文档库 最新最全的文档下载
当前位置:文档库 › 定积分的几何应用例题与习题(学生用)电子教案

定积分的几何应用例题与习题(学生用)电子教案

定积分的几何应用例题与习题(学生用)电子教案
定积分的几何应用例题与习题(学生用)电子教案

定积分的几何应用例题与习题

11cos ,(0),2

4

L π

π

ρθθθΓ=+≤≤

=

Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的

直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1

(1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的

面积为并且试确定的值,使达到最小,并求出最小值;

()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。

{}0

3(,)01,01:(0)

(),()(0)

x

xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求

4

、0)x y e

x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V

3

3

2cos (0,)42sin 11)5x a t

a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=(

6.0,(0)02

(),()()

()()(1)(2)lim

()

()()()

2,lim 1

()

()x x

t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯

形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333

(sin )(1cos )3,

(2)5,

(3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222

222

23

A x y x y x A x V ππ+≤≥==

-8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

''2''''9.(),()()(),()(),(0)0,()0.

()

(1)();(2)()()()0,(0)12

(1) ()1.

1

(2) 0()0,0()0,x f x g x f x g x g x f x f g x f x F x y F x y F x g x x x b b y F x e x F x x F x ===≠=====>==-+><<>设函数可微,且求:作出函数曲线的图形;(3)计算由曲线及直线

和围成的面积.

当时,曲线上凸;当时,曲线下20012

(1())2ln 2ln(21).

1

b b x y S F x dx dx b b e =±=-==+-++??凹,所以(0,0)为拐点,且为其水平渐近线.

(3)

0000220)ln (,)1(,)231

11

1,,1)(2)(3)62

2

x x y a y x y a x y x x x V a e S e V e

π

=>==

=-

=

10.已知曲线与曲线处有公共切线,求

()常数及切点;

()两曲线与轴围成的平面图形的面积;

()两曲线与轴围成的平面图形绕轴旋转一周所得旋转体的体积()切点(

2

2

2

2

11.(1)(0)(01),2lim ?221

,

lim 2

(1)

x x x

x x x y e

x x x x xe e x e ξθθθθθ+

+

→→=>=<<=-+=

=-对于指数曲线试在原点与之间找一点使这点左右两边有阴影部分的面积相等,并写出的表达式。()求

2(0,0)010,104

9

?

5

,2,0

3y ax bx c x y x y x a b c a b c =++≤≤≥===-==12、抛物线通过点,且当时,它和直线及所围的

图形的面积是,问这个图形绕轴旋转而成的旋转体的体积为最小值时,,与的

值应为多少(1,0)6

P y x x V π

==

13、过点作抛物线轴围成一平面图形(如图),求此图形绕轴旋转所成旋转体的体积。

22214.(0,0)14,1875

y ax a x y x A o A y ax a x a V =>≥=-===

最大设曲线与交于点,过坐标原点和点的直线与曲线围成一平面图形,问为何值时,该图形绕轴旋转一周所得的旋转体体积最大?最大体积是多少?

15、设曲线方程为)0(≥=-x e y x

(1)把曲线x

e

y -=,x 轴,y 轴和直线)0(>=ξξx 所围成平面图形绕x 轴旋转一周,

得一旋转体,求此旋转体体积)(ξV ;并求满足)(lim 21

)(ξξV a V +∞

→=

的a ; (2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求

出该面积.

(1)1

ln 2.2

a =

(2)(1,1

-e ),最大面积 11

2222

1--=?=

e e S . min ln 1,322ln 23ln3)

y x x x ====+-16.求由曲线直线及曲线上方任一直线围成面积的最小值(A

3152726432;;47x y x y x S V πΓ=Γ≥?

?=+==????

17.过点(,)作曲线:的切线L,(1)求L 的方程;

(2)求与L 所围平面图形D 的面积;

(3)求图形D 的x 0的部分绕x 轴旋转一周所得立体的体积。

22222223x y x y x x V ππ+≤≥=??=-????

18.求由与所围区域绕旋转一周所得旋转体的体积。

2

sin 0)2()sin 2y x x x x x xdx π

πππππ=≤≤=-=?19.求由曲线(和轴所围成的平面图形绕直线旋转所生成的旋转体的体积。解:V=

21

20.,,(0),2

1

106b a a b x dx a b y x ax y bx S =≤≤=+=?=-= ??

?最大最小已知满足求曲线与直线所围区域的面积的

最大值与最小值

(此题用多元函数条件极值做,S (,)))

定积分在几何学上的应用(比赛课教案)

教学题目: 选修2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体,PPT课件 教学方法: 引导法,探究法,启示法 教学过程

积分?b a f (x )dx 在几何上表示 x =a 、x =b 与x 轴所围成的曲边梯形 的面积。 当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a

定积分的几何应用例题与习题.doc

定积分的几何应用例题与习题 、曲线 的极坐标方程 1 cos ,(0 ), 求该曲线在 所对应的点处的切线 的 1 4 L 2 直角坐标方程,并求曲线 、切线 L 与x 轴所围图形的面积。 2、设直线 y ax 与抛物线 y x 2 所围成的面积为 S 1,它们与直线 x 1所围成的 面积为 S 2 ,并且 a 1 (1)试确定 a 的值,使 S 1 S 2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积。 、设 平面上有正方形 D ( x, y) 0 x 1,0 y 1 及直线 L : x y t (t 0) 3 xoy x 若 S(t)表示正方形 D 位于直线 l 左下部分的面积 ,试求 S(t )dt (x 0) 4、 求由曲线 x sin ( 0) 与 轴所围图形绕 轴旋转所得旋转体的体积 y e x x x x V x 5、求由曲线 x a cos 3 t 与直线 y=x 及 y 轴所围成的图形 y asin 3 t ( a 0, 4 t 2 ) 绕 x 轴旋转所得立体的全表面积。 ( S=( 11 2 ) a 2 ) 5 40 6. 曲线 y e x e x 与直线 x 0, x t(t 0)及 y 0围成一曲边梯形,该曲边梯 2 形绕 x 轴旋转一周得一旋转体,其体积为 V (t), 侧面积为 S(t),在 x t 处的底面积为 F (t ) 求 S(t) 的值; 计算极限 S(t ) (1) (2) lim V (t) t F (t ) S(t ) 2, lim S(t ) 1 V (t ) F (t) t 7、求由摆线 x= a(t sin t) ,y= 的一拱 (0 t 2 ) 与横轴所围成的平面图形的面积, a(1 cost) 及该平面图形分别绕 x 轴、 y 轴旋转而成的旋转体的体积。 (1)A 3 a 2 , (2)V x 5 2 a 3 , (3)V y 6 3 a 3 8、设平面图形 由 x 2 y 2 2 x 及 y 所确定,求图形 绕直线 x 2 旋转一周所得 A x A 旋转体的体积。 2 V 2 2 3

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

定积分典型例题11254

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

定积分典型例题

定积分典型例题 例 1 求 Iim J 2(^n τ +Q2n 2 +H ∣ +V ∏3). n _.: ∏ 分析将这类问题转化为定积分主要是确定被积函数和积分上下限?若对题目中被积函数难以想到, 可采取如下方法:先对区间[O, 1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 1 III 1 解 将区间[0, 1] n 等分,则每个小区间长为.汉=丄,然后把—=丄1的一个因子-乘入和式中 n n n n n 各项?于是将所求极限转化为求定积分?即 n i ?^贰+痢+山+疔)=曲(£ +£ +川+晋)=MdX=扌? 例 2 £ J 2x 一 X d X __________ . 解法1由定积分的几何意义知, °?2x -χ2dx 等于上半圆周(x_1) y =1 (y_0) 与X 轴所围成的图形的面积?故 2? 2^x 2dx = _ ? ■° 2 解法2本题也可直接用换元法求解?令 x_1 = sint (—巴

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

定积分在几何学上的应用(比赛课教案).doc

定积分在几何学上的应用 ( 比赛课教案 )

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微 积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的 价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时:

新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程 当 f(x) 0 时,积分 b y=f (x)、 f (x)dx 在几何上表示由x a a、x b 与 x 轴所围成的曲边梯形的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x) b f (x)dx 在几何上表示y f ( x)、x a、x b 与 x 轴 0时由积分 a b f ( x ) dx c f ( x ) dx b f ( x ) dx 。 所围成的曲边梯形面积的负值 a S a c 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分在几何中的应用

1.7.1 定积分在几何中的应用 主讲:XXXX 卞志业 教学目标: 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 教学重难点: 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 教学过程: 一、复习回顾 1.微积分基本定理是什么? 学生回答:若函数f(x)在区间[a,b]上连续, ,这就是微积分基本定理,又叫牛顿—莱布尼茨公式。 2.定积分的几何意义是什么? 学生回答: x=a 、x=b 与 x 轴所围成的曲边梯形的面积。 需要注意的是:当f(x)≤0时,由y=f (x)、x=a 、x=b 与 x 轴所围成的曲边梯形位于 x 轴的下方。 ,那么并且)()(x f x F ='? -=b a a F b F dx x f )()()( 当f (x )≥0时,积分dx x f b a )(?在几何上表示由y =f (x )、 a b y f (x) ()b a S f x dx =?即:O x y x y O a b y f (x) ()b a S f x dx =-?即:

二、例题讲解 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 【分析】从图像中可以看出:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为 (0,0)、(1,1), 面积S=S曲边梯形OABC-S曲边梯形OABD 1 1 2 xdx x dx =-? ? 【点评】 求两曲线围成的平面图形面积的一般步骤: (1)画草图,求出曲线的交点坐标; (2)将曲边形面积转化为曲边梯形面积; (3)确定被积函数及积分区间; (4)计算定积分,求出面积。 例2计算由直线y 2x = 曲线y x 4,=-以及x 轴所围图形的面积S. 【分析】 1 2 332x = 1 0331x -= = 323 1-31 4 x y O 8 4 2 2 B x y 2=4 -=x y S 2 S 1 S 2 S 1 4 y O 8 4 2 2 A ? ? ? ?????-+= +=??442122844 21dx x dx x s s s A: 4 42 1 28 21??-= -=? dx x s s s B:

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

定积分在几何学上的应用比赛课教学教案.docx

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思 路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程

— b y=f (x) 、 x a 、 x b 与 x 轴所围成的曲边梯形 当 f(x) 0 时,积分 a f (x)dx 在几何上表示由 的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x ) 0 时由 积分 b y f ( x ) 、x a 、x b 与 x 轴 f (x)dx 在几何上表示 a b c b f ( x ) dx 。 所围成的曲边梯形面积的负值 f ( x ) dx f ( x ) dx c a S a 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

定积分的几何应用举例

第5节 定积分的几何应用举例(考点) 定积分的应用就是要用定积分计算某个量A : ()b a A f x dx =? 可见,量A 分布在区间[,]a b 上。在实际应用时,要求我们把[,]a b 和 ()f x 找出来。 [,]x a b ?∈,考虑 ()()x a A x f t dt =? ()A x 是A 在[,]a x 上的分布。 让x 有增量x ?使[,]x x a b +?∈。 ()()()A dA dx f x dx dx ?=+=+ A ?是A 在[][](),,x x x x x x +?+?或上的分布。 因此,用积分计算量A 的步骤如下: (1) 找到A 的分布区间[,]a b ; (2) ,[,]x x dx a b ?+∈,把A 在[][](),,x x dx x dx x ++或上的分布 量A ?计算成如下式子 ()()A f x dx dx ?=+即()dA f x dx = (3)算出定积分 ()b a A f x dx =? 以上步骤称为定积分应用的微元法。

5.1 平面图形的面积 5.1.1.直角坐标系中 连续曲线(),(),,y f x y g x x a x b ====所围图形的面积A 。 A 分布在[,]a b 区间上;,[,]x x dx a b ?+∈,在区间[,]x x dx +部分的面积()()()A f x g x dx dx ?=-+;所以 ()()b a A f x g x dx =-? 当()0,()0f x g x ≥≡时 ()b a A f x dx =? 【例5.1】 求由曲线e x y ,e x y 以及直线1x 围成的图形面积. 解、面积A 分布在[0,1]区间上;,[0,1]x x dx ?+∈, 在区间[,]x x dx +部分的面积()()x x A e e dx dx -?=-+;所以 ()1 1 1 2x x x x A e e dx e e e e ---??=-=+=+-?? ? 【例5.2】 求由曲线2 y x , 20x y 所围成图形的面积A . 解1 积; ,x x ?图5.1 y = 2

定积分的几何应用

定积分的几何应用

定积分的几何应用 内容摘要 自十七世纪下半叶牛顿和莱布尼茨确定了微积分的基础以来,微积分已经经历了近四百年的发展,微积分不仅在数学领域,在现代科学各个领域都发挥了巨大的作用,微积分的思想更是达到了哲学的高度。可以预见,微积分在将来的应用会越来越广泛,越来越深入,但微积分由于其思想的复杂性、系统性,给使用者带来了不便,本文就微积分在数学几何领域的应用做了一些总结和创新,得出了在直角坐标系和极坐标系情况下,平面图形的面积、旋转体体积、光滑曲线的弧长和旋转曲面的面积的求解方法,以方便相关领域的人士在工作和学习中参考使用。。 【关键词】定积分几何坐标系面积体积弧长

The application of definite integral geometry Abstract Since the second half of the seventeenth Century the Newtonian and Leibniz to determine the basis of calculus, calculus has experienced nearly four hundred years of development, not only in the field of mathematics calculus, in modern scientific fields have played an important role, the calculus idea is to achieve a high degree of philosophy. Can foreknow, calculus in the future will be more widely used, more and more deeply, but due to the complexity of ideas of calculus, system, users have inconvenience, the calculus in mathematics geometry application some summary and innovation, derived in Cartesian coordinate and polar coordinate conditions, planar graph area, the volume of body of rotation, smooth arc length of a curve and a rotating surface area method, so as to facilitate the related people in the working and learning reference. 【Key words】Integral geometry coordinates area volume arc length

相关文档
相关文档 最新文档