文档库 最新最全的文档下载
当前位置:文档库 › 原位复合聚苯胺_钛酸钡纳米粒子表征

原位复合聚苯胺_钛酸钡纳米粒子表征

原位复合聚苯胺_钛酸钡纳米粒子表征
原位复合聚苯胺_钛酸钡纳米粒子表征

原位复合聚苯胺 钛酸钡纳米粒子表征

Characterizati on of in situ Syn thesizing

Po lyan iline B arium T itanate N anocom po sites

龚荣洲,官建国,袁润章

(武汉理工大学材料复合新技术国家重点实验室,武汉430070)

GON G Rong2Zhou,GUAN J ian2Guo,YUAN R un2Zhang (State Key L abo rato ry of A dvanced T echno logy fo r M aterials Syn thesis and P rocessing,

W uhan U n iversity of T echno logy,W uhan430070,Ch ina)

摘要:采用原位复合方法制备出聚苯胺 钛酸钡纳米复合粒子,借助I R,T E M,T G和D TA等分析手段研究其复合过程及获得的复合粒子的性能。结果表明:其聚苯胺形成过程与单独的苯胺氧化聚合过程类似;复合粒子的粒径为2~3Λm,钛酸钡以5~10nm晶粒分散于聚苯胺基之中,钛酸钡与聚苯胺的质量比为0191,聚苯胺的热稳定性提高60℃以上;复合粒子的电导率在100~10-11S c m之间可通过掺杂或反掺杂调节。

关键词:纳米复合粒子;聚苯胺;钛酸钡;原位复合

中图分类号:TB33 文献标识码:A 文章编号:100124381(2000)0920028203

Abstract:Po lyan iline2barium titanate(PA n2B aT i O3)nanocom po site p articles have been p repared in situ1T he PA n2B aT i O3nanocom po sites particles w ere characterized w ith I R,SE M,T G and D TA etc11T he resu lts show that the p rocess of po lyan iline is si m ilar as by the ox idative po lym erizati on of an iline w ith H2O2in1M HC l so lu ti on,and the su rfaces of B aT i O3nanop articles w h ich are5~10nm in diam eter are com p letely coated by po lyan iline,w h ile the average diam eter of the p articles is less than2~3Λm1PA n2B aT i O3nanocom po sites(w hen the rati o of B aT i O3to PA n is0191)have a ther m ally stab le tem p eratu re of m o re than540℃,w ell above60℃h igher than PA n p articles1T he conductivity of PA n2B aT i O3nanocom po site p articles is tran sfo r m ab le from100to10-11S c m by dedop ing(o r dop ing)them w ith vari ou s concen trated N aOH,amm on ia w ater o r HC l so lu ti on s u sing an equ ilib rium m ethod1

Key words:nanocom po site particle;po lyan iline;barium titanate;in situ

钛酸钡作为一种易获得的铁电材料,其制备方法引起广泛研究,特别是作为电流变液的分散介质得到了深入探讨[1,2]。聚苯胺的导电性、氧化还原性、质子交换性……许多优异特性,已引起高分子材料科学研究的广泛兴趣[3,4];它作为电流变液分散介质的研究也取得了较大进展[5]。在电流变液的应用中,前者必须为有水电流变液,后者对温度的变化大,且它们皆存在使用温度低、电流变性较低等问题[1,2,5]。进一步研究集中在各种特性的Si O2表面涂覆聚苯胺[6],Si O2为非铁电材料自身不具备可极化性而使其构成的电流变液性能较低。铁电纳米粒子(高介电常数)与有机高分子(导电率可调)原位(in situ)复合材料用作电流变液分散介质,产生优异晶界极化电流变性能的研究未见报道。

本研究采用有机2无机纳米粒子原位复合方法,进行聚苯胺 钛酸钡纳米粒子的原位复合,形成2~3Λm的复合粒子。聚苯胺 钛酸钡纳米复合粒子作为电流变分散介质分散在硅油中构成的无水电流变液,用改装的电流变仪表征其性能。其电流变性能,特别是其在较高使用温度(~95℃)下的电流变性能比它们单独使用时增高一个数量级以上,且漏电流极低。复合粒子的晶界极化产生了上述特性。它将成为提高无水电流变液性能的重要发展方向。

本文就其原位复合过程及聚苯胺 钛酸钡纳米复合粒子的特性进行表征。

1 实验过程

在~80℃下,将碳酸钡(A R)加入冰醋酸(A R)中,搅拌至完全溶解;加入聚乙二醇2400 (CP)和新减压蒸馏过的苯胺,超声分散下加入T i (OC4H9)4(CP)组成溶胶体;在强力搅拌下,缓慢加

82 材料工程 2000年9期 

入含10%H 2O 2的1M HC l 溶液。

将上述溶液在恒速搅拌和水浴恒温20℃下反应12h ,反应结束后对其抽滤,洗涤,120℃下真空干燥。把获得的粒子用不同浓度的HC l ,N aOH 溶液进行平衡掺杂、平衡反掺杂,用PH S 23C 酸度计控制平衡掺杂和平衡反掺杂的pH 值。抽滤,洗涤,获得的聚苯胺 钛酸钡纳米复合粒子在100℃下真空干燥24h 。 用溶液法对原位复合聚苯胺 钛酸钡过程进行红外光谱表征,使用的红外光谱仪为H ITA CH I 270230。对聚苯胺 钛酸钡纳米复合粒子进行热重分析(T G )和差热分析(D TA ),热分析仪为TA S 2100,测定温度范围为室温到750℃。借助透射电子显微镜(T E M )表征复合粒子的组成结构及其粒径大小。复合粒子的体导电率用压片法进行测定。

2 实验结果与讨论

211 原位复合过程

对聚苯胺 钛酸钡纳米复合粒子的合成过程进行红外光谱分析,用过氧化氢作为氧化剂的钛酸钡 苯胺复合粒子的氧化聚合过程中的“苯2醌式”结构比例与过氧化氢的用量相关,过氧化氢的用量越大,其聚苯胺的醌式结构的红外光谱吸收峰值增大。这与过硫酸铵氧化的苯胺聚合过程[4]相一致,见图1

图1 氧化聚合过程中的钛酸钡 苯胺复合粒子I R 图

F ig 11 Infrared spectra of po lyaniline 2barium titanate nano 2compo site particles in p ropcess of oxidative po lym erizati on

图1中:“苯式”结构的I R 吸收峰(实竖线)与

“醌式”结构的I R 吸收峰(虚竖线)的相对强弱与氧化剂的使用量相关。实验结果表明:H 2O 2与苯胺的物质的量之比从A (1∶1)到B (2∶1),“苯式”结构与“醌式”结构的相对强度达到相等的程度,当使用更多的氧化剂C (4∶1),“苯式”结构与“醌式”结构的相对强度与B 用量的相似。212 聚苯胺 钛酸钡纳米复合粒子

T E M 研究其复合粒子的组成结构,结果表明,复

合粒子的粒径为2~3Λm ,复合粒子中的钛酸钡以5~10nm 晶粒分散于聚苯胺基之中,呈聚苯胺包覆钛酸钡纳米粒子结构。

复合粒子的T G 和D TA 分析结果如图2,其中:实线表示聚苯胺 钛酸钡纳米复合粒子,虚线表示聚苯胺与钛酸钡纳米粒子的混合物。聚苯胺在复合粒子中的质量百分含量测定采用文献[7]方法,聚苯胺 钛酸钡纳米复合粒子的T G 分析,聚苯胺占复合粒子质量的5311%。

比较钛酸钡纳米粒子和聚苯胺粒子混合物与聚苯胺 钛酸钡纳米复合粒子的T G 和D TA ,结果是,聚苯胺 钛酸钡纳米复合粒子中的聚苯胺热稳定性较混合物体系中的提高6013℃,聚苯胺的热分解温度从混合物体系的47512℃提高到复合粒子的53515℃。 形成这一结果是因为在钛酸钡纳米粒子与聚苯胺的两相界面间存在O —N 的氢键[8]。复合粒子中聚苯胺的热分解温度提高也正是钛酸钡纳米粒子的巨大量的表面原子存在和聚苯胺与其氧原子之间的氢键作用

图2 聚苯胺混合钛酸钡纳米粒子与聚苯胺 钛酸钡纳米复合粒子的T G 和D TA 图

F ig 12 T her mogravi m etry and derivative ther mogravi m etry

analysis figures about po lyaniline 2barium titanate nano 2compo site particles and m ixture of po lyaniline and

barium titanate nanoparticles

213 复合粒子的电导率

用浓HC l (A R )对聚苯胺

钛酸钡纳米复合粒子的平衡掺杂,所得复合粒子的导电率可达2121S c m ;用饱和N aOH 水溶液对聚苯胺 钛酸钡纳米复合粒子的平衡反掺杂,所得复合粒子的导电率可达1103×10-11S c m 。用不同浓度的HC l 、N aOH 进行平衡掺杂、平衡反掺杂,控制平衡掺杂和平衡反掺杂的pH 值,聚苯胺 钛酸钡纳米复合粒子的电导率从2121×

10-2S c m 到110×10-11

S c m 可调。当用N aOH 溶液调节平衡反掺杂系统的pH 值为10,其复合粒子的导电率为6167×10-7S c m ,它是聚苯胺

钛酸钡纳米复合粒子用于电流变液的最佳电导率。聚苯胺的导电

9

2 原位复合聚苯胺 钛酸钡纳米粒子表征

率可通过掺杂与反掺杂调节,是聚苯胺的“苯2醌”结构[3]。复合粒子的掺杂与反掺杂效应是复合粒子的聚苯胺表面膜结构形成的。

3 结论

采用原位复合方法,聚苯胺的氧化聚合与So l2 Gel法制备钛酸钡纳米粒子同时进行。其聚苯胺形成过程与单独的苯胺氧化聚合过程类似,“苯2醌”结构比与氧化剂的用量相关,H2O2的1M HC l溶液作为氧化剂的用量为苯胺的物质的量的2倍为宜。表面为聚苯胺完全包覆的复合粒子粒径为2~3Λm,其钛酸钡以5~10nm晶粒分散于聚苯胺基之中,钛酸钡与聚苯胺的质量比为0191,钛酸钡纳米粒子与聚苯胺的两相界面间存在O—N的氢键作用使聚苯胺的热分解温度提高60℃以上。复合粒子的表面包覆层——聚苯胺的掺杂与反掺杂性,通过掺杂与反掺杂,使复合粒子的导电率在100~10-11S c m之间可调。

参考文献

[1] P1J1R ank in&D1J1K lingenberg1T he electro rheo logy of barium

titanate suspensi ons,J1R heo l11998,42(3):639~656

[2] Y1O tsubo1E lectro rheo logical p roperty of Barium titanate

suspensi ons under o scillato ry shear1Co llo ids and Surfaces1

1991,58:73~86

[3] 唐劲松,王宝忱,王佛松.聚苯胺的合成、结构、性能及应用

[J].高分子材料科学与工程,1987,1:5~13

[4] 唐劲松,王利详,景遐斌等.苯胺的化学聚合[J].应用化学,

1988,5(4):12~16

[5] J1G1Guan,R1Z1Yuan,H1Q1X ie1Study on conductivity of

two k inds of cro ss2linked po lyether so lid electro lytes and

electro rheo logical p roperties of anhydrous suspensi ons based on

them1Po lym er11998,39(22):5307~5314

[6] Y1O tsubo,&K1Edam ura,E lectro rheo logical p roperty of

suspensi ons of Ino rganic shell o rganic co re compo site

particles1J Co llo id and Interface Science,1994,168:230~234 [7] S1P1A r m es,S1Go ttesfeld,J1G1Beery,et al1Conducting

po lym er2co llo idal silica compo sites1Po lym er11991,32(13):

2325~2330

[8] 王丽萍,洪广言.无机2有机纳米复合材料[J].功能材料,1998,

29(4):343~347

基金项目:国家自然科学基金重点资助项目(59832090和29674021)和武汉理工大学材料复合新技术国家重点实验室开放基金资助项目。

收稿日期:1999207208; 修订日期:2000206201

作者简介:龚荣洲(1963-),男,湖北松滋人,副教授,博士。现在武汉理工大学材料复合新技术国家重点实验室博士后站从事有机 无机复合材料、电 磁流变液和吸波材料的研究。联系地址:武汉理工大学材料复合新技术国家重点实验室(430070)

本文编辑:孙常青

敬请订阅《硅酸盐通报》

《硅酸盐通报》是中国硅酸盐学会会刊。主要报道无机非金属材料及其制品(陶瓷、耐火材料、玻璃、水泥、玻纤、人工晶体、非金属矿等)领域中有关科学技术方面的成就、进展和动向,传播基础知识,探讨和介绍交叉学科和边沿学科,交流生产技术经验和企业管理经验,报道学术动态及学会的活动和科技信息。

?您想了解硅酸盐行业的政策法规吗?

?您想了解硅酸盐行业的学术发展吗?

?您想了解硅酸盐行业的技术进步吗?

?您想知道硅酸盐行业的名人学者吗?

?您想了解硅酸盐产品的市场行情吗?

?您想知道硅酸盐行业的企业动态吗?

?您想知道又有哪些机械设备更新吗?

全国各地邮局均可订阅 邮发代号:242142

也可随时汇款至编辑部订阅

联系地址:山东省淄博市张店区柳泉路西三巷五号

山东工业陶瓷研究设计院内《硅酸盐通报》编辑部

邮编:255031 电话:(0533)318267528321,8319 33333333333333333333欢迎订阅《现代技术陶瓷》杂志

《现代技术陶瓷》期刊是由国家建材局是山东工业陶瓷研究设计院和中国硅酸盐学会特种陶瓷分会共同主办的专业性科技期刊。主要报道有关结构陶瓷、功能陶瓷、陶瓷纤维、复合材料以及各种工业陶瓷、建筑卫生陶瓷、特种耐火材料等方面的基础理论研究、应用技术研究和技术经济信息。介绍和评述国内外现代技术陶瓷方面的新工艺、新设备、新技术、新产品及新的发展动态,以便加速科技信息的交流。

欢迎广大读者订阅本刊,向本刊投搞,刊登广告。11本刊为季刊,每期定价8100元(内含邮费),全年共32100元

21本刊物为非邮政发行,订阅者可从邮局直接汇款至编辑部。

联系地址:山东省淄博市张店区柳泉路西三巷五号

山东工业陶瓷研究设计院内《现代技术陶瓷》编辑部邮编:255031 电话:(0533)318267528321,8319

03 材料工程 2000年9期 

聚苯胺的合成及表征

聚苯胺的合成及表征 (贵州省贵阳市贵州师范学院11级化本 550018) 摘要:本实验采用氧化聚合法,以苯胺为单体,过硫酸铵为氧化剂,探究投料比、酸种类、温度对合成聚苯胺的影响,及本征态聚苯胺的溶解性影响因素。用傅里叶红外光谱仪对聚苯胺参杂前后的结构变化进行了测试,讨论了不同条件对聚合物的影响。同时探究不同条件下合成的聚苯胺的溶解性。 关键词:聚苯胺合成表征溶解性 前言:聚苯胺( PANI) 具有多样结构,独特的掺杂机,良好的稳定性和原料价廉易得等优点,一直是高分子领域的研究热点,在诸多领域都有良好的应用前景目前应用最为广泛的合成聚苯胺的方法是MacDiarm id 等提出的水溶液化学氧化聚合法。该法简便易行, 适合大批量工业生产, 但通过该法制备所得聚苯胺的分子链含有大量缺陷,产物电导率较低,因此对苯胺化学氧化法合成条件对产率的影响进行了探究。 1. 实验部分 1.1 实验试剂及仪器 苯胺(An)(分析纯,AR天津博迪化工股份有限公司)、过硫酸铵(APS)(分析纯,AR天津市科密欧化学试剂有限公司)、盐酸(HCl,优级纯)、硫酸(H2SO4)、高氯酸(HClO4)、磷酸(H3PO4)、氨水(NH3·H2O)、四氢呋喃(分析纯 AR,天津博迪化工股份有限公司)、N,N-二甲基甲酰胺(分析纯AR,广东光华科技股份有限公司)、二甲基亚砜(分析纯AR,广东光华科技股份有限公司)、恒温玻璃搅拌器、85-2恒温磁力搅拌器(金坛市城东新瑞仪器厂)、傅里叶TENSOR-27型红外光谱仪(KBr压片) 1.2 聚苯胺的合成 1.2.1 聚苯胺的性质 溶解性——聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极大地限制了聚苯胺的应用。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、聚合、复合和制备胶体颗粒等方法获得可溶性或水溶性的导电聚苯胺。如在聚苯胺分子链上引入磺酸基团可得到水溶性导电高分子。 导电性——聚苯胺的导电性受pH值和温度影响较大,当pH>4时,电导率与pH无关,呈绝缘体性质;当2

聚苯胺的制备与导电性的观察

实验七:聚苯胺的制备与导电性的观察 姓名:辛璐学号:PB09206226 日期2011年11月10日 目录 1.1前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 2.1关键词﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1实验中的具体概念及部分产品的说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 3.1.1.共轭聚合物﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1.2.化学氧化聚合﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1.3.电化学聚合﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1实验的具体说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.1对于功能高分子材料的认识和发展过程﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 4.1.2对于共轭化合物的具体说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.1共聚化合物作为导电聚合物使用的普遍缺﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.2聚苯胺具有的优点﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.3聚苯胺的应用 4.1.3 :本实验制备原则的部分说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 4.1.3.1化学氧化聚合的一些条件 4.1.3.2本反应采用的方式 4.1.3.3对于聚苯胺溶解性的部分说明 4.1.3.4对于聚苯胺导电性的影响因素﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P3 5.1实验的仪器药品以及其物理常数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P3 5.1.1实验仪器 5.1.2实验药品 5.1.3物理常数 6.1实验的具体步骤﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P4 6.1.1溶液聚合法 6.1.2乳液聚合法 7.1实验现象以及实验中出现现象及其本质的解释说明﹍﹍﹍﹍﹍﹍﹍﹍P5-P6 8.1 思考题与解答﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P6 附录 9.1 对于部分相关药品及专业名词的查找﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P7 9.1.1苯胺﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P7-P8 9.1.2聚苯胺﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍p8 9.1.3十二烷基苯磺酸﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P9 9.1.4 二甲苯﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P10

聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。 目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。 目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。 聚苯胺是一种典型的共扼导电高分子,具有原料价廉易得,合成方法简便,经过质子掺杂的聚苯胺具有良好的电子导电性,可以作为电极材料应用于各种电源器件中[8]。杨红生等人[9]在酸性条件下化学法合成聚苯胺,并组装成电容器。 在过去的10年里,新混合动力系统电极的设计结合了电池和电容性能,并且由于新的电极材料的发现,尤其是纳米材料[8)使得超级电容器技术在性能方面有了卓越的提升。纳米材料不寻常的电气、机械和表面性质使其逐渐成为能量存储的重要研究对象[12,13]。相关纳米材料的优点和缺点在之前的相关文献报道中

聚苯胺合成与表征

《化学综合设计实验》实验论文论文题目:聚苯胺的合成与表征 学院: 专业: 班级: 姓名: 学号: 指导教师: 二零一五年五月二十五日

目录 摘要 (1) 关键词 (1) 前言 (2) 1实验设备和聚苯胺性能表征方法 (4) 1.1实验药品及设备 (4) 1.1.1实验药品 (4) 1.1.2实验仪器 (4) 2.2 化学氧化法合成聚苯胺 (5) 2.2.1苯胺的合成 (6) 3.3 聚苯胺性能表征 (5) 3.3.1溶解率的测定 (5) 3.3.2电阻的测定 (5) 3.4 实验数据处理 (5) 3.4.1聚苯胺产率 (5) 3.4.2溶解率 (7) 3.4.3电阻 (6) 4.4实验结果与分析 (6) 5.5展望 (6) 参考文献 (6)

摘要:本实验主要采用化学氧化法制备聚苯胺,以苯胺为单体,过硫酸铵为氧化剂,控制反应的温度和反应时间,在酸性介质中合成聚苯胺。探究当加入的氧化剂与苯胺的摩尔比为1:1、质子酸为硫酸、反应温度为10℃、反应时间为3h时聚苯胺的产率。以及有机溶剂对聚苯胺的溶解率,测定单位长度电阻值,判断其导电性效果,其中产率高达90%以上,溶解性为58%,具有较好导电性。 关键词:聚苯胺;合成;表征;溶解性;电阻;

前言 1826年,德国化学家Otto Unverdorben 通过热解蒸馏靛蓝首次制得苯胺 (aniline ),产物当时被称为“Krystallin ”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche 从靛蓝中得到无色的油状物苯胺,将其命名为aniline ,该词源于西班牙语的anti (靛蓝)并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey 也证实苯胺可以在氧化下形成某些固体颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的结构长期处于争论中,Macdiarmid 于1987年提出苯-醌式结构单元共存的模型后,得到大家广泛的认可;它存在的状态可以随着苯、醌两种结构单元的含量不同而相互改变。 聚苯胺合成方法主要有化学氧化法和电化学聚合法等。化学氧化聚合法又有溶液聚合、乳液聚合、模板聚合、酶催化聚合等;电化学聚合法有动电位扫描、恒电流、恒电位、脉冲极化等合成方法。化学氧化聚合法制备过程如下图1所示。 图1 聚苯胺的制备示意图 Fig.1 Diagram for preparing PANI N N N n NH 2 氧化剂 酸或碱 1-y y H H

聚苯胺的合成及表征

题目(中文):聚苯胺的合成及表征姓名 xx xxx 学号111111111112222222222 院(系)化学与生命科学 专业、年级 12级化学(3)班(B组) 指导教师xxx职称教授 二○一四年十月

聚苯胺的合成及表征 摘要 聚苯胺(Polyaniline)是一种重要的导电聚合物,是研究最为广泛的导电高分子材料之一,其具有原料低廉、工艺简单、导电性优良、耐高温及抗氧化性能好等优点,受到人们普遍青睐,应用前景十分广阔,使其成为导电高分子研究的主流和热点。本论文使用化学氧化法合成聚苯胺,以苯胺(An)为单体,过硫酸铵(Aps)为氧化剂,控制反应温度和反应时间,在三聚磷酸铝(ATP)的氢氧化钠溶液中合成聚苯胺。本文主要研究不同的反应温度和反应时间对聚苯胺合成产率的影响。实验结果表明聚苯胺的合成与温度、反应时间均有关,在温度为10℃、反应时间为8小时时,聚苯胺的合成效果最好,产率最高。 关键词:聚苯胺;表征;合成;影响因素 1.绪论 1.1聚苯胺的发现过程 1826年,德国化学家Otto Unverdorben通过热解蒸馏靛蓝首次制得苯胺(aniline),产物当时被称为“Krystallin”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche从靛蓝中得到无色的油状物苯胺,将其命名为aniline,该词源于西班牙语的anti(靛蓝)并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey也证实苯胺可以在氧化下形成某些固体颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的实际研究拖延了几乎一个世纪,直到1984年,MacDiarmid提出了被广泛接受的苯式(还原单元)-醌式(氧化单元)结构共存的模型。随着两种结构单元的含量不同,聚苯胺处于不同程度的氧化还原状态,并可以相互转化。不同氧化还原状态的聚苯胺可通过适当的掺杂方式获得导电聚苯胺。 图1.1聚苯胺的链结构模式 1.2聚苯胺的研究背景

银纳米粒子的合成和表征实验报告

银纳米粒子的合成和表征 一、实验目的 1、学会还原法制备银纳米粒子的方法; 2、熟练掌握TU-1901紫外分光光度仪测量吸收光谱; 3、锻炼实验操作能力以及根据实验现象分析原理,独立思考能力。 二、实验原理 1、化学还原法制备纳米银: 2KBH4+2AgNO3+6H2O→2Ag+2KNO3+2H3BO3+7H2↑ (反应开始后BH4-由于水解而大量消耗:BH4-+H++2H2O→中间体→HBO2+4H2↑) 还原法制得的纳米银颗粒杂质含量相对较高,而且由于相互间表面作用能较大,生成的银微粒之间易团聚,所以制得的银粒径一般较大,分布很宽。 2、TU-1902双光束紫外可见分光光度仪 测量原理:由于银纳米粒子的粒度不同,对于不同波长的光有不同程度的吸收,根据其吸收特性,即最大吸收峰对应的波长,可以判断粒子的大小。 银纳米粒子平均粒径与λmax: 平均粒径/nm <10 15 19 60 λmax/nm 390 403 408 416 三、实验仪器与试剂 仪器:电子分析天平、磁力搅拌器、量筒(5mL)、烧杯(一大一小)、移液管(5mL)、容量瓶(50mL)、比色管(50mL)、TU-1902双光束紫外可见光谱仪、滴管、洗瓶、洗耳球、手套等。 药品试剂:1mmol/L AgNO 3溶液、KBH 4 (固体)、蒸馏水、冰块等。

四、实验步骤、实验现象及数据处理 1、配制1.5mmol/L KBH4溶液 (1)减量法称取0.04gKBH4固体于小烧杯中,少量蒸馏水溶解,转移至 50mL容量瓶中,用蒸馏水洗涤并将洗液转移至容量瓶中(重复3次),用蒸馏水定容至刻度线,摇匀。得15mmol/L KBH4溶液。 (2)用移液管移取上述溶液5mL至50mL比色管,用蒸馏水定容至刻度线,摇匀。得1.5mmol/L KBH4溶液。 实验数据:m(KBH4)=22.6177g-22.5792g=0.0385g c1(KBH4)=m/(MV)=0.0385g/(53.94g/mol×50mL)=14.3mmol/L c(KBH4)=c1V1/V2=(14.3mmol/L×5mL)/50mL=1.43mmol/L 2、制备纳米银: 量筒移取15mL1.5mmol/L KBH4溶液于烧杯中,放入磁子,在冰浴、搅拌条 溶液,继续搅拌15min。 件下,逐滴加入2.5mL1mmol/LAgNO 3 现象:开始滴加AgNO 后溶液变黄,之后颜色逐渐加深,一段时间后变成黄 3 棕色。 3、银纳米粒子的表征 (1)测量银纳米粒子的吸收曲线: 光谱测量→设置测量参数→基线测量(蒸馏水)→样品测量→导出数据(得表1): 波长(nm) 吸光度A 波长(nm) 吸光度A 波长(nm) 吸光度A 500 0.716 430 0.903 360 0.877 495 0.721 425 0.939 355 0.837 490 0.727 420 0.972 350 0.794 485 0.733 415 1.013 345 0.753 480 0.74 410 1.03 340 0.712

聚苯胺的合成与表征

聚苯胺的合成与表征 贵州师范学院化学与生命科学学院化本一班姜华学号:1508040540014 同组人:蒲朝霞罗彬彬宋姗姗 摘要: 聚苯胺的合成方法主要有化学氧化聚合法(乳液聚合法、溶 液聚合法等)和电化学合成法 (恒电位法、恒电流法、动电 位扫描法等) , 近年来, 模板聚合法、微乳液聚合、超声辐照合成、过氧化物酶催化合成、血红蛋白生物催化合成法。此次的实验采用的是采用过硫酸铵氧化聚合合成聚苯胺:先将苯胺与酸(四种酸)反应生成可溶性的苯胺盐,然后再加入过硫酸铵合成聚苯胺,计算比较四种酸合成聚苯胺的产率。聚苯胺分子结构含有苯环,使其具有很强的刚性,分子间相互作用力很大,很难溶解于大部分溶剂中。用三甲基亚峰溶剂可以部分溶解聚苯胺,溶解率达20%。聚苯胺(PANI)是一种分子合成材料俗称导电塑料。它是一类特种功能材料具有塑料的密度又具金属的导电性和塑料的可加工性。采用压片对其进行压片并对其测量电阻值。 关键词:聚苯胺合成产率溶解性电阻值 绪论: 聚苯胺,高分子化合物的一种,具有特殊的电学、光学性质,经掺杂后可具有导电性。在电子工业、信息工程、国防工程

等的开发和发展方面都具有多种用途。聚苯胺的电活性源于分子链中的P电子共轭结构:随分子链中P电子体系的扩大,P成键态和P*反键态分别形成价带和导带,这种非定域的P 电子共轭结构经掺杂可形成P型和N型导电态。不同于其他导电高分子在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如Cl-、硫酸根、磷酸根等)进入主链,与胺和亚胺基团中N原子结合形成极子和双极子离域到整个分子链的P键中,从而使聚苯胺呈现较高的导电性。这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH值和电位等因素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性。聚苯胺经一定处理后,可制得各种具有特殊功能的设备和材料,如可作为生物或化学传感器的尿素酶传感器、电子场发射源、较传统锂电极材料在充放电过程中具有更优异的可逆性的电极材料、选择性膜材料、防静电和电磁屏蔽材料、导电纤维、防腐材料等等。 将聚苯胺分别与四种酸混合,制备苯胺盐,在加入过硫酸铵搅拌3个小时制备聚苯胺。再将制备好的聚苯胺进行压片测量电阻,取少量聚苯胺溶解计算溶解率,制备涂料。

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 8四川化工第14卷 2019年第3期 金纳米粒子的制备及表征研究 王静 易中周 李自静 (红河学院理学院,云南蒙自,661100) 摘要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分 散分布。 关键词:纳米金 制备 表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的 化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例,Frens获得了不同尺寸的单分散 金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更 小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳 定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变, 方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子 聚合物保护剂PVA(聚乙烯醇)、PVP(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液UV Vis吸收 光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报 道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 [5] 2 1 试剂与仪器

HAuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂); 水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900UV/VIS/NIR光谱仪(Per kinElmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/mlHAuCl4加入水中,保持温度并定容,30分钟后冷却。2 3 纳米粒子的表征 Au纳米粒子用UV Vis吸收光谱表征和TEM表征,TEM的样品制备是将胶体溶液滴在碳 膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取TEM图像。 3 结果与机理探讨 3 1 UV Vis吸收光谱表征 当将HAuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长, 又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 12 实验部分 第3期金纳米粒子的制备及表征研究粒子的UV Vis吸收光谱图[5,6]。3 2 TEM表征图2为柠檬酸钠水溶液体系所制备的Au纳米粒子的TEM 图。 9 柠檬酸钠还原为Au单质;然后,Au单质在柠檬酸钠保护下进行团聚和不断长大,最后成为Au纳米粒子,但是柠檬酸钠阻止了Au纳米粒子的进一步团聚,控制了较小粒径,并使其 颗粒均匀并呈球形分布。 图3 柠檬酸钠水溶液体系金纳米粒子的热化学合成机理 3 结论 通过较为严格温度控制的柠檬酸钠水溶液体系制备得到的Au纳米粒子: (1)尺寸均匀; (2)呈球形单分散分布;(3)平均粒径只有7-8nm。 参考文献 [1]Marie ChristineDaniel,DidierAstruc.GoldNanoparticles:As sembly,SupramolecularChemistry,Quantum Size RelatedProper

聚苯胺纳米材料的制备与表征.docx

聚苯胺纳米材料的制备与表征 导电聚苯胺以其较高的电导率、良好的稳定性以及单体廉价易得、合成简单、具有独特的掺杂/脱掺杂机理等优点,一直是导电高分子材料的研究热点[1],并且在电磁屏蔽、太阳能电池、超级电容器[4]、化学传感器[5]、防腐蚀[6]、气体分离及催化等方面有着广阔的应用前景.聚苯胺的合成方法有很多,如乳液聚合法、微乳液聚合法、模板浸渍法、界面聚合法、快速混合法、电化学聚合法等,其中快速混合法是在掺杂剂存在的条件下,将含有苯胺的溶液与含有氧化剂的溶液快速混合,这种方法不仅操作简便、工艺简单、条件温和,而且能够防止由于氧化剂的浓度不均匀和苯胺聚合的自催化作用引起的聚合不均匀现象[10].本文以对甲苯磺酸为掺杂酸,以苯胺为单体,过硫酸铵为氧化剂,在水溶液中进行苯胺的单体氧化聚合,通过控制n(掺杂酸)/n(单体),合成不同掺杂比例的聚苯胺.通过测试不同掺杂比例的聚苯胺的导电性能,确定最优的对甲苯磺酸掺杂量.1实验方法 1.1试剂与仪器苯胺(An),AR,XX市大茂化学试剂厂;过硫酸铵(APS),AR,XX市科密欧化学试剂有限公司;对甲苯磺酸(APS),AR,XX市大茂化学试剂厂;乙醇,AR,XX市恒兴化学试剂制造有限公司;去离子水.苯胺单体使用前经一次减压蒸馏,其他试剂未经处理直接使用. 1.2合成方法酸掺杂PANI的合成方法:取蒸馏后的苯胺单体0.54mL和20mL不同浓度的对甲苯磺酸配置成混合溶液A,再配置

1.37g过硫酸铵和20mL不同浓度的对甲苯磺酸的混合溶液B,将B 溶液直接倒入A溶液中,室温下闭口静置,反应8h.将所得混合溶液抽滤,所得沉淀即为聚苯胺粗产品.分别用去离子水和无水乙醇洗涤聚苯胺粗产品数次至洗脱液呈无色且pH中性,通风干燥箱中85℃干燥24h后取出,研磨得样.本征态PANI的合成方法:将墨绿色的掺杂态聚苯胺用1.5mol/L的氨水浸泡过夜,次日抽滤,利用相同浓度的氨水洗涤数次,再用蒸馏水洗涤至滤液pH呈中性,85℃干燥后即得本征态的PANI. 1.3测试与表征聚苯胺结构用傅立叶变换红外光谱仪(FTIRspectra,Frentier,Perkinelmer公司),紫外可见光谱仪(UV–Visspectra,CARY-300,美国Varian公司),扫描电子显微镜(JSM-6360LV),数显电导率仪(DDS-11A). 2结果与讨论 2.1红外光谱分析图1和图2为本征态以及不同比例掺杂的聚苯胺的傅里叶变换红外光谱图,其中图1中掺杂态聚苯胺的掺杂比例为n(TSA)/n(An)=1.由图1和图2可知,本征态PANI分别在1588、1494、1301、1163和827cm-1附近特征吸收峰,分别依次对应聚苯胺链上醌式、苯式结构的骨架振动伸缩特征吸收峰,C-N的伸缩振动峰,N-Q-N(Q为醌环)的特征吸收峰,苯环中C-C弯曲振动特征吸收峰和醌环中的C-H的特征吸收峰.掺杂后的聚苯胺含有聚苯胺基本官能团的所特有的特征吸收峰,说明掺杂的对甲苯磺酸的聚苯胺保留着聚苯胺的基本结构.但掺杂后聚苯胺的红外特征吸收峰相对未

化学实验报告 聚苯胺的合成及表征

聚苯胺的合成及表征 (省市师学院550018) 摘要:本实验采用氧化聚合法,以苯胺为单体,过硫酸铵为氧化剂,探究投料比、酸种类、温度对合成聚苯胺的影响,及本征态聚苯胺的溶解性影响因素。用傅里叶红外光谱仪对聚苯胺参杂前后的结构变化进行了测试,讨论了不同条件对聚合物的影响。同时探究不同条件下合成的聚苯胺的溶解性。 关键词:聚苯胺合成表征溶解性 前言:聚苯胺( PANI) 具有多样结构,独特的掺杂机,良好的稳定性和原料价廉易得等优点,一直是高分子领域的研究热点,在诸多领域都有良好的应用前景目前应用最为广泛的合成聚苯胺的方法是MacDiarm id 等提出的水溶液化学氧化聚合法。该法简便易行, 适合大批量工业生产, 但通过该法制备所得聚苯胺的分子链含有大量缺陷,产物电导率较低,因此对苯胺化学氧化法合成条件对产率的影响进行了探究。 1. 实验部分 1.1 实验试剂及仪器 苯胺(An)(分析纯,AR天津博迪化工股份)、过硫酸铵(APS)(分析纯,AR 天津市科密欧化学试剂)、盐酸(HCl,优级纯)、硫酸(H2SO4)、高氯酸(HClO4)、磷酸(H3PO4)、氨水(NH3·H2O)、四氢呋喃(分析纯AR,天津博迪化工股份)、N,N-二甲基甲酰胺(分析纯AR,光华科技股份)、二甲基亚砜(分析纯AR,光华科技股份)、恒温玻璃搅拌器、85-2恒温磁力搅拌器(金坛市城东新瑞仪器厂)、傅里叶TENSOR-27型红外光谱仪(KBr压片) 1.2 聚苯胺的合成 1.2.1 聚苯胺的性质 溶解性——聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极限制了聚苯胺的应用。通过结构修

稳定的水溶性Fe3O4纳米粒子的制备及其表征

稳定的水溶性Fe3O4纳米粒子的制备及 其表征 (作者:___________单位: ___________邮编: ___________) 作者:吴利清,张熙之,方芳,王怡红,张宇,顾宁 【摘要】目的:制备稳定的水溶性Fe3O4纳米粒子(PMAT Fe3O4)磁共振成像(MRI)造影剂,并对合成的粒子进行表征。方法:利用高分子聚1十四碳烯马来酸酐(PMAT)修饰油溶性Fe3O4纳米粒子表面,使粒子表面富含亲水性羧基基团,使粒子能够稳定存在于水相中,并用透射电镜(TEM)、动态光散射(DLS)、振动样品磁强计(VSM)、傅立叶红外吸收光谱(FT IR)和MRI等方法进行表征。结果:(1) TEM 分析显示,PMAT Fe3O4粒子直径约为10 nm,DLS测定其水动力学平均直径约为80 nm;(2) PMAT Fe3O4粒子能稳定分散于去离子水、PBS、Tris、MES等缓冲液中,不发生团聚;(3) VSM、MRI等分析手段显示,PMAT Fe3O4的饱和磁化强度Ms≈14.0 emu·g-1,弛豫率r2=367.79 mM-1s-1。结论:PMAT Fe3O4具有良好的水溶性、磁学性能和较高的r2值,有望发展成为一种性能优异的MRI造影剂。【关键词】 Fe3O4纳米粒子; 表面修饰; 聚合物; 弛豫率 [Abstract] Objective: To synthesize stable and

water soluble PMAT Fe3O4 nanoparticles(NPs) as MRI contrast agent and characterize it. Methods: Poly maleic anhydride alt1tetradecene(PMAT) was utilized to modify the surface of oil soluble NPs, and the obtained PMAT Fe3O4 NPs were characterized by TEM, DLS, FT IR, VSM and MRI. Results: (1) TEM and DLS studies showed that the PMAT Fe3O4 NPs have a magnetic core size of about 10 nm and a hydrodynamic diameter of about 80 nm.(2) PMAT Fe3O4 could keep stable in water and familiar buffers, such as MES, PBS and Tris without aggregation.(3) VSM measurements showed that the saturation magnetization(Ms) was about 14.0 emu·g-1, the relaxivity value(r2) of PMAT Fe3O4 was 367.79 mM-1s-1. Conclusion: The obtained PMAT Fe3O4 NPs possess outstanding water solubility, good magnetic properties, and high r2 value, which are therefore expected to become an excellent MRI contrast agent. [Key words] Fe3O4 nanoparticles; surface modification; polymer; relaxivity 磁性纳米粒子(NPs)在生物技术和生物制药等领域已显示出良好的应用前景[1]。氧化铁纳米粒子由于具有独特的磁学性质和良好的生物相容性,研究其作为造影剂在磁共振成像(MRI)技术方面的应用,已成为发展最为迅速和最为重要的课题之一。其中,化学制备具有稳

化学实验报告 聚苯胺的合成与表征 7138

聚苯胺的合成与表征 摘要:聚苯胺在不同的酸的环境中合成,优化聚苯胺的合成条件。用过硫酸铵作氧化剂,改变不同的投料比.酸类.温度等,合成聚苯胺产品。计算聚苯胺的合成产率。用合成的聚苯胺做红外光谱检测结构,并比对氧化态与本征态的聚苯胺的谱图。 关键词:聚苯胺投料比酸度红外光谱 1.绪论: 聚苯胺(PANI)是一种得到广泛应用的导电聚合物,例如用作太阳能电池材料[1,2]超级电容器电极材料[3]催化剂载体[4]电化学传感器[5]防腐蚀材料[6]等.聚苯胺的制备方法有很多种,不同的合成条件下可以得到不同微观形貌的聚苯胺,例如万梅香等人[7]研究了聚苯胺纤维的合成,通过改变氧化剂可以很好地控制聚苯胺纤维的 径;AYADMohamadM等人[8]研究了软模板法制备聚苯胺纳米管; 王学智等人[9]采用界面聚合方法制备了聚苯胺纳米棒. 2.实验部分 2.1仪器与试剂: 苯胺(AR 天津博迪化工股份有限公司),使用之前用蒸馏出来再用;过硫酸铵(AR 天津市科密欧化学试剂有限公司);盐酸(AR 北京化工);硫酸(AR 北京化工);高氯酸(AR 北京化工);磷酸(AR 天津市富宇精细化工有限公司);乙腈(AR 天津市科密欧化学试剂有限公司);二甲基亚砜(AR 广东光华科技股份有限公司);乙醇.乙酸.甲苯.四氢呋喃等溶剂均是分析纯。85-Z恒温磁力搅拌器(重庆银河实验仪器有限公司);HC21006恒温槽(重庆银河实验仪器有限公司);磁力加热搅拌器(郑州长城科工);蒸馏装置;使用水均是一次蒸馏水。 2.2聚苯胺的合成: )n 原理——------→( 将苯胺蒸馏出来备用;配制不同1mol/l的无机酸150ml, 加入0.05mol蒸馏的苯胺,在不同浓度的氧化剂硫酸铵,在恒温水不同的温度下。搅拌24小时,过滤时用100ml 乙酸先冲洗,再用蒸馏水冲洗至PH=6,干燥,称量。氧化合成参杂态的聚苯胺,计算产率。取2克的参杂态聚苯胺加入稀氨水100ml搅拌1小时脱氢离子制得本征态的聚苯胺。 2.2-1.投料比对合成的影响; (1)不同的投料比聚苯胺合成; 称取9.30g的苯胺在不同的过硫酸铵氧化剂,形成不同的投料比。置于1mol/l的盐酸下,在15℃的恒温水浴烧杯中慢慢滴加氧化剂搅拌24小时过程中聚合。过滤时用100ml乙酸先冲洗,再用蒸馏水冲洗至PH=6,干燥,称量。氧化合成参杂态的聚苯胺,计算产率。(2)聚苯胺合成产率;

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 王 静易中周李自静 (红河学院理学院,云南蒙自,661100) 摘 要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分散分布。 关键词:纳米金制备表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例, Frens[5]获得了不同尺寸的单分散金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变,方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子聚合物保护剂PVA(聚乙烯醇)、PV P(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液U V Vis吸收光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 2 实验部分2 1 试剂与仪器 H AuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂);水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900U V/VIS/NIR光谱仪(Per kin Elmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/ml H AuCl4加入水中,保持温度并定容,30分钟后冷却。 2 3 纳米粒子的表征 Au纳米粒子用U V Vis吸收光谱表征和TEM 表征,T EM的样品制备是将胶体溶液滴在碳膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取T EM图像。 3 结果与机理探讨 3 1 U V Vis吸收光谱表征 当将H AuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长,又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 图1为柠檬酸钠水溶液体系所制备的Au纳米 8四川化工 第14卷 2011年第3期

聚苯胺导电聚合膜及表征的制备

应用化学综合实验聚苯胺导电聚合膜的制备及表征 学生姓名李静莎 指导教师曾冬铭 专业班级应化1001 学生学号 实验成员陈阳辉刘文明周兆芳 聚苯胺导电聚合膜的制备及表征 一、实验目的 1、了解聚合物的合成方法、性能和主要反应; 2、通过电化学聚合实验,掌握电化学聚合的实验技术以及相应的电化学测试方法。 二、背景知识及实验原理 20世纪70年代后期,由于聚乙炔的发现而产生了以共轭高分子为基础的导电高分子学科,并得到了迅猛的发展,而导电聚合物自20世纪80年代中期被MacDiarmid等重新开发以来,以其原料易得、合成简单、较高的导电率和潜在溶液和熔融加工性能,以及良好的环境稳定性的等优点,成为目前最受关注的三大导电高分子品种(聚苯胺、聚噻吩和聚吡咯)之一。正是以上这些优点,使聚苯胺有广阔的应用前景。导电聚苯胺具有良好的电磁屏蔽和微波吸收性能,如聚苯胺/聚氯乙烯导电共混材料的电磁屏蔽常数大于50dB。在二次电池(塑料电池)中使用聚苯胺具有良好的充放电效果,循环充电2000次,库伦效率仍接近100%。

导电聚苯胺是一种良好的金属防腐蚀材料,同时还是较好的防污材料,可在舰船上广泛应用。另外,聚苯胺还有电致变色、电子发光等可被将来利用的性能。 聚苯胺的合成方法很多,如化学氧化聚合物、电化学聚合法、现场聚合法、缩合聚合法等,其中化学氧化聚合法较为简单,易于大批量生产,因而吸引了许多注意力。本实验用电化学聚合法合成聚苯胺,并且对其电化学和光学性能进行表征。 聚苯胺的形成是通过阳极偶合机理完成的,具体过程可由下式表示: 聚苯胺链的形成是活性链端(-NH 2 )反复进行上述反应,不断增长的结果。由于在酸性条件下,聚苯胺链具有导电性质,保证了电子能通过聚苯胺链传导至阳极,是增长继续。只有当头头偶合反应发生,形成偶氮结构,才使得聚合停止。 PAN有4种不同的存在形式,它们分别具有不同的颜色。苯胺能经电化学聚合形成绿色的叫作翡翠绿的PAN导电形式。当膜形成后,PAN的4种形式都能得到,并可以非常快地进行可逆的电化学相互转化。完全还原形式的五色盐可在低于-0.2V时得到,翡翠绿在0.3~0.4V时得到,翡翠基蓝在0.7V时得到,而紫 色的完全氧化形式在0.8V时得到。因此,可通过改变外加电压实现翡翠绿和翡翠基蓝之间的转化,也可以通过改变pH值来实现。区分不同光学性质是由苯环和喹二亚胺单元的比例决定的,它能通过还原或质子化程度来控制。 表1四种不同形式的PAN 名称结构 颜 色 性质 无色翡翠盐无 色 完全还 原;绝 缘 翡翠绿 绿 色部分氧化;质子导体

聚苯胺的合成和表征、

聚苯胺和聚乙炔 1.1导电聚苯胺作为一种新型的功能高分子材料,越来越受到科学家们的关注。因为它具有合成方法简单、掺杂机制独特、环境稳定性良好等优点,而且它还具有广阔的开发与应用前景。聚苯胺在电池、金属防腐、印刷、军事等领域展示了极广阔的应用前景,成为现在研究进展最快、最有工业化应用前景的功能高分子材料。但是聚苯胺的难溶解、难熔融、不易加工等特性阻碍了聚苯胺的实用化进程。聚苯胺的合成方法主要有化学氧化聚合法(乳液聚合法、溶液聚合法等)和电化学合成法(恒电位法、恒电流法、动电位扫描法等),近年来,模板聚合法、微乳液聚合、超声辐照合成、过氧化物酶催化合成、血红蛋白生物催化合成法等以其各自的优点而受到研究者的重视。 1984年,MacDiarmid在文献中提出聚苯胺具有以下可以相互转化的4种理想形式: 2.1化学合成 (1)化学氧化聚合化学氧化法合成聚苯胺是在适当的条件下,用氧化剂使苯胺(An)发生氧化聚合。苯胺的化学氧化聚合通常是在苯胺/氧化剂/酸/水体系中进行的。较常用的氧化剂有过硫酸铵、重铬酸钾(K2Cr2O7)、过氧化氢(H2O2)、碘酸钾(KIO3)和高锰酸钾(KMnO4)等。(NH4)2S2O8由于不含金属离子、氧化能力强,所以应用较广。聚苯胺的电导率与掺杂度和氧化程度有关。氧化程度一定时,电导率随掺杂程度的增加而起初急剧增大,掺杂度超过15%以后,电导率就趋于稳定,一般其掺杂度可达50%。井新利等通过氧化法合成了导电高分子聚苯胺,研究了氧化剂过硫酸铵(APS)与苯胺单体的物质的量之比对PANI 的结构与性能的影响。结果表明,合成PANI 时,当n(APS):n(An)在0.8 ~1.0 之间聚合物的产率和电导率较高。研究表明,聚苯胺的导电性与H+掺杂程度有很大关系:在酸度低时,掺杂量较少,其导电性能受到影响,因而一般应在pH值小于3的水溶液中聚合。质子酸通常有HCl、磷酸(H3PO4)等,苦味酸也用来制备高电导率的聚苯胺,而非挥发性的质子酸如H2SO4和HCIO4等不宜用于聚合反应。但HCl 稳定性差,易挥发,在较高温度下容易从PANI 链上脱去,从而影响其导电性能。用大分子质子酸如十二烷基苯磺酸(DBSA)、二壬基奈磺酸、丁二酸二辛酯磺酸等掺杂聚苯胺,在提高其溶解性的同时还可以提高其电导率。大分子质子酸具有表面活化作用,相当于表面活性剂,掺杂

一 聚苯胺的合成方法

一聚苯胺的合成方法 聚苯胺的合成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。 (1) 化学合成法化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。 ①化学氧化聚合法聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。 ②乳液聚合法乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。 ③微乳液聚合法微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(<10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。 ④分散聚合法苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

相关文档
相关文档 最新文档