文档库 最新最全的文档下载
当前位置:文档库 › 6es70系列变频器与s7

6es70系列变频器与s7

6es70系列变频器与s7
6es70系列变频器与s7

摘要:

本文通过举例讲述了PROFIBUS-DP现场总线在生产现场的具体应用,详细介绍了西门子PLC与变频设备通过PROFIBUS-DP通讯的硬件组态、软件编程以及变频器的相关参数设置。

关键字:

西门子 PROFIBUS-DP 变频器 PLC

在工业厂矿的生产应用中,尤其是钢铁冶金行业,利用PLC通过PROFIBUS-DP现场总线对变频装置进行控制,实现电机的启动、停车和调速最为常见。下面通过一个具体的实例来讲述西门子6se70系列变频器

与s7-300/400的PROFIBUS-DP通讯的全过程。

一、硬件组态变频器

在STEP 7软件中创建一个项目,再硬件组态该项目,并建一个PROFIBUS-DP网络,6se70系列变频器在PROIBUS DP->SIMOVERT文件夹里进行组态,并设定好通讯的地址范围。如下图所示:

二、建立通讯DB块

一般地,读写数据都做在一个DB块中,且最好与硬件组态设定的I,O地址范围大小划分相同大小的区域,便于建立对应关系和管理。如下图所示,读变频器的数据的12个字节在DB0~DB11中,写给变频器的12个字节数据放在DB12~DB23中。接下来还可以存放诸如通讯的错误代码和与变频器有关

的其它计算数据。

三、写通讯程序

通讯程序可以直接调用STEP 7编程软件的系统功能SFC14(DPRD_DAT),SFC15(DPWR_DAT)来实现。例

程段如下:

CALL SFC 14 //变频器->PLC

LADDR :=W#16#230 //通讯地址:为硬件组态的起始地址,即I Addess中的560

RET_VAL:=DB15.DBW24 //错误代码:查帮助可得具体含义

RECORD :=P#DB15.DBX0.0 BYTE 12 //传送起始地址及长度

CALL SFC 15 //PLC->变频器

LADDR :=W#16#230 //通讯地址:为硬件组态的起始地址,即Q Addess中的560 RECORD :=P#DB15.DBX12.0 BYTE 12 //传送起始地址及长度

RET_VAL:=DB15.DBW26 //错误代码:查帮助可得具体含义

四、变频器参数设置

变频器的简单参数设置如下表

对于写变频器的数据是与变频器的k3001~k3016(参见变频器使用大全功能图120)建立对应关系,读变频器的数据则是与变频器的参数P734建立对应关系。如下图所示:

即DB15.DBW12~DB15.DBW22对应P734的W01~W06。B15.DBW0~DB15.DBW11对应k3001~k3012。PLC读

取变频器的数据可以通过设置参数P734的值来实现,PLC写给变频器的数据存放在变频器数据k3001~k3012中,在变频器的参数设置里可以进行调用,从而建立了彼此的对应关系。

这样,变频器与PLC的连接已经基本建立,就可以编写程序通过PLC来控制变频器的启、停、速度给定等各项功能,满足工艺给定要求。同时也可以读取变频器数据通过上位机进行显示,达到在线监视和诊

断的目的。

变频器几个重要参数的设定

变频器几个重要参数的设定: 1 V/f类型的选择V/f类型的选择包括最高频率、基本频率和转矩类型等。最高频率是变频器-电动机系统可以运行的最高频率。由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电定电压设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的V/f类型图和负载的特点,选择其中的一种类型。我们根据电机的实际情况和实际要求,最高频率设定为,基本频率设定为工频50Hz。负载类型:50Hz以下为恒转矩负载,50~为恒功率负载。 2 如何调整启动转矩调整启动转矩是为了改善变频器启动时的低速性能,使电机输出的转矩能 满足生产启动的要求。在异步电机变频调速系统中,转矩的控制较复杂.在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持V/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。可是,漏阻抗的影响不仅与频率有关,还和电机电流的大小有关,准确补偿是很困难的。近年来国外开发了一些能自行补偿的变频器,但所需计算量大,硬件、软件都较复杂,因此一般变频器均由用户进行人工设定补偿。针对我们所使用的变频器,转矩提升量设定为1 %~5%之间比较合适。 3 如何设定加、减速时间电机的运行方程式:式中:Tt为电磁转矩;T1为负载转矩电机加速度dw/dt取决于加速转矩(Tt,T1),而变频器在启、制动过程中的频率变化率则由用户设定。若电机转动惯量J、电机负载变化按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是按经验选定加、减速时间设定。若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间;另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。我们将加速时间设定为15s,减速时间设定为5s。 4 频率跨跳V/f控制的变频器驱动异步电机时,在某些频率段。电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动量较小时更为严重。因此变通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在V/f曲线上设置跨跳点及跨跳点宽度。当电机加速时可以自动跳过这些频率段,保证系统正常运行。 5 过负载率设置该设置用于变频器和电动机过负载保护。当变频器的输出电流大于过负载率设置值和电动机额定电流确定的OL设定值时,变频器则以反时限特性进行过负载保护(OL),过负载保护动作时变频器停止输出。 6 电机参数的输入变频器的参数输入项目中有一些是电机基本参数的输入,如电机的功率、额定电压、额定电流、额定转速、极数等。这些参数的输入非常重要,将直接影响变频器中一些保护功能的正常发挥,一定要根据电机的实际参数正确输入,以确保变频器的正常使用 变频器的参数设定在调试过程中是十分重要的。由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。变频器的品种不同,参数量亦不同。一般单一功能控制的变频器约50-60个参数值,多功能控制的变频

《PLC与变频器应用技术》试卷3

PLC与变频器应用技术试卷C 一、选择题 (分值20分) 1、PLC的基本组成分两大部分,即▁▁▁▁。 A.硬件系统和软件系统 B.主机和外围设备 C.中央处理器和存储器 D. 系统程序和用户程序 2、PLC控制系统与传统的继电器控制系统相比较,▁▁▁▁不同。 A.发出输入信号的器件 B.发出输出信号的器件 C.实现输入、输出信号间逻辑关系的器件 3、PLC采用▁▁▁▁工作方式。 A.立即读 B.立即写 C.循环扫描 D.中断 4、用户程序执行过程中,在▁▁▁▁阶段,PLC读入所有输入端子的状态,并存入输入暂存器。 A. 输入采样 B. 程序处理 C. 输出刷新 D. 通信服务 5、PLC按组成结构分为两大类,其中▁▁▁▁将CPU、存储器、I/O点、电源等硬件都装在一个机壳内。 A.整体式PLC B.模块式PLC C.叠装式PLC D.塔式PLC 6、PLC基本单元中,▁▁▁▁是PLC的核心部件,控制所有其它部件的工作。 A.中央处理器 B.存储器 C.I/O单元 D.电源 7、存储器是具有记忆功能的半导体器件,掉电后,▁▁▁▁中的内容不能保留,需使用锂电池作为备用电源。 A.只读存储器ROM B.随机存储器RAM C.可擦除可编程只读存储器EPROM D.可擦除可编程只读存储器EEPROM 8、FX 2N 系列PLC的编程语言有三种,其中▁▁▁▁由触点符号、继电器线圈符号等组成,在这些符号上有操作数。 A. 梯形图 B. 语句表 C. SFC 9、FX 2N 系列PLC中,M8000~M8255为特殊继电器。当PLC开始运行时,特殊继电器▁▁▁▁为ON,接通时间为一个扫描周期。 A.M8000 B.M8002 C.M8012 D.M8014 10、FX 2N 系列PLC中,T0是100ms定时器,若定时器T0的设定值是K60,表示延时▁▁▁▁秒。 A.6 B.60 C.600 D. 6000 二、填空题。(分值20分) 1、世界上第一台PLC是公司于1969年研制出来的。 2、FX系列的PLC是由公司生产的。 3、PLC的基本单元由CPU 、、、、及扩展接口 等部分组成 4、在三菱PLC FX1N-40MR型号中的M代表,40代表, R代表。 5、PLC的常用编程方式有、和SFC编程三种。 6、FX系列PLC常见的软元件有七种,其中X表示,Y表 示,用表示辅助继电器,用表示状态继电器,用表示定时器,用表示计数器,用D表示数据寄存器。 7、PLC有两种工作状态,即和停止状态。 8、三菱PLC置位指令符号为,复位指令符号为。 三、根据给出的梯形图写出对应的语句表。 (分值10分) 四、电动机双重互锁正反转控制程序设计:按下按钮SB1,电动机正转;按下按钮SB2,电动机反转;按下按钮SB3,电动机停止工作。 根据控制要求完成:1、输入/输出(I/O)地址分配。2、画出I/0接线图。3、程序设计(梯形图) (15分)

变频器调整必须知道的几个参数解读

变频器调整必须知道的几个参数(转载) 2010-01-13 13:28:56| 分类:默认分类| 标签:|字号大中小订阅 变频器调整必须知道的几个参数 变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进 行设定和调试。 因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎 都有的,完全可以做到触类旁通。 一加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降 率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三电子热过载保护

ABB变频器直接转矩控制

直接转矩控制 直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。 直接转矩控制(Direct Torque Control,DTC)变频调速,是继矢量控制技术之后又一新型的高效变频调速技术。20 世纪80 年代中期,德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。1987 年,直接转矩控制理论又被推广到弱磁调速范围。 直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。直接转矩控制也具有明显的缺点即:转矩和磁链脉动。针对其不足之处,现在的直接转矩控制技术相对于早期的直接转矩控制技术有了很大的改进,主要体现在以下几个方面: (1)无速度传感器直接转矩控制系统的研究 在实际应用中,安装速度传感器会增加系统成本,增加了系统的复杂性,降低系统的稳定性和可靠性,此外,速度传感器不实用于潮湿、粉尘等恶劣的环境下。因此,无速度传感器的研究便成了交流传动系统中的一个重要的研究方向,且取得了一定的成果。对转子速度估计的方法有很多,常用的有卡尔曼滤波器位置估计法、模型参考自适应法、磁链位置估计法、状态观测器位置估计法和检测电机相电感变化法等。有的学者从模型参考自适应理论出发,利用转子磁链方程构造了无速度传感器直接转矩控制系统,只要选择适当的参数自适应律,速度辨识器就可以比较准确地辨识出电机速度。 (2)定子电阻变化的影响

PLC与变频器技术应用复习题

《PLC与变频器技术应用》复习题 1.填空题 (1)PLC是通过一种周期扫描工作方式来完成控制的,每个周期包括输入采样、程序处理、 输出刷新三个阶段。 (2)定时器的线圈开始定时,定时时间到,常开触点闭合,常闭触点断开。 (3)通用定时器被复位,复位后其常开触点断开,常闭触点闭合,当前值变为0。 (4)OUT指令不能用于输入寄存器X 继电器。 (5)M8002 是初始化脉冲。当PLC处于RUN状态时,M8000一直为 ON 。 (6)FX2N型PLC的输入/输出继电器采用八进制进行编号,其他所有软元件均采用十 进制进行编号。 (7)若梯形图中输出继电器的线圈“通电”,对应的输出映像寄存器为 1 状态,在输出 处理阶段后,继电器输出模块中对应的硬件继电器的线圈得电,其常开触点闭合,外部负载得电。 (8)外部输入电路断开时,对应的输入映像寄存器为状态 0 ,梯形图中对应的输入继电 器的常开触点断开,常闭触点闭合。 (9)说明下列指令意义。 ORB _____块或______________; RST_________复位___________; LDI_______取反____________ _; MPP_________进栈___________; SET________置位____________; PLS______上升沿微分_________; (10)在PLC指令中,分别表示置位和复位的指令是 SET、RST。 (11)计数器的当前值等于设定值时,其常开触点闭合,常闭触点断开。复位输 入电路断开时,计数器被复位,复位后其常开触点断开,常闭触点闭合,当前值为 0。 (12)变频器具有多种不同的类型:按变换环节可分为交-直-交变频器和交-交变 频器;按改变变频器输出电压的方法可分为脉幅调制(PAM) 变频器和脉宽调制(PWM) 变频器。 (13)变频调速时,基频以下的调速属于恒转矩调速,基频以上的调速属于恒功率 调速。 (14)变频器是把电压、频率固定的工频交流电变为电压可调和频率可调的交流 电的变换器。 (15)在U/f控制方式下,当输出频率比较低时,会出现输出转矩不足的情况,要求变频 器具有转矩补偿功能。 (16)三相异步电动机的转速除了与电源频率、转差率有关,还与磁极对数有关。

日博RB600系列变频器使用介绍及说明材料

4.1键盘操作■键盘布局

4-2

?键盘指示 键盘上共有5位七段LED监视器,一个LCD监视器和八个运行指示灯。其中LED可显示功能代码及当前功能代码对应的参数值,LCD可用中英文双语分别显示当前变频器的运行状态,及相关的功能代码对应的参数值。指示灯标明参数的单位,是否正在运行及运转方向等。 监视器LED监视器设定状态:显示功能代码或代码内容 停机状态:显示运行状态 故障状态:显示故障信息 LCD监视器设定状态:显示功能代码及代码内容 运行状态:显示运行状态 故障状态:显示故障信息 状态指示灯RUN 变频器处于运行状态时,此指示灯点亮。FWD 正转指示。在参数设定状态,指示端子Fud,F/r的状态。运行时,指示当前的运行方向。REV 反转指示。在参数设定状态,指示端子 REV,F/r的状态。运行时,指示当前运行方向。TRIP TRIP:故障指示。变频器发生故障时,此灯点 亮并闪烁。 功能指示灯FUN 指示设定参数(代码内容)与非设定参数(功 能代码)。当用户按PRG进入参数设定状态后, FUN点亮,指示或两键的操作对象。当用 户退出参数设定后,FUN灯自动熄灭。 单位指 示灯 Hz: 赫兹; Sec:秒; %:百分比

4.2参数修改 4.2.1变频器工作状态: 变频器共有四种工作状态(如图4-2所示): 图4-3 四种工作状态切换图停机状态 运行状态 故障状态 运 行 设 定 状 态 故障信号 停 机 设 定 状 态 参数设定状态 RUN RUN STOP RESET STOP RESET STOP RESET PRG PRG PRG PRG [1]:运行状态:输出端子有电压,按键可查看设定频率、输出频率、输出电流、输出电压等。按“PRG”键进入设定状态,可查看所有参数,但只能在线修改一部分参数(详细情况参见功能码表说明);按“STOP/RESET”键,变频器停止进入停机设定状态,此时可对绝大部分参数进行修改。 [2]:设定状态:本系列变频器提供两种设定状态:运行设定状态:变频器正在运行中,部分参数是不可修改的(详细情况参见功能码表);停机设定状态,变频器待机,对所有可修改的参数都可进行修改。变频器在运行或停止时,按“PRG”键,可进入设定状态,当监视器显示内容为功能代码时,按“PRG”可返回到变频器原来所在状态。(注意:在运行设定状态,按“STOP”键变频器停止运行,进入停机设定状态;在停机设定状态,按RUN键变频器启动,进入运行设定状态。) [3]:故障状态:变频器在运行时,如果有外部设备或变频器内部出现故障或误操作,则变频器输出相关的故障代码,并封锁PWM输出。用户可通过STOP/RESET键进行复位,待消除故障后,再按“RUN”键运行变频器。注意:除必须复位外,变频器在故障状态参数查看或设置同设定状态参数查看或设置。 [4]:停机状态:变频器已经上电,但不执行任何操作,按“PRG”可进入参数设定状态进行参数设定;按“RUN”键可启动变频器,进入运行状态。 4-4

力矩电机与变频

一、摘要 本文介绍了欧瑞传动有速度传感器矢量变频器替代力矩电机在塑料机械和印刷机械收卷设备上的应用方案,由于它具有宽阔的转速/转矩设定范围、运行特性更加平滑,已经越来越多地被用于塑料包装和印刷企业。 (1) 力矩电机概述 力矩电机是一种具有软机械特性和宽调速范围的特种电机。力矩电机包括:直流力矩电机、交流力矩电机、和无刷直流力矩电机。 (2) 力矩电机的构造原理 当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 (3) 力矩电机主要特点 力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压.使电机稳定! 具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。为取得不同性能指标,该电机有小气隙、中气隙、大气隙三种不同结构形式,小气隙结构,可以满足一般使用精度要求,优点是成本较低;大气隙结构,由于气隙增大,消除了齿槽效应,减小了力矩波动,基本消除了磁阻的非线性变化,电机线性度更好,电磁气隙加大,电枢电感小,电气时间常数小,但是制造成本偏高;中气隙结构,其性能指标略低于大气隙结构电机,但远高于小气隙结构电机,而体积小于大气隙结构电机,制造成本低于大气隙结构电机。 (4) 力矩电机应用 在机械制造、纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,需要将产品卷绕在卷筒(盘)上。卷绕的直径从开始至末了是越卷越大,为保持被卷物张力均匀(即线速度不变),就要求卷筒转速越卷越小,卷绕力越卷越大。应用特性卷绕、开卷(制动恒功率特性)、无级调速等。 1、卷绕 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松弛。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。 2、开卷(制动恒功率特性) 开卷亦称松卷、放卷、放线等。在工业生产中,有时需要把卷绕在滚筒上的产品输送到下一个工序。在输送过程中,要求施于产品一个与传动方向相反的张力,同时要求随着筒径

电机转矩和变频器的关系

电机转矩和变频器的关系 1. 电机的旋转速度为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机50Hz 3000 [r/min] 4极电机50Hz 1500 [r/min] $电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 $ 改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。 输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? *1: 工频电源 由电网提供的动力电源(商用电源) *2: 起动电流 当电机开始运转时,变频器的输出电流 ------变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动------ 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. -----当变频器调速到大于50Hz频率时,电机的输出转矩将降低-----

PLC与变频器技术应用复习题

P L C与变频器技术应用 复习题 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

《PLC与变频器技术应用》复习题 1.填空题 (1)PLC是通过一种周期扫描工作方式来完成控制的,每个周期包括输入采样、程序处 理、输出刷新三个阶段。 (2)定时器的线圈开始定时,定时时间到,常开触点闭合,常闭触点断开。 (3)通用定时器被复位,复位后其常开触点断开,常闭触点闭合,当前值变为0。 (4)OUT指令不能用于输入寄存器X 继电器。 (5)M8002 是初始化脉冲。当PLC处于RUN状态时,M8000一直为 ON 。 (6)FX2N型PLC的输入/输出继电器采用八进制进行编号,其他所有软元件均采用十 进制进行编号。 (7)若梯形图中输出继电器的线圈“通电”,对应的输出映像寄存器为 1 状态,在输出 处理阶段后,继电器输出模块中对应的硬件继电器的线圈得电,其常开触点闭合,外部负载得电。 (8)外部输入电路断开时,对应的输入映像寄存器为状态 0 ,梯形图中对应的输入继电 器的常开触点断开,常闭触点闭合。 (9)说明下列指令意义。 ORB _____块或______________; RST_________复位___________; LDI_______取反____________ _; MPP_________进栈___________; SET________置位____________; PLS______上升沿微分_________; (10)在PLC指令中,分别表示置位和复位的指令是 SET、RST。 (11)计数器的当前值等于设定值时,其常开触点闭合,常闭触点断开。复位输 入电路断开时,计数器被复位,复位后其常开触点断开,常闭触点闭 合,当前值为 0。 (12)变频器具有多种不同的类型:按变换环节可分为交-直-交变频器和交-交变 频器;按改变变频器输出电压的方法可分为脉幅调制(PAM) 变频器和脉宽调制(PWM) 变频器。 (13)变频调速时,基频以下的调速属于恒转矩调速,基频以上的调速属于恒功率 调速。 (14)变频器是把电压、频率固定的工频交流电变为电压可调和频率可调的交流 电的变换器。 (15)在U/f控制方式下,当输出频率比较低时,会出现输出转矩不足的情况,要求变频 器具有转矩补偿功能。 (16)三相异步电动机的转速除了与电源频率、转差率有关,还与磁极对数有关。

PLC和变频器在控制系统中的应用

PLC和变频器在控制系统中的应用 发表时间:2018-05-14T11:04:37.057Z 来源:《电力设备》2017年第36期作者:徐永健戴智鑫赵敏李军[导读] 摘要:近年来,我国的电气工程发展迅速,PLC和变频器应用的越来越广泛。电气工程是国家经济发展的一个重要基础,同时也是确保人们正常生活的基础条件之一。 (广西大学电气工程学院广西南宁 530004;广西工业技师学院广西南宁 530031)摘要:近年来,我国的电气工程发展迅速,PLC和变频器应用的越来越广泛。电气工程是国家经济发展的一个重要基础,同时也是确保人们正常生活的基础条件之一。本文介绍了PLC和变频器,分析了PLC和变频器在控制系统中的应用价值,总结PLC和变频器在控制系统中的应用。 关键词:PLC;变频器;控制系统引言 PLC是一种可编程逻辑控制器,它和变频器都是在信息化技术与网络技术发展下生成的产物。PLC技术能够实现顺序控制、开关质量控制、闭环控制等,其应用作用是提升电气自动化控制工作效率,促使电气工程逐步实现自动化。在信息化时代的发展下,工业生产技术在不断地更新与改革。在此背景下,电气工程也在深化改革过程中,改革的主要方向是信息自动化,而PLC和变频器是能推动这种改革进程的技术,所以有必要对它们开展研究。 1PLC与变频器概述 1.1PLC与变频器概念 PLC即可编程逻辑控制器,能依照用户的制定需求开展工作,其中涵盖了逻辑运算、顺序控制、数学运算等。PLC所应用的是可编程的存储器,在存储器内部运行逻辑运算等一系列指令,再由数字信号以及模拟信号的转变进行输入与输出,以此控制整个生产过程。变频器是指使用变频技术以及微电子技术,通过调整电机工作电源的频率达到控制交流电动机目的的一种电力控制设备。变频器主要经由整流、滤波、逆变等构成,依照电机的切实需求提供适合的电源电压,从而实现节能、调速的效果,同时变频器也具备着多种保护功能,如过流、过压保护等。 1.2PLC特点 PLC具有高可靠性、通用性以及强抗干扰性优点。PLC选用优质器材,采用先进的抗干扰技术和材料,融入了实时监控技术、故障诊断技术以及冗余技术,良好的综合设计使得其稳定性特别高,同时诸多生产厂家都开发了各种系列化产品,满足不同用户需求,组成所需要的控制系统。此外,PLC编程简单,一般采用梯形图语言,形象直观,容易掌握,现场改变程序也比较简单,携带安装维修方便,硬件接线少,很适合工程操作人员使用。 2PLC和变频器在控制系统中的应用价值 2.1有助于加大电气设备产品存储量 PLC系统是一种计算机应用技术,主要的特点在于具有一个独立的存储器结构,系统程序存储器中所存放的内容便是系统软件。用户程序中存储器所应该存放的内容同样是应用软件,而此种结构的存储器能够提供较大的存储空间。另外,此系统设计过程中能够依据实际需求完整保存相关设备中的历史数据,保存下来的资料能为后期检查故障等工作提供可靠依据。 2.2有助于强化电气设备产品的智能化 PLC技术与变频器应用于电气自动化控制系统中的主要作用是提升电气设备的反应速度以及整体运行效率,同时也有助于提升电气设备的智能化水平。具体体现在PLC技术由系统软件完成对整个系统的控制,以确保整个工作流程能严格遵循一定的程序进行。PLC技术中CPU对系统中的数据进行分析与处理,同时对整个系统的运行情况做出评估,实时、可靠地传输数据。变频器起到的作用是在整个系统运行过程中,提供实际需求的电源电压,调节与控制各环节的电压,以确保系统稳定运行。 3PLC在控制系统中的具体应用 3.1在顺序控制系统中的应用 PLC技术被作为一种顺序控制器应用,这是当前社会大多数企业在应用PLC时的一个统一观点。PLC技术在此种模式下的电气工程自动化控制中应用,呈现出三个方面的具体应用。第一,远程控制和监督电气工程自动化系统,以此来确保电气工程工作人员的安全,同时也减少了人力资源的应用;第二,在电气工程自动化系统中进行现场传感,以确保电气工程自动化的控制水平;第三,对电气工程自动化系统的主站层给予局部控制。 3.2在开关量控制中的应用 通常来说,电气自动控制系统利用电磁性电器元件较多,使得系统接线更加复杂,同时还容易导致触电事故,威胁整个控制系统的安全性和稳定性。将PLC应用到电气自动控制系统中,可以通过虚拟继电器完成对开关量的控制,在减少开关数量的同时,能够集中控制多台继电器,提高系统的控制效率。同时,PLC在开关量控制中具有较快的反应速度,同时不会对电气设备产生伤害,进一步保障了电气自动控制系统的稳定性。例如,基于PLC的供电自动化控制系统,可以通过编程来控制备用电源,实现实时自动投切功能。 3.3在闭环控制中的应用 应用在闭环控制中的主要作用是测量转速,同时合理控制调节器,具体是应用转速测量、电子调节、电液执行实现闭环控制。具体的控制方法是在打开动力泵后,PLC细致地分析动力泵运行时间,同时选择一个最为适宜的主用泵与备用泵,在后期实际操作过程中仅需要将开关挡转变为手动挡即可,便能有效提高运行效率,同时也进一步体现了系统的可持续性。PLC与传统的控制技术相互融合方式能互补两者的不足之处,从而极大地提升了电力系统控制效率以及质量。 3.4在数控系统中的应用 数控系统较为复杂,不只存在直线型,同时还包括连续型与点位型。在生产过程中,点位型数控系统多应用在孔洞机床中,原因是全方位与灵活性。系统控制功能主要有单板机模式与全功能型两种数控装置,在系统控制功能中使用PLC能够确保系统功能的完善性。在数控系统中全功能型数控装置的功能性更为完善,但需要承担的成本也相对较高,与单板机模式相比,全功能型装置的应用存在一定的局限性。

变频器主要设置参数

变频器主要设置参数 1、运行方式:主要是带编码器和不带编码器(编码器比较精确一些),其中分别还有是矢量控制还是V/F控制(力矩大时最好用矢量控制比较稳定) 2、控制方式:有变频器自带的那个操作面板控制正反转还是用端子控制正反转这个是必须要设定的参数 3、频率来源设定:是面板直接给还是模拟量给 4、再有是停车方式:自由停车一般用于带抱闸的电机,减速停车相反 5、其他还需要设电机的一些参数进行自学习,保证电机的最佳状态。有些变频器再最开始需要设定某参数,使所有参数都允许改写和高级菜单功能 变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。 因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。 一、加减速时间 加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时

间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二、转矩提升 转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三、电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。 电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)>×100%。 四、频率限制 即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。 五偏置频率 有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。 六频率设定信号增益

变频器资料大全

变频器资料大全 变频器资料大全,QQ:326107740. 最新变频器国家强制性标准与设计选型使用技术手册欧美品牌变频器 ABB变频器 acs510变频器中变压力控制系统的实现方法AB B ACS550-01变频器说明书a b b交流传动产品简介AB B变频器a c s350 AB B AC S550变频器产品样本AB B AC S100用户手册ABB ACS800变频器硬件手册ABB ACS800变频器应用程序指南AB B AC S800变频器标准应用程序7.x使用手册AB B AC S140用户手册ABB ACS100用户手册ABB ACS800-07 大功率硬件手册ABB ACS510系列变频器产品手册ABB ACS510系列变频器用户手册AB B AC S550系列用户手册AB B AC S510用户手册AB B140变频器手册AB B140变频器使用说明书ABB100变频器手册ABB ACS550-01变频器说明书A B B AC S800-07大功率硬件手册AC S800单传动选型样本AB B AC S800-02硬件手册AB B AC S350选型样本AB B直流D C S800硬件手册AB B AC S800-01硬件手册acs800与dcs通信测试指导ACS600技术样本ACS600标准应用程序A C S510变频器中变压力控制系统的实现方法A C S400变频器用户手册AB B中压变频器选型数据表AB B AC S150变频器技术手册ABB DC S500_DCS600直流传动系统资料样本ABB DCR600 选型安装及操作手册ABB DCC600 系统描述ABB ACS800 自定义编程应用程序指南ABB ACS800变频器应用程序指南ABB ACS800-01(壁挂)硬件手册AB B AC S604_607单传动硬件手册AB B AC S601单传动硬件手册AB B AC S800-02(立式)硬件手册A B B中压变频器选型数据表AB B D C S600技术数据AB B D C S500B技术数据AB B AC S800风机泵类控制固件手册(P F C)A B B AC S800-17硬件手册

变频器和电机匹配方法

变频器和电机匹配方法 变频器的正确选择对于控制系统的正常运行是非常关键的。选择变频器时必须要充分了解变频器所驱动的负载特性。人们在实践中常将生产机械分为三种类型:恒转矩负载、恒功率负载和风机、水泵负载。 1.1 恒转矩负载 负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。 1.2 恒功率负载 机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,TL 不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。 1.3 风机、泵类负载 在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。随着转速的减小,转矩按转速的2次方减小。这种负载所需的功率与速度的3

次方成正比。当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。 用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。在选择变频器时因注意以下几点注意事项: 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。 对于一些特殊的应用场合,如高环境温度、高开关频率、高海拔高度等,此时会引起变频器的降容,变频器需放大一档选择。 使用变频器控制高速电机时,由于高速电动机的电抗小,会产生较多的高次谐波。而这些高次谐波会使变频器的输出电流值增加。因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。 使用变频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。因此,不要超过最高转速容许值。

电机转矩与变频器的关系

电机转矩与变频器的关系 电机转矩与变频器的关系 1. 电机的旋转速度为什么能够自由地改变? (1): r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机 50Hz 3000 [r/min] 4极电机 50Hz 1500 [r/min] 电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。 由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。 输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?

(1): 工频电源 由电网提供的动力电源(商用电源) (2): 起动电流 当电机开始运转时,变频器的输出电流 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie) 4. 变频器50Hz以上的应用情况 对一个特定的电机来说, 其额定电压和额定电流是不变的. 如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上 当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60Hz, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速. 转矩情况:因为P=wT (w:角速度, T:转矩). 因为P不变, w增加了, 所以转矩会相应减小. 电机的定子电压 U = E + I*R (I为电流, R为电子电阻, E为感应电势)

变频器调速基本步骤

一、变频器的空载通电实验 11 将变频器的接地端子接地。 21 将变频器的电源输入端子经过漏电保护开关接到电源上。 31 检查变频器显示窗的出厂显示是否正常,如果不正确,应复位,否则要求退换。 41 熟悉变频器的操作键。 一般的变频器均有运行(RUN) 、停止(STOP) 、编程(PROG) 、数据P确认(DATAPENTER) 、增加(UP、▲) 、减少(DOWN、") 等6 个键,不同变频器操作键的定义基本相同。此外有的变频器还有监视(MONITORPDISPLAY) 、复位(RESET) 、寸动(JOG) 、移位(SHIFT) 等功能键。 二、变频器带电机空载运行 11 设置电机的功率、极数,要综合考虑变频器的工作电流。 21 设定变频器的最大输出频率、基频、设置转矩特性。VPf 类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的VPf 类型图和负载特点,选择其中的一种类型。通用变频器均备有多条VPf 曲线供用户选择,用户在使用时应根据负载的性 质选择合适的VPf 曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略, 若仍保持VPf 为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进

相关文档