scenery we’ll visit) 1. 函数的概念是什么?(What?) 2. 为什么要建立函数的概念?(Why ?) 3. 函数的概念是如何建立的?函数概念的建立经历了怎样的历史演变过程?(How?) 景点一:函数的概念是什么?函数的概念是如何建立的?

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。 案例1:圆的面积S与圆半径r的关系; 案例2:锐角α与锐角β互余,α与β的关系; 案例3:气体的质量一定时,它的体积V与它的密度ρ之间的关系; 【思考1】上述的每一个问题在变化过程中,谁是常量,谁是变量?都涉及几个变量?【思考2】两个变量之间的关系是通过什么来刻画的? 【思考3】综合思考1和思考2的解答,总结上述例子变量间关系的共同特点?【早期函数概念】 十七世纪伽俐略在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关 系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念。 1718年约翰·贝努利对函数概念进行了明确定义:由任一变量和常数的任一形式所构 成的量(是历史上第一个正式发表的明确的函数定义),贝努利把变量x和常量按任何方 式构成的量叫“x的函数”。 欧拉在《无穷分析引论》(1748)中给出的函数定义是:“一个变量的函数是由该变量和一些数或常量以任何方式组成的解析式。” 【总结】十七和十八世纪的数学家对函数问题的认识上有着共同的思考:函数就是解析式

高等数学(同济大学版) 课程讲解 1.1映射与函数

课时授课计划 课次序号:01 一、课题:§1.1 映射与函数 二、课型:新授课 三、目的要求:1.了解集合与映射的有关概念; 2.理解函数的概念,了解函数的四种特性; 3.理解复合函数的概念,了解反函数的概念; 4.熟悉基本初等函数的性质及其图形; 5.会建立简单实际问题的函数关系式. 四、教学重点:函数的概念,函数的各种性态. 教学难点:反函数、复合函数、分段函数的理解. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–1 3(1),6(4)(7),9(1) 八、授课记录: 九、授课效果分析:

第一章函数与极限 第一节映射与函数 高等数学研究的主要对象是函数. 为了准确而深刻地理解函数概念,集合与映射的知识是不可缺少的. 本节将简要复习回顾集合、映射的一些基本概念,在此基础上重点介绍函数概念与相关知识. 一、集合 1. 集合的概念 集合是数学中的一个最基本的概念.一般地,我们将具有某种确定性质的事物的全体叫做一个集合,简称集.组成集合的事物称为该集合的元素.例如,某大学一年级学生的全体组成一个集合,其中的每一个学生为该集合的一个元素;自然数的全体组成自然数集合,每个自然数是它的元素,等等. 通常我们用大写的英文字母A,B,C,…表示集合;用小写的英文字母a,b,c,…表示集合的元素.若a是集合A的元素,则称a属于A,记作a∈A;否则称a不属于A,记作 a?A(或a∈A). 含有有限个元素的集合称为有限集;不含任何元素的集合称为空集,用?表示;不是有限集也不是空集的集合称为无限集.例如,某大学一年级学生的全体组成的集合是有限集; 全体实数组成的集合是无限集;方程2x+1=0的实根组成的集合是空集. 集合的表示方法:一种是列举法,即将集合的元素一一列举出来,写在一个花括号内.例如,所有正整数组成的集合可以表示为N={1,2,…,n,…}.另一种表示方法是指明集合元素所具有的性质,即将具有性质p(x)的元素x所组成的集合A记作 A ={x|x具有性质p(x)}. 例如,正整数集N也可表示成N={n|n =1,2,3,…}; 又如A={(x,y)|2x+2y=1,x,y为实数}表示xOy平面单位圆周上点的集合. 2. 集合的运算 设A,B是两个集合,若A的每个元素都是B的元素,则称A是B的子集,记作A?B (或B?A);若A?B,且有元素a∈b,但a?A,则说A是B的真子集,记作A?B.对任何集A,规定??A.若A ?B,且B?A,则称集A与B相等,记作A=B.由属于A或属于B的所有元素组成的集称为A与B的并集,记作A∪B,即 A∪B={x|x∈A或x∈B}. 由同时属于A与B的元素组成的集称为A与B的交集,记作A∩B,即 A∩B={x|x∈A且x∈B}. 由属于A但不属于B的元素组成的集称为A与B的差集,记作A\B,即 A\B={x|x∈A但x?B}. 如图1-1所示阴影部分.

18.2多元函数的基本概念教案

18. 2多元函数的基本概念 一、. 多元函数概念 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h . 这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 RT P V =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定. 例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2 121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定. 定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为 z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D ) 其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量. 上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ). 值域: f (D )={z | z =f (x , y ), (x , y )∈D }. 函数的其它符号: z =z (x , y ), z =g (x , y )等. 类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数. 一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为 u =f (x 1, x 2, ? ? ? , x n ), (x 1, x 2, ? ? ? , x n )∈D , 或简记为 u =f (x ), x =(x 1, x 2, ? ? ? , x n )∈D , 也可记为 u =f (P ), P (x 1, x 2, ? ? ? , x n )∈D . 关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而

函数与映射的概念主要知识梳理

函数与映射的概念知识梳理第 1 页 共 1 页 函数与映射的概念主要知识梳理 ●函数的基本概念: 1、函数的定义:设B A ,是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个函数。 ①关键词:非空的数集、任意性、唯一性 ②作用:判断一个对应是否是函数 2、函数的三要素: 定义域A 、值域(?B)、对应法则f (定义域和对应法则最为关键) 作用:判断两函数是否是同一函数的依据(只要判断定义域和对应法则是否相同即可) ●函数的表示方法: 解析式法,列表法,图像法 ●分段函数与复合函数 分段函数:? ??∈∈=)()()()()(21D x x h D x x g x f ,复合函数:))((x g f y = ●映射的概念 1、定义:设设B A ,是非空集合,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x , 在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个映射。 ①关键词:非空集合、任意性、唯一性 ②作用:判断一个对应是否是映射 2、映射的三要素: 原象集A 、象集(?B)、对应法则f 作用:判断两映射是否是同一映射的依据(只要判断原象集和对应法则是否相同即可) 3、函数是特殊的映射; ●反函数 1、概念; 设函数()y f x =的定义域为A ,值域为C ,由()y f x =求出()x y ?=.如果对于C 中 每个y 值,在A 中都有唯一的值和它对应,那么()x y ?=为以y 为自变量的函数,叫做()y f x =的反函数,记作1()y f x -=,(x C ∈) 2、存在反函数的条件:函数()y f x =在定义域内单调(一 一映射) 3、求反函数的一般步骤: (1)求原函数的值域; (2)反解,由()y f x =解出)(y x ?=; (3)写出反函数的解析式1()y f x -=(互换,x y ),并注明反函数的定义域(即原函数的值域). 4、互为反函数的两个函数具有如下性质: (1)反函数的定义域、值域上分别是原函数的值域、定义域; (2)互为反函数的两个函数在各自的定义域内具有相同的单调性;它们的图象关于x y = 对称; (3)?=b a f )(a b f =-)(1 ●常见的思想方法 1、主要思想: ①数形结合:-------树形图 ②分类讨论:①按象的个数分类;②按原象个数分类; ③按对应关系(一对一、多对一,不能一对多)分类. 2、易错易混点 ①映射B A f →:与函数的定义).(x f y =-----A 中元素的任意性和B 中元素的唯一性? ②一个映射与某一对应的值. ③定义域与原象集以及与集合A 的关系. 值域与象集以及集合B 的关系. 3、主要题型: ①判断映射与函数; ②知原象、象、对应法则三者中的任意二个求余下一个; ③求映射与函数的个数.(注意分类讨论、注意和排列组合知识的综合应用)

相关文档
相关文档 最新文档