文档库 最新最全的文档下载
当前位置:文档库 › 霍尔风扇驱动电路JM319产品手册

霍尔风扇驱动电路JM319产品手册

霍尔风扇驱动电路JM319产品手册
霍尔风扇驱动电路JM319产品手册

霍尔电流传感器的电路设计

一种霍尔电流传感器的电路设计 设计了一种零磁通型霍尔电流传感器,可广泛应用于交流变频驱动、焊接电源、开关电源、不间断电源等领域。该零磁通型霍尔电流传感器通过砷化镓霍尔元件检测由通电电流产生的磁场,继而有效地检测被测电流。 由于霍尔元件产生的霍尔电势很微弱,而且还存在较大的失调电压,因此对霍尔电压的放大和对不等位电势的补偿是该设计的两个主要需要解决的问题,而且霍尔元件中载流子浓度等随温度变化而变化,因此还需用温度补偿电路对其温度补偿。 1 系统设计框架 系统分为4个部分:1)霍尔元件的供电电路,由电压基准(电流基准)芯片为霍尔片提供工作电流; 2)霍尔元件及磁芯,将感应片感应的磁场(该磁场由通电电流产生)转化为霍尔电压;3)放大电路,将微弱的霍尔电压进行放大;4)反馈部分,利用了磁平衡原理:一次侧电流所产生的磁场,通过二次线圈电流进行补偿,使磁芯始终处于零磁通工作状态。其系统总流程图如图1所示。 2 系统硬件电路设计 系统由±5 V的稳压源供电。用一片电压基准芯片REF3012为砷化镓系列的霍尔元件HW300B提供基准电压。HW300B是一款可采用电压模式供电和电流模式供电的霍尔元件,HW300B放在开有气隙的集磁环的气隙里,并用胶水加以固定(霍尔元件和集磁环相对位置如果发生变化,会影响产生的霍尔电势的大小)。霍尔元件的输出接至仪器放大器AD620,作为放大器的差模出入端和共模输入端。放大器的增益可通过调节1、8引脚之间的10 kΩ的电位器改变。放大器的输出接反馈线圈,该反馈线圈绕在集磁环上,其绕线方向能使通过它的电流产生的磁场与集磁环收集到的磁场方向相反。反馈线圈末端放1个75 kΩ的精阻接地,可以通过测量精阻两端的电压,计算反馈线圈中的电流,进而推算穿过集磁环中心的被测电流的大小。其具体电路图如图2所示。 2.1 REF3012 以SOT23-3封装的REF3012是一个高精度、低功耗、低电压差电压参考系列芯片。REF3012小尺寸和低功耗(最大50μA)非常适用于便携式和电池供电。它不需要负载电容,但对任何容性负载很稳定。因磁敏型霍尔元件很容易受温度的影响,可以采用恒流源供电以减小其温度系数。在该系统设计中,REF3012的输入引脚1接+5 V电源,并接10μF的旁路电容至地,该旁路电容对电源进行滤波,提高电源稳定性。而其输出引脚2接到HW300B的引脚1,并且也接1O μF的旁路电容至地,GND(地)引脚3接地。由于系统设计要求REF3012为HW300B提供2.5 V的基准电压,根据REF3012的数据资料可知,当输入电压为5 V 时,输出电压为2.5 V,所以REF3012引脚1接+5 V电压。 2.2 霍尔元件 本设计采用砷化镓系列的HW300B型霍尔元件,输出霍尔电压范围122~204mV,输入、输出阻抗为240~550 Ω,补偿电压为-7~7 mV,温度系数为-1.8%/℃。其输入可采用电压模式供电,也可采用电流模式供电。这里采用电压模式供电,即就是HW300B的引脚1、3为控制输入端,而引脚2、4为霍尔电压输出端。 霍尔元件是将磁场转换为电信号的线性磁敏元件,霍尔输出电压 式中,S为乘积灵敏度,mV/(mT·mA);Ic为工作电流,mA;B为磁感应强度,mT。 本设计中,将霍尔元件放进开有气隙的集磁环的气隙里,并将霍尔元件和集磁环固定,这样可以感应出更大、更稳定的霍尔电势。式(1)中,当S与Ic一定,则Vh与B有直接线性关系。通电导体周围必然产生磁场,根据安培定律,电流与磁场的关系式∮BdI=μ0I0得:

霍尔电流传感器的应用场合

霍尔电流传感器的应用场合 1、继电保护与测量:在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用:在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用:在逆变器中,用霍尔电流传感器可进行接地故障检测、直接侧和交流侧的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用:在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用霍尔电流传感器1发出信号并进行反馈,以控制晶闸管的触发角,霍尔电流传感器2发出的信号控制逆变器,霍尔电流传感器3控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用:在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制:电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用:用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理:霍尔电流传感器,可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发现过载,便及时使受控的线路断开,保证用电设备的安全。用这种装置,也可进行负载分配及电网的遥控、遥测和巡检等。

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

霍尔传感器、磁性传感器原理图PCB图及例程

霍尔传感器使用说明书 简要说明: 一、长尺寸:32mm X宽11mm X高20mm 二、主要芯片:LM393、3144霍尔传感器 三、工作电压:直流5伏 四、特点: 1、具有信号输出指示。 2、单路信号输出。 3、输出有效信号为低电平。 4、灵敏度可调(精调)。 5、有磁场切割就有信号输出

6、电路板输出开关量!(可直接接单片机) 7、可用于电机测速/位置检测等场合 适用场合:单片机学习、电子竞赛、产品开发、毕业设计。。。 【图片展示】

【与单片机连接测试程序】

/******************************************************************** 汇诚科技 实现功能:此版配套测试程序 使用芯片:AT89S52 晶振:11.0592MHZ 波特率:9600 编译环境:Keil 作者:zhangxinchun 淘宝店:汇诚科技 【声明】此程序仅用于学习与参考,引用请注明版权和作者信息! *********************************************************************/ /******************************************************************** 说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平 *********************************************************************/ #include //库文件 #define uchar unsigned char//宏定义无符号字符型 #define uint unsigned int //宏定义无符号整型 /******************************************************************** I/O定义 *********************************************************************/ sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端 sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/******************************************************************** 延时函数 *********************************************************************/ void delay()//延时程序 { uchar m,n,s; for(m=20;m>0;m--) for(n=20;n>0;n--) for(s=248;s>0;s--); } /******************************************************************** 主函数 *********************************************************************/ void main() { while(1) //无限循环 { LED=1; //熄灭P1.0口灯 if(DOUT==0)//当浓度高于设定值时,执行条件函数 { delay();//延时抗干扰

单相半波整流电路的设计

单相半波整流电路的设计 摘要 本文主要进行了单相半波整流电路的设计。单相半波整流电流电路的特点是简单,但输出脉动大,变压器二次电流中含有直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心面积,增大了设备的容量。实际上很少应用此种电路。分析该电路的主要目的在于利用其简单易学的特点,建立起整流电路的基本概念。晶闸管不同于整流二极管,它的导通是可控的。可控整流电路的作用就是把交流电变换为电压值可以调节的直流电。在充分理解单相半波整流电路工作原理的基础上,本文设计出了单相半波整流电路带电阻负载、电感负载、阻感负载时的电路原理图,并对其中的相关参数进行了计算,仿真波形对比发现结果正确。 关键词:晶闸管,整流,触发

目录 摘要 .................................................................... 1课题背景............................................... 错误!未指定书签。 1.1选题背景 (1) 1.2参数选择 (1) 2单相半波整流电路的设计................................. 错误!未指定书签。 2.1单相半波整流电路(电阻负载) ..................... 错误!未指定书签。 2.1.1工作原理和电路特点(电阻负载).............. 错误!未指定书签。 2.1.2电路原理图(电阻负载)...................... 错误!未指定书签。 2.1.3参数计算(电阻负载)........................ 错误!未指定书签。 2.1.4仿真波形(电阻负载)........................ 错误!未指定书签。 2.1.5结论(电阻负载)............................ 错误!未指定书签。 2.2单相半波整流电路(电感负载) ..................... 错误!未指定书签。 2.2.1工作原理(电感负载)........................ 错误!未指定书签。 2.2.3仿真波形(电感负载)........................ 错误!未指定书签。 2.3单相半波整流电路(阻感负载) ..................... 错误!未指定书签。 2.3.1工作原理(阻感负载)........................ 错误!未指定书签。 2.3.2电路原理图(阻感负载)...................... 错误!未指定书签。 2.3.3参数计算(阻感负载)........................ 错误!未指定书签。 2.3.4仿真波形(阻感负载)........................ 错误!未指定书签。致谢 .................................................... 错误!未指定书签。参考文献 ................................................ 错误!未指定书签。

霍尔传感器的测速电路设计

4.2.2霍尔传感器的测速电路设计 首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。 其次设计一个单片机小系统,利用单片机的定时器和中断系统对脉冲信号进行测量或计数。 再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。要求霍尔传感器转速为0~5000r/min。 霍尔测速模块论证与选择 采用霍尔传感器;选型号为CHV-25P/10的霍尔传感器,其额定电压为10v,输出信号5v/25mA,电源为12~15v。体积大,价格一般为40~120元之间不等。性价比较高 计数器模块论证与选择 采用片内的计数器。其优点在于降低单片机系统的成本。每到一个脉冲将会产生一个T1的计数,在T0产生的100ms中断完成后,T1的中断溢出次数就是所需要计的脉冲数。特点在于:使用了内部的T1作为外部脉冲的计数器,并且,为了避免计数器的溢出,将T1的初值设为0。 显示模块论证与选择 采用LCD液晶显示器作为显示模块核心。LCD显示器工作原理简单,编程方便,节能环保。 报警模块论证与选择 采用蜂鸣器与发光二极管作为声光报警主要器件。该方案不论在硬件和焊接方面还是在编写软件方面都简单方便,而且成本低廉。 电源模块论证与选择 采用交流220V/50Hz电源转换为直流5V电源作为电源模块。 该方案实施简单,电路搭建方便,可作为单片机开发常备电源使用。 单片机模块论证与选择 选用P89C51的单片机速度极快、功耗低、体积小、资源丰富,有各种不同的规格,最快的达100MPS ,引脚还可编程确定功能 选用51系列的单片机,是因为51的架构十分典型。而且: 1.价格便宜; 2.开发手段便宜; 3.自己动手焊接相对容易。 转速测量方案论证

单相全波整流电路的设计电力电子

单相全波整流电路的设计 摘要 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景。 电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。 关键词:电力电子,整流电路

目录 1设计任务 (4) 1.1设计目的 (4) 1.2设计内容 (4) 1.3 设计要求 (4) 2 设计内容 (5) 2.1 基本原理介绍 (5) 2.2电路设计的经济性论证 (6) 2.3主电路设计 (6) 2.3.1 触发电路 (6) 2.3.2 形成与脉冲放大环节 (8) 2.3.2 锯齿波形成与脉冲移相环节 (8) 2.3.3驱动电路 (9) 2.3.4保护电路 (9) 3参数设定 (12) 3.1180°调压 (12) 3.2 移相调压 (14) 4 参数计算 .............................................. 错误!未定义书签。 4.1 计算公式 (16) 4.2 参数选择: (16) 4.3计算:T=1/f=1/50=0.02s (17) 5仿真 (18) 5.1触发角为30度 (18) 5.2触发角为90度 (19) 5.3触发角为120度 (20) 6波形分析 (21) 心得体会 (22) 参考文献 (23)

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

单相全波整流电路的设计(1)

《电力电子技术》课程设计之 单相全波整流电路的设计 姓名 学号 年级 专业 系(院) 指导教师 2012/8/21

目录 第一章设计任务书 1.1 设计目的 (2) 1.2 设计要求 (2) 1.3 设计内容 (2) 1.4设计题目 (2) 第二章设计内容 2.1 方案的论证与选择 (3) 2.1.1主电路的方案论证 (3) 2.2 主电路的设计 (5) 2.2.1 带阻感负载的单相桥式全控整流电路 (5) 2.2.2 原理图分析 (6) 2.3 电路方案说明 (7) 第三章触发电路 3.1 同步触发电路 (7) 3. 2 晶闸管的触发条件 (7) 3.3 晶闸管的分类 (13) 3.4 同步环节 (13) 3.5 脉冲形成环节 (14) 3.6双窄脉冲形成环节 (14) 3.7 同步变压器 (15) 第四章保护电路的设计 4.1 过电流保护 (16) 4.2 过电压保护 (17) 第五章元器件的选用 (20) 第六章参数的计算 (26) 第七章心得体会 (27)

第八章参考文献 (28) 第一章设计任务书 1.1 设计目的: 《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理; 2:重点理解移相电路的功能、结构、工作原理; 3:理解同步变压器的功能。 1.2 设计要求: 1:根据课题正确选择电路形式; 2:绘制完整电气原理图(包括主要电气控制部分); 3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值; 4:编制使用说明书,介绍适用范围和使用注意事项; 说明:负载形式及参数可自行选择 1.3设计内容: 单相全波整流电路的设计。 1:主电路方案论证 2:电路方框图 3:整流电路方框图 4:电路方案说明 单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。 单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。 单相桥式全控桥整流电路与半波整流电路相比较: (1)a的移相范围相等,均为0~180。 (2)输出电压平均值Ud是半波整流电路的2倍。 (3)相同的负载功率下,流过晶闸管的平均电流减小一半。 (4)功率因数提高了1.414倍。

霍尔位置传感器原理和应用

霍尔位置传感器原理和应用 一.霍尔位置传感器的特点: 霍尔位置传感器是一种检测物体位置的磁场传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔位置传感器以霍尔效应原理为其工作基础。 霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采取了各种补偿和保护措施的霍尔位置传感器的工作温度范围可达到-55℃~150℃。 按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。前者输出模拟量,后者输出数字量。 霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。 二.霍尔位置传感器的原理: 2.1霍尔效应和霍尔元件

在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。 2.2 霍尔集成电路 霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。

单相半波整流电路教案 - 1

单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、 教学重点和难点 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 (一):师生互动环节(教师展示手机充电器对锂电池充电过程) 师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答) 师:是的。充电器直接引入的是市电220V,50H Z的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答) 换成脉动的低压直流电能--------单相半波整流电路(板书) (一):单相半波整流电路的结构与工作原理(板书)(约43分钟) 教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力) 1:电路结构组成(板书) 2:工作原理(板书) 教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。 教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。 (请学生回答) ②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析

霍尔传感器测量电路

霍尔传感器测量电路 咨尔元件的基本电路如图1所示。控制电流颠电源f供给,RE,为调节电阻, 调节控制电流的大小。程尔输出端接负载RF,RR可以是一般电阻,也可以是放大器 的 输入电阻或指示器内阻。在磁场与控制电流的作用下,负裁上就有电压输出。在实际 使用时,J或B或两者同时作为信号输入,而输出信号则正比于J或B或两者的乘积。 内于建立霍尔效应所需的时间很短(10 很高(几千兆赫>。 =、温度误差及其补偿 因此,拧制电流为交流时 (一)温度误差 档尔死件测量的关镀是霍尔效府,而霍尔元件是内半导体制成的,固半导体对温度 很敏 感,霍尔元件的载流于迁移率、屯阻率和霍尔系数都陨温度而变化,因而使霍尔元件 的特性参 数(如霍尔电势和输入、输出电阻等)成为温度的函数,导致霍尔传感器产生温度误差。 [二)温度误差的补偿 为了减小霍尔元件的温度误差,需要对基本测量电路进行温度补偿的改进,可以来 用的补 偿方法柯许多种,常用的合以下方艾博希电子法:采用恒流源提供控制电流,选择合 理的负载电阻进行补

偿,利用霍尔元件回路的串联或并联电阻进行补偿,也可以在输入凹路或输出回路中加入热敏 电阻进行温度误差的补偿。 采用温度补偿元件是一种最常见的补偿方法。图2所示为采用热敏电阻进行补偿 的几种补偿方法。图2(n)所示为输入回路补偿电路,锑化钥元件的霍d;输出随温度 升高 而减小的出素,被控制屯流的增加(热敏电阻的阻位随温度升高旧减小)所补偿。图2(b) 所示为输出回路补偿电路成载上得到的霍尔电势随温度J1高而减小的因素,被热敏电阻阻佰 减小所补偿。图2(c)所示为用正温度系数的热敏电阻进行补偿的电路。 在使用时,温度补偿元件最好和霍尔元件封在一起或靠证,使它们温度变化一致。 随着微电子技术的发展,日前霍尔元件多已集成化。集成霍尔九件有许多优点 小、灵敏度高、输出幅度大、NXP代理商温漂小且对电流稳定性要求低等。 集成霍尔元件可分为线性型和开关则两大类。前者是将霍尔冗件和恒流源、线性放大器 等做公‘个芯片卜,输出电压较高,使用非常方便,日前已得到广泛的应蝴,较典型的线性霍尔 元件有UGN35N等。八关型是将霍尔元件、稳压电路、放大器、施密特触发器、(xj门等电路 做在同一个心片上。当外加磁场强度超过规定的工作点时,()川1由高电阻状态变为 导通状

单相半波可控整流电路实验报告

实验一、单相半波可控整流电路实验 王季诚(20101496) 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。 (3)了解续流二极管的作用。 二、实验所需挂件及附件

5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。

图3-6单相半波可控整流电路 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 (2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波

霍尔传感器工作原理及其应用

霍尔传感器工作原理及其应用 | [<<][>>]一、霍尔齿轮传感器 差动霍尔电路制成的霍尔齿轮传感器,如图1所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图2所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。

图1霍尔速度传感器的内部结构 1.车轮速度传感器 2.压力调节器 3.电子控制器 图2 ABS气制动系统的工作原理示意图 二、旋转传感器 按图3所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。

单相半波整流电路教案

实验一、单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路等打下良好的基础;同时也就是教材前面半导体二极管知识的一个重要应用,所以本节内容在顺序安排上起到了承上启下的作用。本节主要介绍了单相半波整流电路的结构、工作原理以及负载电压与电流,在讲授时教师应吃透教材,深入浅出,利用实验现象直观地帮助学生掌握本节知识,并设计问题给学生以启迪。 学生分析 电子电路理论普遍具有抽象性,而我们中职类学生基础较薄弱,所以中技生在学习基础理论的过程就较吃力,针对这一特点,本人直接通过实验的方法,利用直观现象来激发学生的学习兴趣,集中学生的听课注意力。在讲授本节内容时,本人在课堂上亲自演示用示波器测量单相半波整流电路的输入输出波形,学生可直观波形,对比波形来理解整流的作用与目的。另外结合整流电路应用于日常生活的电器(例如手机、MP3的充电器)来激发学生的学习整流电路的兴趣;在讲授整流原理时进行讲练结合,用任务驱动法来展开教学。整个教学过程中应充分利用教师的示范及学生亲自动手分析等,使学生逐步掌握分析电路的技能.要注意教给学生分析电路的方法,提高演示实验的可见度。在演示实验时最好边讲解,边操作.教师的演示将对学生起示范作用,因此要注意操作的规范性。 教学目标与价值观 情感目标:利用实物展示、演示实验现象来引导学生理解整流的概念与作用,激发学生的兴趣,促进教学的配合。 能力目标:帮助学生掌握单相半波整流电路的结构、工作原理及负载电压与电流的计算。 价值观:培养学生分析与检修整流电路故障的能力。 教学重点与难点 单相半波整流电路的工作原理分析,输出电压极性与波形分析及负载直流电压电流的计算。 课前教具准备 1N4007小功率整流二极管一只、手机充电器及其配套锂电池、示波器与事先制作好的单相半波整流电路。 教学方法 实物展示法、实验演示法、讲练结合法、启发诱导法 教学活动 一、复习提问(约3分钟) (1):教师拿出一个1N4007的小功率整流二极管复习半导体二极管的结构与符号。 (2):提问二极管的单向导电性并请同学们画出二极管的正、反向偏置电压的电路图。

霍尔传感器和霍尔知识介绍,霍尔原理的应用

霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。 一、霍尔效应霍尔元件霍尔传感器 (一)霍尔效应 如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。 上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 (二)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (三)霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。

霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。 二、霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。 (一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。 (二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。 三、霍尔传感器的特性 (一)线性型霍尔传感器的特性 输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。 (二)开关型霍尔传感器的特性 如图4所示,其中B OP为工作点“开”的磁感应强度,B RP为释放点“关”的磁感应强度。

相关文档
相关文档 最新文档