文档库 最新最全的文档下载
当前位置:文档库 › 高一数学导学案7分段函数

高一数学导学案7分段函数

高一数学导学案7分段函数
高一数学导学案7分段函数

即墨一中高一数学导学案

必修一第一章分段函数

编写:王莎莎 审核:史鑫

【课前预习导读】

一、学习目标:

1、通过图像了解分段函数及其解析式。

2、会求分段函数定义域、值域,分段函数的不等式。

3、使学生感受到数形结合的重要性。

二、学习重点难点:分段函数定义域、值域,不等式。

三、学习方法:通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 。

四、自主预习

阅读课本21页,学习例题5、6,回答什么是分段函数?特点是什么?画它们的图像的步骤是 ,要注意问题 。

分段函数:如果函数(),y f x x A =∈,根据自变量在不同的取值范围内有着 ,称这样的函数为分段函数。

五、基础自测

1、已知()x f y =的图像如下图所示,则()x f 的解析式为

2、某城市“招手即停”公共汽车的票价按下列规定制定:

(1)5公里以内(含5公里),票价为2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算)。 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式。

【课堂自主导学】

一、问题探究

例1 已知函数

22(1)()(12)

2(2)x x f x x x x x +≤-??=-<

(1)求 )]1([),2

1(),2(-f f f f ; (2)若()3f a =,求a 的值;

(3)若,3)a (>f 求实数a 的取值范围;

规律总结:

巩固练习:

已知函数 ???

????≥-<<-+-≤+=,2,12,22,22,2,1)(x x x x x x x x f (1)求])2([),3(),5(---f f f f 的值。

(2)若3)(=a f ,求实数a 的值。

(3)若,)(m m f >求实数m 的取值范围。

例2 画分段函数()?????-=x x x f 168

2 ()()()

128,84,40≤<≤<≤≤x x x 图像,求定义域和值域。

规律总结:

巩固练习:画x 1++=x y 的图像,并求值域。

二、知识梳理

课堂检测

1、函数()?????=x x x f 222- ()()()

1,11-,1-≥<<≤x x x 的最小值为 。

2、已知函数()???+-+=,3,1x x x f ()()11>≤x x ,则??

??????? ??25f f = ; 若()0,10x x f 则== 。 【课后自主导学】

1、函数()???++-=,

6642x x x x f ()()00<≥x x 求不等式)1()(f x f >的解集。

2、已知()()?

??+-=25x f x x f ()()66<≥x x 其中的值求(3),f N x ∈。

3、已知函数()?????

++=,

232x ax

x x f ()()11<≥x x 若((0))4,f f a =求实数a 的值。

4、 求函数()?????

+=,

11

-2x x x x f ()()11>≤x x 值域。

5、画出函数1+=x y +|x-2 | 的图象并求定义域值域。

课后反思

(完整版)高一数学分段函数练习题

高一数学函数的定义与分段函数测试题 1、给出函数?????<+≥=)4()1()4()21()(x x f x x f x ,则=)3(f ( ) A.823- B. 111 C. 19 1 D. 241 2、若f(x)=???≥)0()0(2πx x x x ???<-≥=) 0()0()(2x x x x x ?,则当x<0时,f[?(x)]=( ) A. -x B. -x 2 C.x D.x 2 3、下列各组函数表示同一函数的是( ) ①f(x)=|x|,g(x)=???<-≥) 0()0(x x x x ② f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2 ④f(x)=1122-+ -x x g(x)=0 x ∈{-1,1} A.①③ B.① C.②④ D.①④ 4、设f(x)=?????>+≤--1||111||,2|1|2x ,x x x ,则f[f(21)]=( ) A. 21 B.134 C. -59 D.4125 5、设函数3,(10)()((5)),(10)x x f x f f x x -≥?=?+≤+)2(,2)2(,22x x x x 则f(-4)=___________,若f(x 0)=8,则x 0=________ 6.、函数y =+的定义域为( ) A . {x |x ≤1} B . {x |x ≥0} C . {x |x ≥1或x ≤0} D . {x |0≤x ≤1} 7、.函数f (x )=的定义域为( ) A . [1,2)∪(2,+∞) B . (1,+∞) C . [1,2) D . [1,+∞) 8、函数 的定义域是( ) A . B . C . D .

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

人教版高一数学必修一基本初等函数解析

基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n ( N * ;2))0(10≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ) ; 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的 对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质: 1)真数N 为正数(负数和零无对数);2)01log =a ;

高中数学-分段函数的几种常见题型及解法

分段函数常见题型及解法 【解析】 3 ?求分段函数的最值 4x 3 (x 0) 例3?求函数f(x) x 3 (0 x 1)的最大值 x 5 (x 1) 分段函数是指自变量在两个或两个以上不同的范围内 有不同的对应法则的函数 它是一个函数,却又常常被学生误认为是几个函数 ;它的定义域是各段函数定义域的并 集,其值域也是各段函数值域的并集 ?由于它在理解和掌握函数的定义、函数的性质等知 识的程度的考察上有较好的作用 ,时常在高考试题中“闪亮”登场,笔者就几种具体的题 型做了一些思考,解析如下: 1 ?求分段函数的定义域和值域 例1.求函数f(x) 值域? 【解析】 2x 2 x [ 1,0]; 1 x x (0,2);的定义域、 3 x [2,); 作图, 利用“数形结合”易知f (x)的定义域为 [1,),值域为(1,3]. 2 ?求分段函数的函数值 |x 1| 2,(|x| 例2 . ( 05年浙江理)已知函数 f(x) 1 1 x 2 (|x| 1) 1) 求f[? 因为 f(i) 11 1| 2 所以 f[f(b] f( 1 4 1 ( i) 2 13

【解析】当 X 0 时,f max (X ) f(0) 3,当 0 X 1 时,f max (X ) f(1) 4, 当 X 1 时, X 5 15 4,综上有 f max (x) 4. 4 ?求分段函数的解析式 例4 .在同一平面直角坐标系中,函数y f (X )和y g(X )的图象关于直线 y X 对 称,现将y g(x)的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得 的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为() 5 ?作分段函数的图像 例5?函数y e IM |X 1|的图像大致是() 2x 2 (1 X 0) A. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 0) B. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 2) C. f(x) X 2 1 ( 2 X 4) 2x 6 (1 X 2) D. f(x) X 2 3 (2 X 4) 【解析】 将其图象沿X 轴向右平移2个单位, 再沿y 轴向下 平移 1 个单位 得解析式为y 今(x 2) 1 1 4 1 f(x) 2x 2 (x [ 1,0]),当 x [0,1]时, y 2x 1,将其图象沿x 轴向右平移2 个单位,再沿y 轴向下平移 1个单位, 得解析式y 2(x 2) 1 1 2x 4, 所以 f(x) 2x 2 (x [0,2]) 综上可得f(x) 2x 2 ( 1 x 0) ■2 2 (0 x 2) 故选A 当 X [ 2,0]时,y 1 x 1

高中数学必修1第二章基本初等函数测试题(含答案)人教版

《基本初等函数》检测题 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 43 ()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2 (,2)3 3.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .12 2lg x x x >> B .12 2lg x x x >> C .12 2lg x x x >> D .12 lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A . (3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年 后的价格与原来价格比较,变化的情况是 ( )

A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是 ( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625??= . 12.已知函数3log (0)()2(0) x x x >f x x ?=?≤?, , ,则1[()]3 f f = . 13. 若 3())2 f x a x bx =++,且 (2) f =,则 (2f - = . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

高中数学-分段函数及题型

高中数学-分段函数及题型 【经典例题赏析】 例1.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值. 【解析】当0x ≤时, max ()(0)3f x f ==, 当01x < ≤时, max ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有max ()4f x =. 例2.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图 象沿x 轴向左平移2个单位, 再沿 y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线 (如图所示), 则函数()f x 的表达式为( ) 答案A. 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? 例3.判断函数2 2(1)(0) ()(1)(0) x x x f x x x x ?-≥?=?-+时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时, (0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于 任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数. 例4.判断函数3 2 (0) ()(0)x x x f x x x ?+≥?=?-

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根. ②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:()n n a a =;当 n 为奇数时,n n a a =;当n 为偶数时, (0) || (0) n n a a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. ②正数的负分数指数幂的意义是: 11 ()()(0,,,m m m n n n a a m n N a a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质 (4)指数函数 函数名称 指数函数 定义 函数(0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =

分段函数练习题及答案(最新整理)

1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( ) 2.(2011年葫芦岛高一检测)设f (x )= Error!,则f (5)的值是( ) A .24 B .21 C .18 D .16 3.函数y =x +的图象为( )|x |x 4.函数f (x )=Error!的值域是________. 1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+的像和B 中元素-1的原像分别为( ) 2A.,0或2 B .0,22C .0,0或2 D .0,0或2 2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( ) 3.函数f (x )=Error!的值域是( ) A .R B .[-9,+∞) C .[-8,1] D .[-9,1]4.已知f (x )=Error! 若f (x )=3,则x 的值是( ) A .1 B .1或32 C .1,或± D.32 335.已知函数f (x )=Error! g (x )=Error!当x ∈R 时,f (g (x )),g (f (x ))的值分别为( ) A .0,1 B .0,0 C .1,1 D .1,0 6.设f (x )=Error!已知f (a )>1,则实数a 的取值范围是( ) A .(-∞,-2)∪(-12,+∞) B.(-12,12)

高一数学分段函数1

第九课时 分段函数 【学习导航】 知识网络 分段函数?? ???分段函数图象分段函数定义域值域分段函数定义 学习要求 1、了解分数函数的定义; 2、学会求分段函数定义域、值域; 3、学会运用函数图象来研究分段函数; 自学评价: 1、分段函数的定义 在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数; 2、分段函数定义域,值域; 分段函数定义域各段定义域的并集,其值域是各段值域的并集(填“并”或“交”) 3、分段函数图象 画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象; 【精典范例】 一、含有绝对值的解析式 例1、已知函数y=|x -1|+|x+2| (1)作出函数的图象。 (2)写出函数的定义域和值域。 【解】: (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x=1,第二个绝对值的分段点x=-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞) 所以已知函数可写为分段函数形式: y=|x -1|+|x+2|=?? ???>+≤<--≤--)1(12)12(3)2(12x x x x x 在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象。(图

象略) (2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞) 二、实际生活中函数解析式问题 例2、某同学从甲地以每小时6千米的速度步行2小时到达乙地,在乙地耽搁1小时后,又以每小时4千米的速度步行返回甲地。写出该同学在上述过程中,离甲地的距离S(千米)和时间t(小时)的函数关系式,并作出函数图象。 【解】: 先考虑由甲地到乙地的过程: 0≤t ≤2时,y=6t 再考虑在乙地耽搁的情况: 2-∈-+-≤≤---<+) 2(52)22(23)2(522 a a a a a a 利用分段函数图象易得:g(a)max =3

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

高中数学必修一《基本初等函数测试题》

《第一次测试:函数》 1 下列函数与x y =有相同图象的一个函数是( ) A 2x y = B x x y 2 = C )10(log ≠>=a a a y x a 且 D x a a y log = 2.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( ) A .2-≥b B .2-≤b C .2->b D . 2-k B .21 -b D .0>b 6.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则 ( )A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f << 7 三个数60.70.70.76log 6,,的大小关系为( ) A 60.70.70.7log 66<< B 60.7 0.70.76log 6<< C 0.760.7log 660.7<< D 6 0.70.7log 60.76<< 8.函数2log 2-=x y 的定义域是 A .),3(+∞ B .),3[+∞ C .),4(+∞ D .),4[+∞ 9.与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为 A .ln(1y =+ B .ln(1y = C .ln(1y =-+ D .ln(1y =-- 10.已知(3)4,1()log ,1a a x a x f x x x --?=?≥?<, 是(-∞,+∞)上的增函数,那么a 的取值范围是 A .(1,+∞) B .(-∞,3) C .3,35?? ???? D .(1,3) 11.设函数()log ()(0,1)a f x x b a a =+>≠的图象过点(2,1),其反函数的图像过点(2,8) ,则a b +等于 A. 6 B. 5 C. 4 D. 3 :

人教新课标版数学高一-人教A必修一习题 .2分段函数与映射

(本栏目内容,在学生用书中以独立形式分册装订!) 一、选择题(每小题5分,共20分) 1.函数f (x )=????? x -2,x <2,f (x -1),x ≥2,则f (2)=( ) A .-1 B .0 C .1 D .2 解析: f (2)=f (2-1)=f (1)=1-2=-1. 答案: A 2.函数f (x )=????? 1-x 2,x ≤1,x 2-x -3,x >1,则f ????1f (3)的值为( ) A.1516 B .-2716 C.89 D .18 解析: ∵x >1,∴f (3)=32-3-3=3, ∵13<1,∴f ????1f (3)=f ??? ?13=1-????132=89. 答案: C 3.函数y =x +|x |x 的图象是( ) 解析: y =x +|x |x =? ???? x +1,x >0,x -1,x <0. 答案: D 4.a ,b 为实数,集合M =??????b a ,1,N ={a,0},f :x →2x 表示把集合M 中的元素x 映射到集合N 中为2x ,则a +b =( ) A .-2 B .0

C .2 D .±2 解析: 由题意知M 中元素b a 只能对应0,1只能对应a ,所以2b a =0,a =2,所以b =0,a =2,因此a +b =2,故选C. 答案: C 二、填空题(每小题5分,共15分) 5.f (x )=????? x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为________,值域为 ________________________________________________________________________. 解析: 函数定义域为[0,1]∪(1,2]=[0,2]. 当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1]. 答案: [0,2] [0,1] 6.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b,5→5且7→11.若x →20,则x =________. 解析: 由题意知,????? 5=5a +b ,11=7a +b ?????? a =3, b =-10. ∴y =3x -10.由3x -10=20,得x =10. 答案: 10 7.已知函数f (x )的图象如图,则f (x )的解析式为________. 解析: ∵f (x )的图象由两条线段组成,由一次函数解析式求法可得f (x )=? ???? x +1,-1≤x <0, -x ,0≤x ≤1. 答案: f (x )=????? x +1,-1≤x <0,-x ,0≤x ≤1. 三、解答题(每小题10分,共20分) 8.已知函数f (x )=????? x +2(x <0),x 2(0≤x <2),12x (x ≥2).

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

高一数学基本初等函数教案

核心内容: 知识点一:指数与对数的运算 1、n 次方根*∈>N n n ,1有如下恒等式: ()a a n n =; ? ? ?=为偶数为奇数 n a n a a n n ,, 2、规定正数的分数指数幂:n m n m a a =;n m n m n m a a a 1 1= = -() 1,,,0>∈>* n N n m a 且 例1、求下列各式的值: (1)()()*∈>-N n n n n 且,13π; (2) ()2y x - 例2、化简:(1))3()6)(2(6 56 13 12 12 13 2b a b a b a -÷-; (2))0,0()(3 421 4132 23>>?b a a b b a ab b a ; 3、对数与指数间的互化关系:当10≠>a a ,且时,N a b N b b =?=log 4、负数与零没有对数;1log ,01log ==a a a 5、对数的运算法则: (1)()N M N M a a a log log log +=?, (2)N M N M a a a log log log -=, (3)M n M a n a log log =, (4)M m n M a n a m log log = (5)a N N b b a log log log = , (6)a b b a log 1 log = 其中1,0≠>a a 且,0>M ,0>N ,R n ∈., 例3、将下列指数式化为对数式,对数式化为指数式: (1)128 1 27= -; (2)273=a ; (3)1.0101=-; (4)532log 2 1-=; (5)3001.0lg -=; (6)606.4100ln =.

高一数学必修一基本初等函数知识点总结

〖 2.1〗指数函数 根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)分数指数幂的运算性质① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数 〖2.2〗对数函数 负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. 几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. 常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 换底公式的推论: (5)对数函数 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数 y x α=叫做幂函数,其中x 为自变量,α 是常数.

高一数学分段函数练习题.docx

高 三 数 学 分 段 函 数 练 习 题 知识点: 1、分段函数的定义 在函数定义域内, 对于自变量 x 的不同取值范围, 有着不同的对应法则, 这样的函数叫做分段函数; 2、分段函数定义域,值域; 分段函数定义域各段定义域的并集,其值域是各段值域的 并 集 (填“并”或“交” ) 3、分段函数图象 画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;练习: 1、设 f ( x) 2e x 1, x 2 ,则 f ( f (2)) 的值为( ) log 3 x 2 1 , x 2 A. 0 B. 1 C. 2 D. 3 | x 1 | 2,| x | 1 1 2、设 f(x)= 1 2 ,|x | 1 ,则 f[f( )]=( ) 1 x 2 A. 1 B. 4 C. - 9 D. 25 2 13 5 41 3、 (2009 山东卷 ) 定义在 R 上的函数 log 2 (4 x), x 0 f ( x) 满足 f ( x) = 1) f (x 2), x , f ( x 则 f (3) 的值为( ) A . -1 B. -2 C. 1 D. 2 1 x 4) ,则 f (log 2 3) 4、给出函数 f (x) ( 2 ) 1) (x ( ) f ( x ( x 4) A.- 23 B. 1 C. 1 D. 1 8 11 19 24 5、函数 f ( x) sin( x 2 ), 1 x 0, 1 f a 2, 则 a 的所有可能值为( e x 1 , x 0. , 若 f ) A.1 B. 6、( 2009 天津卷)设函数 2 C. 1 , 2 D. 1 2 , 2 2 2 x 2 4x 6, x 0 f ( x) f (1) 的解集是( f ( x) 6, x ,则不等式 ) x 0 A. ( 3,1) (3, ) B. ( 3,1) (2, ) C. ( 1,1) (3, ) D. (, 3) (1,3) 2 x 1,x 0, 7、设函数 f (x) 1 若f (x 0 ) 1 ,则 x 0 的取值范围是( ) x 2 , x A . ( 1,1) B . (-1, )

相关文档
相关文档 最新文档