文档库 最新最全的文档下载
当前位置:文档库 › 硫精砂制酸、热能回收及资源综合利用建设项目报告书

硫精砂制酸、热能回收及资源综合利用建设项目报告书

硫精砂制酸、热能回收及资源综合利用建设项目报告书
硫精砂制酸、热能回收及资源综合利用建设项目报告书

1、建设项目概括

(1)项目名称

qq乾坤化工资源综合利用有限公司600kt/a硫精砂制酸、热能回收及资源综合利用建设项目。

(2)建设单位

qq乾坤化工资源综合利用有限公司。

(3)建设地点

qq省qq市qq区银山路121号。

(4)建设性质

新建。

(5)建设内容

建设规模为600kt/a硫酸 (以100%H

2SO

4

计),由两套装置组成,每套装置的规模为

300 kt/a硫酸 (以100%H

2SO

4

计)。

项目组成以及建设内容见表1:

表1 主要建设内容一览表

2、建设项目所在区域环境质量现状

(1)环境功能区划

根据qq 市人民政府《关于印发qq 市环境空气质量功能区划分方案的通知》(市政发[1997]114号),qq 区由二类区和三类区组成,其中银山路以东、东大沟以西、qq 公司运输部铁路专用线以南、氟化盐有限责任公司尾矿坝以北的区域为三类区,其余为二类区。本项目所在地为环境空气二类功能区。

根据国函[1998]5号《国务院关于酸雨控制区和二氧化硫污染控制区有关问题的批复》以及甘环发[1998]047号《关于qq 省二氧化硫污染控制区范围划定的通知》,本项目所在的qq 区属于二氧化硫污染控制区。

根据《qq 省地面水环境保护功能类别划分规定》(甘环发【1997】75号)以及《关于批准实施qq 省水环境功能区的请示》(甘水发【2007】175号),黄河qq 段均调整为Ⅲ类水域。

根据qq 市环保局对qq 区声环境功能区的划分,qq 区工农路以西为2类区,矿山路以东为3类区,其余为1类区。本项目厂址所区域为声环境2类

(2)现状环境质量评估

本次环境空气质量现状监测评价利用qq 环境监测站于2012年8月31日~9月6日对评价区的现状监测资料。

PM 10日平均浓度范围为0.105~0.196mg/m 3,其中厂址及厂址上风向七天监测数据中有一天监测数据超标,超标倍数分别是1.3、1.08。对应的评价指数分别是1.3、1.08。超标原因:是由于项目所在地属于西北内陆干旱去,监测当天气候条件较差引起的。其余SO 2、NO 2、硫酸雾日均值、小时均值均符合《环境空气质量标准》(GB3095-1996)二

级标准和《工业企业卫生设计标准》(TJ36-79)中浓度要求。

地表水环境质量现状利用qq市环境监测站2010年例行监测,由监测结果可以看出:黄河qq段各监测因子的达标率为100%,各因子污染指数在0.01-0.8之间,各监测因子均能满足《地表水环境质量标准》Ⅲ级标准,说明黄河qq段水质得到了明显的改善。

声环境方面,各监测点位噪声值低于《声环境质量标准》(GB3096-2008)中2类标准限值,声环境质量现状良好。本项目建设厂址声环境质量现状良好,基本处于背景值。

3、评价范围

根据导则评价范围确定的相关规定,根据HJ2.2-2008导则补充规定,评价范围的直径或边长一般不小于5km。因此本项目评价范围以排放源为中心,边长为5km的正方形,总面积为25km2。

地表水环境评价范围主要为黄河qq段。

地下水环境评价范围主要是厂区所在区域地下水。

声环境评价范围主要为拟建项目厂界外1m。

根据《建设项目环境风险评价技术导则》(HJ/T169-2004)要求,本项目环境空气风险评价范围以发烟硫酸罐区为中心的半径5km范围。

4、评价重点

本次评价内容包括项目区环境概况、工程分析、环境质量现状及影响预测分析、环境风险评价、清洁生产分析、环保措施、环境管理与监控计划、公众参与等。

根据本项目污染物排放特征及项目区的环境特点,确定本次评价以工程分析、大气环境影响预测及评价、环保措施可行性分析、清洁生产分析、项目选址可行性分析和风险评价作为评价重点。

5、工程污染源分析

①废气

本项目废气主要来自干吸工段产生酸性废气,废气经尾气处理装置处理后,SO

2

酸雾排放浓度及单位产品废气排放量均符合《硫酸工业污染物排放标准》(GB26132-2010)中相关要求。

表2 本项目大气污染物产生与排放情况汇总表

②废水

本项目生产废水经过污水处理站处理后全部回用不外排,生活污水经一体化生活污水处理装置处理达标后和循环水排污水一起排入东大沟。

③固废

本项目产生的烧渣作为制造水泥的掺合料材料的原料外售,废催化剂送回催化剂生产厂家回收利用。生活垃圾送生活垃圾填埋厂。

表4 固体废物产生及排放统计表

6 建设项目环境影响

营运期环境影响分析

①废气影响

根据本项目的生产规模,制酸尾气的烟气排放量一期约为110996.6m3/h,由于生产工艺过程中采用二转二吸工艺流程,正常生产情况下SO2到SO3转化率高达99.7%以上,SO3到硫酸吸收率为99.99%,二次吸收后的尾气经纤维除雾器除雾后将酸雾量降至16.2mg/Nm3,SO2浓度为181.4mg/Nm3,最后通过65m高内径1.6m的硫酸尾气排气筒排放。大气污染物排放满足《大气污染物综合排放标准》(GB16297-1996)中二级标准要求。

正常工况下PM

10、SO

2

最大落地浓度以及关心点处浓度均满足《环境空气质量标准》

中二级小时浓度标准限值,硫酸雾小时浓度以及关心点处浓度均满足《工业企业设计卫生标准》(TJ36-79)中的“居住区大气中有害物质的最高容许浓度”的要求,对环境影响较小。

②废水影响

本项目生产过程中产生的废水主要为酸性废水290m3/d,酸性生产废水经过处理后达到回用水要求后,其中90 m3/d返回净化工段,200 m3/d用于烧渣增湿,损耗20 m3/d,180 m3/d的水进入烧渣中。

循环冷却水排水1000m3/d,脱盐水站及余热锅炉排水104 m3/d,此部分废水主要含有盐分和SS,属于清净下水,达到《硫酸工业污染物排放标准》(GB26132-2010)标准限值后,排入东大沟。最终进入黄河,对黄河水质影响不大,预计项目建成后,黄河水质基本维持现状。

生活污水产生量为9.22t /d,年排放生活污水3070.26t/a。主要污染物产生浓度为CODCr350mg/L、BOD5200 mg/L 、SS300 mg/L。生活污水经厂区一体化生活污水处理系统处理后,达到《污水综合排放标准》(GB8978-96)一级标准后排入东大沟。最终进入黄河,对黄河水质影响不大。

③噪声影响

本项目各设备声源对厂界噪声贡献值与厂界背景值叠加后,厂界昼间噪声预测值在44.6 ~50.8 dB(A)、夜间噪声预测值在46.1 ~48.2dB(A)。厂界昼间、夜间预测值均能够满足《工业企业厂界环境噪声排放标准》2类标准规定限值要求。对声环境的影响不大。

④固废影响

在生产过程中产生的固体废物有:硫铁矿燃耗过程中产生的焙烧炉渣等含铁较高。污水处理过程中产生的石膏可作为制造水泥的掺合料材料的原料外售。本项目与中材qq 水泥有限公司签订了15万吨的废渣渣供应协议,与qq祁连山水泥(集团)有限公司签订量为45万吨废渣的供应协议。能够满足本项目一般工业废物综合利用的要求。

中和渣送渣库,临时堆存,定期送往中材qq水泥有限公司,作为水泥添加剂,综合利用,生活垃圾定时清运至qq市生活垃圾填埋场。

硫酸生产转化器产生的废催化剂约66t/a,该部分固废的成分主要为V2O5,属于危险废物,由厂家直接回收。在厂区内暂时存放于废旧催化剂贮存库内,贮存库严格按照《危险废物贮存污染控制标准》(GB18597-2001)进行选址和设计。

职工产生的生活垃圾运往生活垃圾填埋场进行处理,加强项目固体废物的管理,对环境影响轻微。

7、建设项目环境保护措施分析

①运营期大气环境保护措施

项目主要大气污染源为吸收塔尾气和生产过程中产生少量的无组织排放废气,主要

污染物为SO

2

、硫酸雾。通过碱洗塔吸收处理,碱洗塔塔具有净化效率高,结构紧凑、外形美观、占地面积小、耐腐蚀搞老化、强度高、重量轻,运输安装方便、易于维护管

理等特点,碱洗塔对SO

2的去除率达80%,对硫酸雾的去除效率可达90%。尾气中SO

2

度下降为约181.4mg/Nm3,酸雾浓度约16.2mg/Nm3,最终经过65米高排气筒排放,低于《硫酸工业污染物排放标准》(GB26132-2010)的限值。

②废水处理

本项目产生的废水可分为酸性生产废水、一般性生产废水以及职工生活污水。酸性生产废水经过生产废水处理站处理后,一部分用于烧渣增湿,一部分用于净化工段补充水。全部回用,不外排。

生活污水经厂区生活污水处理设施处理后,达到达到《污水综合排放标准》(GB8978-96)一级标准后排入东大沟。

③本项目建设对项目所在地下水环境影响较小,在可接受范围内。

8、总量控制

本项目总量控制指标:

287.3t/a、硫酸雾24.4t/a;

废气总量控制指标为:SO

2

废水总量控制指标为:COD 1.1 t/a

9、公众参与方式及阶段性成果

本项目环评单位在接受建设单位委托后3日后在qq环保局网站上进行了第一次公示,公示时间2012年8月15日。公示内容见附件。

本项目“第二次公示”在《qq日报》于2012年9月8日进行公示,在公示期间企业和评价单位均未接到公众的有关咨询电话,也没有公众索要本项目环境影响评价报告书的简本。

项目于2012年9月1日共发放了100份公众参与调查问卷,收回了100份。本工程的社会效益、经济效益显著。本工程的实施不仅有益于企业降低成本,促进企业长远发展,而且对增强地方经济实力起到积极作用,这是本工程得到公众支持和理解的根本点,也是最大的价值所在。

10.风险评价

本项目无重大危险源,风险事故主要为硫酸贮罐泄漏、硫酸生产线二氧化硫或三氧化硫泄漏事故。采取的风险防范措施可行,应急预案操作性强,只要严格执行风险防范措施,则对环境的风险可接受,项目建设从环境风险角度是可行的。

总之,各风险事故的发生,均将给环境造成严重后果,在营运过程中必须严格落实风险防范措施,降低风险事故的发生概率,一旦发生事故,必须严格认真落实应急预案措施,将风险后果将到最低。

11、清洁生产分析

本项目主要原料为qq乾坤化工资源综合利用有限公司尾矿副产高品位硫铁矿,采

气体制取浓硫酸,本项目产出的铁焙砂含铁量高,是炼铁的优用沸腾焙烧技术生产SO

2

质原料,不仅解决了副产硫铁矿的出路问题,而且生产出市场急需的硫酸及高铁铁焙砂,既解决了环境问题,又使企业获得很好的经济效益和社会效益,为该公司的一项清洁生产方案。

综合以上分析,本项目在原料品质、资源利用及排污等方面虽注意了清洁生产,但由于受技术水平限制,与国际大型同行业企业的水平仍有一定差距。通过对比分析,项目符合清洁生产相关要求。

12选址合理性分析

本项目位于qq市qq区银山路121号,西临qq银山水泥有限公司,东临银山路,交通运输便。现场调查结果表明,大气环境防护距离范围内没有居民聚集区和环境空气敏感点,因此拟选厂址符合大气环境防护距离的要求。

通过上述分析,在确保各项环保措施到位并正常运行的情况下,项目选址从环境空气质量角度分析是可接受的,因此总体看项目选址较合理。

13、环境管理与监测

根据建设项目生产工艺特点,监测工作内容见表5

表5 项目常规监测内容

14、建设项目环境影响评价结论

综上所述,拟建工程符合国家的各项产业政策和当地及园区和企业的规划,选址选择较合理;废气达标排放,无工艺废水,废渣全部综合利用,烟气制酸项目体现了“源头控制、清洁生产”的环保原则。项目的建设具有良好的环境效益、经济效益和社会效益,由于拟建工程工艺流程比较复杂,污染控制环节多,企业在切实落实各项污染防治措施及建议前提下,该拟建工程的建设是可行的。

硫磺制酸转化工段工艺的设计说明

200kt/a硫磺制酸转化工段工艺设计

目录 第一章绪论 (1) 1.1.硫酸的性质与用途 (1) 1.2.硫酸的工业发展史 (2) 1.3.硫酸的工业概况及其发展趋势 (3) 1.3.1.国外硫酸工业概况及其发展趋势 (3) 1.3.2.中国硫酸工业概况及其发展趋势 (4) 第二章厂址的选择 (7) 第三章原料的选择 (9) 3.1.原料的选择 (9) 3.2.硫磺制酸的优点 (9) 3.3.硫磺的来源 (10) 第四章转化工段工艺设计 (12) 4.1.基本原理 (12) 4.1.1.二氧化硫氧化热力学 (12) 4.1.2.二氧化硫氧化动力学 (12) 4.2.工艺流程 (14) 4.2.1.工艺流程的确定 (14) 4.2.1.1.二转二吸与一转一吸 (14) 4.2.1.2."3+1"与"3+2"转化工艺的主要区别 (15) 4.2.1.3.工艺流程的确定 (17) 4.2.2.工艺条件 (18) 4.2.2.1.转化器一段入口条件中二氧化硫含量 (18) 4.3.工艺设备 (20) 4.3.1.转化工段的主要工艺设备 (20) 4.3.2.自动控制方案 (22) 4.4工艺计算 (23) 4.4.1.物料衡算 (24) 4.4.2.能量衡算 (26) 第五章环境保护与安全生产 (33) 5.1.环境保护 (33) 5.2.安全生产 (33) 第六章总结 (34) 致 (36) 参考文献 (38)

第一章 绪论 1.1 硫酸的性质和用途[1,2] 硫酸(H 2SO 4)相对分子质量98.078,是指SO 3与H 2O 的摩尔比等于1的化和物, 或指100% H 2SO 4。外观为无色透明油状液体,密度(20℃)为1.8305g/cm 3。工 业上使用的硫酸是硫酸的水溶液,即SO 3与H 2O 摩尔比≤1的物质。发烟硫酸是 SO 3的硫酸溶液,SO 3与H 2O 的摩尔比≥1的物质,亦为无色油状液体,因其暴露 于空气中,逸出的SO 3与空气中的水分结合形成白色酸雾,固称之为发烟硫酸。 硫酸或发烟硫酸的浓度均可用H 2SO 4质量分数表示。但发烟硫酸的浓度常用 其中所含游离SO 3(即除H 2SO 4也外的SO 3)或全部的SO 3质量分数表示。不同表达 方式的硫酸浓度可用也下公式相互换算: C H 2SO 4=1.225C SO 3 (t)=100+0.225C SO 3 (f) C H 2SO 4——H 2SO 4的质量分数,%; C SO 3 (t)——SO 3的质量分数,%; C SO 3 (f)——游离SO 3质量分数,%。 表1.1 硫酸的组成 几种典型浓度硫酸的组成如上表1.1所示。 硫酸是强酸之一,具有酸的通性。但浓酸有其特殊的性质。物理性质方面,有相对密度大,沸点高,液面上水蒸汽的平衡分压极低等特性;化学方面,有氧化,脱水和磺化的特性,有关物理,化学性质及有关数据可查阅文献。

2020年余热回收利用行业发展趋势分析

余热回收行业分析报告 一、行业概况 余热,在能源利用设备中没有被利用的能源,包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、可燃废气废液和废料余热、以及高压流体余压等。在钢铁冶金、石化、水泥建材、玻璃等行业中都具有排烟温度高于280℃的工业锅炉、流化床锅炉、导热油炉、冶炼炉、冶金炉、高炉热风炉、加热炉,其余热回收利用空间较大。根据调查,各行业的余热总资源约占其燃料消耗总量的17%-67%,可回收利率达60%。 二、市场现状 根据《工业绿色发展规划(2016-2020年)》,“十三五”期间,全面推广余热余压回收利用技术,推进低品质热源的回收利用。余热的回收利用途径很多,总体分为热回收(直接利用热能)和动力回收(转变为动力或电力再用)两大类。根据温度范围,可分为中高温余热回收技术和低温余热回收技术。中高温余热回收技术包括:余热锅炉,燃气轮机。低温余热回收技术包括:热泵技术,热管技术,温差发电机。

余热锅炉运行环境恶劣,需要根据不同运行环境进行设计和生产,产品多为非标品,要有丰富设计经验,进入壁垒高,因此行业集中度比较高。 - 1.钢铁冶金 钢铁行业能耗约占全国工业总能耗的15%,其中余热资源约占37%,节能空间大。钢铁冶金行业余热回收利用主要包括,烧结废气、高炉煤气、转炉煤气、电炉烟气、轧钢加热炉烟气。除了宝钢、重钢等个别钢铁企业工业化水平达到了国际水平,其余厂家能耗水平都很高;全国有25吨以上的转炉达240座,按3座配备一套发电系统可配置发电量为3000Kw的电站80座;炼钢厂中的电熔炉,目前全国有20多座,其中65吨级可发电量在5000Kw/座以上。

硫磺制酸工艺流程说明

硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫 泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5?0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收 掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾 器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约

97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70C后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172 C后一部分进入第一吸收塔塔底,塔顶用来温度75C、浓度为98.0%的硫酸喷淋,吸收气体中S03后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依 次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产 品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的 炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降 温后进入第二吸收塔塔底。该塔用温度为75 C,浓度为98%的 硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40 C后进入成品酸贮罐。

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

炉窑余热的回收与利用

工业窑炉余热回收与利用 摘要:随着我国经济的快速发展,工业能源消耗剧增,与之矛盾的是化石燃料等常规能源已经发生严重短缺且价格不断升高。而在冶金等涉及到窑炉的行业中,窑炉热效率很多都低于70%,而其排空的热值占窑炉能耗的20%以上,废气的利用率很低,有很大的节能潜能。加上环境污染越来越严重,窑炉废气废渣等的排放标准提高,企业为了经济效益,各种窑炉余热回收利用技术被开发出来。同时针对不同窑炉废气废水指标要选择合适的回收利用技术,这对提高窑炉热效率,节约能源都意义重大。 本文主要从工业窑炉余热的不同利用方式,直接利用余热,主要介绍利用热管换热器直接生产热水;动力回收,主要介绍烧结余热发电技术;热泵系统利用余热,主要介绍高温水源、空源热泵利用余热,分析各种技术的可行性、优缺点、改进方向以及注意的问题等方面,定性的介绍工业窑炉余热回收与利用的近期发展状况。 关键词:工业窑炉;余热利用;热管;烧结;热泵 ABSTRACT:With high economic development in China,industrial energy exhausting is gradually increasing and at the same time conventional energy like fossil fuel is seriously shorted and the prize of the fuel is rising rapidly.In the industries referring to the furnaces such as metallurgy,the heat efficiency of most furnaces is less than 70% and their waste gas occupies 20% of the total energy exhausting .Because the use ratio of waste gas is low,there is much we can do to improve.Therefore,due to the bad environmental pollution, exhausting criterion of the contamination is https://www.wendangku.net/doc/0611816081.html,panies seek for more economic effect,so there has been emerging various advanced technologies in waste heat utilizing.We should choose right technology for different styles of waste heat which is meaningful to increase heat efficiency of furnaces and save energy.

空调系统热回收技术简介

空调系统热回收技术简介 陈振乾施明恒 (东南大学能源与环境学院南京210096) 摘要:中央空调系统的热回收技术在建筑节能中具有重大的意义。本文分析了中央空调热回收技术原理和建筑中央空调排风及空气处理中的能量回收系统。 Brief Introduction to Heat Recovery in Air Conditioning System Chen Zhenqian and Shi Mingheng (School of Energy and Environment, Southeast University, Nanjing 210096) Abstract: Heat recovery technology in central air conditioning system is very important in building energy saving. The principle of heat recovery technology in central air conditioning system is analyzed. The energy recovery in exhaust air and air handling of building is introduced. 一、前言 随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,根据发改委能源组提供的材料,从1980年到1985年我们国家GDP的年增长率是10.7%,能源消费的增长率是10.9%,1986—1990年GDP年增长是7.9%,能源消费的增长率9.2%。1991—1995年GDP的年增长率是12%,能源消费的增长率是5.9%。1995—2000 年,GDP开始时8.3%,后来调整为8.6%,能源消费增长率是0.6%。2001—2005年GDP年增长率是9.47%,能源的消费增长是9.93%。其中2003年GDP的增长率是10%,能源是15.3%,2004年GDP是10.1%,能源增长率是16.1%。从这个数字可以看出,我们国家从1980—2005年GDP的增长一直在7.8—12%之前,基本上是这个范围内波动,而能源消耗的波动很大,特别是2003、2004年,能源的消费增长远远高于GDP的增长。和发展国家相比我国每平方米的能耗是他们的3倍,这说明在能源的高消费上必须要引起全社会的重视。目前中国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。而在空调采暖这部分能耗中,大约20%~50%由外围护结构传热所消耗(夏热冬暖地区大约20%,夏热冬冷地区大约35%,寒冷地区大约40%,严寒地区大约50%)。从目前情况分析,这些建筑在围护结构、采暖空调系统,以及照明方面,共有节约能源50%的潜力。采暖空调节能潜力最大,在暖通空调设计方面加以控制就能够有效的节能能源。而新风带来的潜热负荷可以占到空调总负荷的20%-40%,开发节能的新风系统是建筑节能领域的一项重大课题。因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。本文主要对空调系统的热回收技术原理进行分析介绍。 二、空调冷水机组余热回收 中央空调的冷水机组在夏天制冷时,一般机组的排热是通过冷却塔将热量排出。在夏天,利用热回收技术,将该排出的低品位热量有效地利用起来,结合蓄能技术,为用户提供生活热水,达到节约能源的目的。目前,酒店、医院、办公大楼的主要能耗是中央空调系统的耗电及热水锅炉的耗油消耗。利用中央空调的余热回收装置全部或部分取代锅炉供应热水,将会使中央空调系统能源得到全面的综合利用,从而使用户的能耗大幅下降。通常,该热回收一般有部分热回收和全部热回收。 1、部分热回收 部分热回收将中央空调在冷凝(水冷或风冷)时排放到大气中的热量,采用一套高效的热交换装置对热量进行回收,制成热水供需要使用热水的地方使用,如图1所示。由于回收的热量较大,它可以完全替

蒸汽供热系统的热能回收利用

蒸汽供热系统的热能回收利用 采取相应措施来实现对加气砖、管桩等建筑制品的生产过程中产生的高温废汽、高温冷凝水的回收再利用,从而实现热力系统用汽数量和质量上的平衡,达到节约能源、降低生产成本,保护自然环境的目的。行业背景蒸压釜是大型容器设备,用于灰砂砖、粉煤灰砖、加气混凝土砌块、新型轻质墙体材料、混凝土管桩等建筑制品的蒸压养护,经过蒸养,使制品获得高强度。加气砖、管桩在蒸压釜蒸压养护的过程中,需要通入大量饱和水蒸汽,一个蒸养过程结束后,很大一部分蒸汽在蒸养的过程中转化为高温冷凝热水,这些热水的温度高达90℃,甚至更高;并且釜中剩余蒸汽还需排空后,产品才能出釜。目前大多数企业对高温冷凝热水和蒸汽的热能回收很少有系统做起来,多数是用简单的处理方式和简陋的设备回收一小部分,大部分的热量都浪费了。 1.存在的主要问题有 1.1.釜内蒸汽直接排放到大气,首先会使大气温度升高,污染环境,噪音很大,热能直接损失 1.2.刚从设备出来的凝结水温度较高,直接排放热量损失大,凝结水也直接损失掉了,导致锅炉的补水量增大,软水成本增加;地沟会有二次蒸汽冒出,噪音大,水蒸汽也会使周围环境空气的湿度增加,会加重周围设备、管道及设备支架的腐蚀。凝结水的价值=原水成本+软化成本+除氧成本+热量价值 1.3.这两者都是很大的热能浪费,充分利用这些热量损失是提高蒸汽供热系统热效率,是企业节能、节水必须重视的环节。 2.本文主要针对上述存在的问题,简述两种方案进行节水,节能。 2.1.蒸养结束后,釜中饱和蒸汽的利用,釜与釜之间的倒汽方案操作说明当1#蒸压釜蒸养完毕,关闭d1,e1、s1、r2阀,打开r1、m1、n、f、e2、s2,其余阀门根据实际生产状况定开、关,将1#釜内废汽通入待蒸养的2#蒸压釜。当两釜间达到压力平衡后,关掉r1、n、m1、n、f、e2,打开a、c、d2阀,进行正常进汽。1#蒸压釜内剩余汽体可以通入汽水交换器,加热锅炉给水箱软水;或通入蒸压室,提高蒸养室温度;通入生活区,用于加热洗澡水或供暖等。本装置适用于多条蒸压釜之间的蒸汽回收和再利用。根据蒸压釜的数量,相应调整分汽包有关接管的数量,以满足进排汽要求。因该行业的工艺特点是多釜轮作、排汽、预热、冲压、保温,废汽压力随停釜时间延长而逐渐降低,压差小,流速会越来越慢,针对上述问

热能回收装置

热偶现象是指两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。 据德国《科学画报》杂志报道,来自德国慕尼黑的一家芯片研发企业研究出的这种新型电池,主要由一个可感应温差的硅芯片构成。当这种特殊的硅芯片正面“感受”到的温度较之背面温度具有一定温差时,其内部电子就会产生定向流动,从而产生“微量但却足够用的电流”。负责研发这种电池的科学家温纳·韦伯介绍说,“只要在人体皮肤与衣服等之间有5℃的温差,就可以利用这种电池为一块普通的腕表提供足够的能量。” 据美国物理学家组织网1月19日(北京时间)报道,美国西北大学的化学家、物理学家和材料学家携手研发出一种新材料,这种新材料展示出了高性能的热电特性,能更有效地将机动车的排气系统、工业生产过程和设备、太阳光等发热系统产生的废热转化为电力,其转化效率高达14%,这在科学史上尚属首次。该突破可广泛应用于汽车、玻璃制造等领域。研究结果发表在《自然·化学》杂志上。 该论文的联合作者之一、西北大学化学教授梅科瑞·卡纳茨迪斯说:“早在100多年前,科学家就知道半导体拥有能利用电力的特性。为了使这一过程变得有效,人们需要找到正确的材料,现在我们已找到制造这种材料的配方。” 卡纳茨迪斯团队将岩盐纳米晶体溶解在碲化铅内制造出了这种新材料。以前,科学家针对大块物质中内含纳米结构进行的研究表明,纳米内含物可以改进碲化铅的能量转化效率,但纳米内含物也会让电子扩散更多,消减整个组合物的导电能力。在此项研究中,西北大学的研究团队首次证明,碲化铅内内含纳米结构可以同时做到消减电子扩散和提高能源转化效率。 论文联合作者、西北大学材料科学和工程教授文纳雅克·戴维说:“我们可以将这种材料放在一个只有几根电线的廉价设备内部,并将其同电灯泡之类的设备连接在一起。利用灯泡产生的热量,并将其中约10%到15%的热量转化为能效更高的电能,这种设备能使灯泡更有效地工作。” 卡纳茨迪斯表示,利用此项科学突破,汽车、化工、玻璃和其他任何利用热能进行生产的工业都能提高其系统的能效。戴维说:“环保领域的专家也会对该突破感兴趣,但这仅仅只是一个开始。这类结构还可以在诸如机械特性和改进材料的强度和韧度方面起作用。” 总编辑圈点 单说热电转换率的话,垃圾发电系统中广泛采用的碱金属热电转换技术可以超过30%,西北大学这份14%的成绩单相比之下好像有点拿不出手。不过别忘了,基于半导体材料的此类装置以往蹦着高也没够到12%的天花板。另外,传统的高效率热电转换部件如果用作汽车

硫磺制酸工艺流程及风机的应用教程文件

硫磺制酸工艺流程及风机的应用 【摘要】硫磺制酸风机是我公司轴流鼓风机涉及的一个新的领域。本文主要针对硫酸工艺和风机的应用谈一些体会,特别是近期云南富瑞机组在执行过程中出现的技术性问题还需完善。 【关键词】硫磺制酸防喘振系统逆流金属钝化现象密封 1.硫酸生产的原料组成: 硫酸生产的原料是指能够产生SO2的含硫物质。工业原料主要有: 硫磺:用硫磺制造硫酸是使用最早而又最好的原料,该原料制造硫酸流程简单、投资省、产品纯、成本低,是一种理想的制酸原料。 硫铁矿:硫铁矿是硫元素在地壳中存在的主要形态之一。主要成分为FeS2(理论含硫量53.45%、含铁量46.55%),矿石品位按实际含硫量多少而分。开采出来的矿石呈块状,必须经过破碎和筛分,同时对浮选硫铁矿和尾砂烘干,对不同成分原料进行混合配料等。在制酸的同时,矿渣可用来生产铁、水泥等。 含硫气体:石油气、焦炉气和煤气中都含有硫化氢,将其分离燃烧可得到二氧化硫。 硫酸盐:用硫酸盐制取硫酸的同时可以制得其它化工产品。如用硫酸钠可联合生产硫酸和纯碱。 此外,有色金属冶炼过程中产生大量的含二氧化硫的烟气、煤燃烧时排出的烟气中均含有二氧化硫,这些气体中的硫化物都是制硫酸的原料,不但回收资源而且还消除了公害。 我国主要以硫铁矿为原料,其次为硫磺和有色金属冶炼废气。我公司目前的AV71-4和 AV80-4轴流压缩机组主要应用于国内硫磺制酸行业规模在30万吨/年以上的装置中。 2.硫磺制酸的工艺 下图为硫磺制酸工艺流程图。工艺流程中同时出现了两种流程的风机配置形式: 2.1在干燥塔前、后均设置风机,塔前为开车风机,塔后为正常生产时使用的风机。2.2只在干燥塔前设置风机,用来开机及生产(或另有备机)。

硫磺制酸

目录 绪论 (2) 1 熔硫岗位操作规程 (3) 1.1岗位任务与治理范围 (3) 1.2工艺流程与操作指标 (3) 1.3开、停车方法 (4) 1.4岗位操作要点 (6) 1.5不正常现象及处理方法 (7) 2 焚硫及转化岗位操作法 (8) 2.1岗位任务及治理范围 (8) 2.2工艺流程与操作指标 (8) 3 干吸岗位操作法 (11) 3.1岗位任务与治理范围 (11) 3.2工艺流程与操作指标 (11) 4 锅炉岗位操作法 (14) 4.1岗位任务与治理范围 (14) 4.2工艺流程与操作指标 (14) 5 汽轮机、风机岗位操作法 (16) 5.1岗位任务与治理范围 (16) 5.2操作指标 (16) 6 脱盐水岗位操作法 (17) 6.1岗位任务与治理范围 (17) 6.2工艺流程与操作指标 (17) 结论 ................................................ 错误!未定义书签。参考文献 .............................................. 错误!未定义书签。

绪论 硫酸是重要的化工原料,生产硫酸的原料主要有硫磺,冶炼烟气和硫铁矿。硫磺是当前世界硫酸生产的主要原料,全世界硫磺制酸约占75%,硫铁矿制酸约占16%。与硫铁矿制酸相比,硫磺制酸具有投资省,流程简单,能源利用率高和操作人员少等优点,比硫铁矿制酸更经济,并可减少废水和废渣排放,更好的达到环保要求。 由于天然硫资源缺乏,近几年由于国际硫磺价格降低,国内硫铁矿供应紧张,促使国内硫磺制酸得到很快发展(见附图1)。 我国硫磺制酸发展需要注意以下几点: 1﹑装置大型化 对于硫磺制酸来说,由于工艺流程短,操作控制容易,装置易大型化。 2﹑采用两转两吸新工艺,选用新型催化剂 两转两吸流程在工艺﹑设备上日趋成熟,新建装置应尽量采用两转两吸流程,同时应选用高活性﹑低燃点和低压降的新型钒催化剂,从而提高转化率,降低能耗和减少二氧化硫排放。 3﹑综合利用余热资源 应充分利用硫磺制酸过程中产生的大量高﹑中﹑低温余热,用于产生次高压蒸汽或中压蒸汽以及低压蒸汽。 4﹑提高装置自动化水平 硫磺制酸流程简单﹑操作方便﹑工艺稳定,容易实现微机自动控制。在新建的或改建硫磺制酸装置时,应采用微分集散控制系统,提高自动化水平。

(完整版)乏汽热能回收装置简介new

热力除氧器、疏扩、定扩排汽热能 回收装置简介 南京兆泉科技有限责任公司 二0一一年二月

南京兆泉科技有限责任公司 简介 南京兆泉科技有限责任公司位于风景秀丽的紫金山南麓—南京理工大学国家大学科技园,公司秉持“专业、创新、品质、服务”的创业理念,致力于节能及环保安全工程产品的研发、生产及应用。可为企业节能降耗提供最佳系统解决方案。公司具有本科以上学历的员工占90%,拥有一支既有高学历又有现场务实经验的技术研发队伍。在节能及安全系统工程方面拥有一批核心技术。 公司拥有多项余热回收利用的专利技术,如:一种含氧排汽热能回收装置,专利号:ZL 2005 2 0072109.2,证书号:第846345;一种能回收排汽热能的定排扩容器,专利号:ZL 2009 2 0072109.2,证书号:第1449853。特别擅长对低(无)压蒸汽和凝结水热能的回收利用,如锅炉除氧器含氧排放汽、连排及定扩闪蒸汽乏汽热能回收及企业装置排放的各类工艺排放汽和凝结水的回收利用。能为企业的创造良好的经济效益、改善企业的生产环境,为企业节能减排提供了有力的保障。 随着能源价格的上涨,蒸汽价格也在不断上升,为降低生产成本,增加市场竞争力,企业对各类低(无)压蒸汽热能和凝结水热能的回收利用显得十分迫切。目前本公司生产的乏汽热能回收装置和凝结水利用已在石化、钢铁、电厂、轻工、造纸等企业得到广泛应用,并获得用户的一致好评。 公司乏汽回收装置,目前已被中石化镇海炼化、中石化金陵分公司、中石化齐鲁分公司、金桐石化、鞍钢集团、攀钢集团、宝钢集团梅山钢铁、南钢集团、霍煤集团、华能山东黄台电厂、江苏利港电力有限公司等几十家大型企业广泛采用,运行情况良好。 公司为中石化、中石油物资装备中心设备供应商。公司已于2009年1月通过了ISO9001:2000国际质量体系认证,环保工程专业承包三级资质。公司将以先进、完善的产品体系,一流的产品质量,富有竞争力的产品价格和良好的售后服务,真诚地与用户携手合作,为国家节能减排事业作出贡献。

空压机余热回收系统原理

●空压机余热回收系统节能原理: 螺杆空压机的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。 螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。 ●安装空压机余热回收系统的好处: 1、安全、卫生、方便 螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。 2、提高空压机的运行效率,实现空压机的经济运转 螺杆空压机的产气量会随着机组运行温度的升高而降低。在实际使用中,空压机的机械效率不会稳定在80℃标定的产气量上工作。温度每上升1℃,产气量就下降0.5%,温度升高10℃,产气量就下降5%。一般风冷散热的空压机都在88—96℃间运行,其降幅都在4—8%,夏天更甚。安装螺杆空压机余热回收系统的空压机组,可以使空压机油温控制在80—86℃之间,可提高产气量8%~10%,大大提高了空压机的运行效率。 ●空压机余热回收系统特点: 1、空压机原有冷却系统与空压机余热回收系统是两套完全独立的系统,使用者无须担心由于空压机余热回收系统的原因而影响空压机的运行。两套系统的切换自动控制,在空压机余

锅炉的余热回收技术

锅炉的余热回收技术 锅炉的排烟温度一般在120℃~350℃,烟气中有7%~25%的显热和15%的 潜热未被利用就被直接排放到大气中。这不仅造成大量的能源浪费也加剧了环 境的热污染;一方面,我们设计的高效烟气余热回收装置不仅能够满足加工生活热水或采暖水的需要,也能够将锅炉的排烟温度冷却至100度使得锅炉的工作 效率显著提高。另一方面,也为全国蓝天白云环保事业做出了应有的贡献。 我公司的锅炉的余热回收装置是引用超导热管节能技术,具有自主知识产 权的高效烟气余热回收装置。它特别设计了一套冷凝水的排放装置,使冷凝过 程产生的冷凝水及时地排放,从而避免了冷凝水的二次蒸发,使余热回收装置 的回收效率得到保证,这套系统已获得国家专利。 我公司的锅炉采用新型的换热翅片、换热元件,以及凝结水排水结构能够 充分回收烟气中的潜热,排烟温度可降到40℃~80℃;总压降较小,动力消耗少,即烟气压降小且符合系统要求。由于采用了高效的换热元件以及合理的结 构配置,使得该产品重量轻,尺寸小、外形美观。 我公司的锅炉烟气冷凝器换热管采用不锈钢制作高效防腐。设备在制作时 就充分考虑了热应力、防腐性能和强度等,能够保证设备的安全、可靠、稳定。一般一至两年就可收回加装该设备的投资成本,两年后即可获得节能受益,可 以为用户带来显著的经济效益。 由于锅炉烟气余热回收装置的特殊结构能够有效降低锅炉烟气的排放噪音。由于烟气中的部分水蒸气变成冷凝水,可以使烟气中的NOx等有害气体部分溶解,减少排入大气的有害气体。余热回收装置可组装在锅炉上部,缩小占有空间,生成在传热面上的凝结水亦可自然排出。烟气阻力小,对原锅炉排烟系统 影响小,大部分锅炉房不用增加引风机或增加烟囱高度。 河北耀一节能环保专注节能行业15年,老品牌,值得信赖!现全国火热招商中,想加入我们的团队,想开创节能事业,那就赶紧加入我们的大家庭吧!欢迎各 位来电咨询! 公司名称:河北耀一节能环保设备制造有限责任公司 主营产品:余热回收,有机废气处理,循环水处理,油田节能,生物质燃 烧机,车间降温,烘干机、智能节电设备

余热回收系统设计方案

国电太一13号、14号炉分控相变余热回收系统 设计方案说明书

太一13、14号炉余热回收系统设计方案 热力系统设计方案 本设计严格遵照投标文件的技术方案和技术要求,相关内容见投标文件。本说明仅为细化图纸的说明,作为投标文件的补充。本系统图是在投标文件的基础上进行了细化,增加了详细的管道、设备布置和规格。 烟道热源换热器分为4组布置在除尘器前的水平烟道上,重心在风机房最靠近除尘器的支撑横梁上,设安装平台,并进行横梁加固(由脱硝装置改造单位配套完成)。膨胀节设在靠近除尘器一侧,换热器采用滑动支撑。二次风道冷源换热器布置在送风机出口的水平风道,一次风道冷源换热器布置在一次风机出口的弯道前倾斜布置。 气流调节分为两个单元,即左侧的两个烟道换热器的出口蒸汽母管汇合后由一个调节阀控制,相应右侧两个烟道换热器的出口蒸汽母管汇合后由另一个调节阀控制,部分母管制简化了系统,也增加了系统的稳定。水位的调节由四个水位计分别控制四个供水调节阀,左侧的两个水位计分别指示左侧两个烟道换热器的上部单元和下部单元,右侧的两个水位计分别指示右侧两个烟道换热器的上部单元和下部单元。每个换热单元都独立设有隔离阀。为防止冬季设备停运时管路冻裂,每个换热单元都独立设有放水阀。 烟道换热器进出口的阀门分左右侧,集中布置在风机房顶,汇总到母管后由风机房顶进入风机房二次风道换热器侧。水箱和汽液换热器等设备布置在零米风道换热器之间,水泵布置在水箱附近-1.0米的泵坑。 为了夏季进一步降低排烟温度,本设计补充了凝结水加热器作为备用设备,凝结水加热器的耗汽量为余热回收系统最大负荷的35%。 本设计的排空管路由三个电磁阀控制,便于手动和自动操作。本设计的补充氮气系统是为了在冷源换热器负压较大时,在不改变相变分压的前提下,增加系统全压,避免空气漏入系统内。 另外,本次工程还将原风道内的暖风器拆除,以减小系统的阻力,降低风机的电耗。本余热回收系统可替代原暖风器系统,但供汽和回水仍用原系统管路。

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

热回收空调原理、特点及优势

热回收空调原理、特点及优势

热回收空调原理、特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部

分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下:

依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越

空压机余热回收系统原理

空压机余热回收系统原 理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

●空压机余热回收系统节能原理: 螺杆的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。 螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。 ●安装空压机余热回收系统的好处: 1、安全、卫生、方便 螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。 2、提高空压机的运行效率,实现空压机的经济运转

余热回收利用报告

关于“第八届余热回收利用研讨会”学习报告11月1号有幸参加了“第八届余热回收利用研讨会”,通过参加此次研讨会了解了国内外在余热回收利用方面的新技术,其中一些技术已经用于实践生产,并取得了良好的经济效益,以下是本次报告主要的内容: 1、介绍余热综合利用的潜力及必要性; 2、介绍国内外关于钢厂余热回收利用的最新技术。 3、总结适用于我公司的余热再回收技术。 一、余热综合利用的潜力及必要性。 钢铁工业是能源消耗的大户,我国钢铁工业生产过程中的能源有效利用率仅为30%左右,能源使用效率的低下造成钢铁企业能源成本增加,产品竞争力下降。钢铁行业在生产过程中产生大量余热能源,吨钢产生的余热总量约占吨钢能耗的37%。 我国大型钢铁联合企业余热、余能资源的回收利用率约为30%-50%,但与国际先进水平相比仍有很大的差距。国际平均利用率达80%以上,我们的节能工作仍有很大的空间,大量的余热资源可以回收产生蒸汽,做好余热蒸汽的回收和科学利用可以使钢铁企业对一次能源的需求量减少约8%。 当前,在钢铁行业面临产能过剩、结构调整、资料能源成本和环保代价日益加大,回收余热、余能越来越受到关注,成为钢铁企业节能降耗、降低成本的重点。 二、现国内在余热回收方面的研究及应用于实际工业生产的最新技术。 研究一:提高换热器的换热效率,改善换热器的换热结构及材质,使换热器能 够在更加恶劣的换热环境下使用。 在节能减排的新形势下天津大学朱教授发明了新一代高效节能平行流管壳式换热器,实现了换热器管/壳程空间可控的纯逆流,提高了总传热效率30%-60%,降低运行阻力20%-70%,大大降低了动力设备的能耗,节能15%-40%、节材20%-40%、节地30%-70%,此项研究成果已获得国家相关部门认可并已应用于实际生产当中。 设计原理:传统管壳式换热器由折流板改变流体方向,通过冷热介质在管内外的换热,使工质达到冷却或加热的目的,而朱教授摒弃了这种以碰撞形式进行

低温余热回收技术

低温余热回收技术--热泵节能技术 时间:2007-10-20 11:23:19 来源:原创作者:剑气书生 1引言 在工业生产中,不但需要大量能源,而且产生和浪费了大量各种型式的余热,特别是低温位余热。实践证明,低温余热完全可以作为二次能源开发和利用,其中采用热泵技术就是重要方法之一。近年来,国外热泵技术已成功地应用于许多工业部门,并取得了良好的节能效果。 我们知道,热量可以自发地从高温物体传递到低温物体,但不能自发地沿相反方向进行传递。然而,根据热力学第二定律,若以机械功作为补偿条件,热量也可以从低温物体转移到高温物体中去。热泵就是根据这一定律,靠消耗一定能量(如机械能、电能)或使一定能量的能位降级,迫使热量由低温热源(物体)传递到高温热源(物体)的机械装置。热泵的工作原理与制冷机相同,只是目的不同而已。用于供冷的称制冷机;用来供热的则称热泵,二者均按逆卡诺循环方式工作。 2热泵的分类 利用热泵的工作有二:一是使低温余热的温位提高,使之获得较高温度后的热源能用于工艺过程,这种热泵称为温度提高型热泵。二是将低温热源的余热传递给高温热源,满足整个系统能量平衡的需要,这种热泵称为热量获得型热泵。热泵按其工作原理还可分为蒸汽压缩式热泵、吸收式热泵、化学式热泵三大类。压缩式热泵按其介质的循环方式可分为开式热泵和闭式热泵。不同类型热泵的工作原理是不相同的,蒸汽压缩式热泵按其工作原理又可分为机械压缩式和蒸汽喷射压缩式两种。化学式热泵目前还处于探索、研究阶段。这里主要介绍蒸汽压缩式热泵的机理、节能原理及其在化工中的应用前景。 3热泵工作原理 3.1机械压缩式热泵的工作原理 低温蒸汽通过压缩机吸收外功后,提高其温位者称机械压缩式热泵。由于压缩机的压缩比一般都比较大,故余热温位可以得到较大提高,这种热泵属温度提高型热泵,其工作原理如图1所示。构成机械压缩式热泵的主要部件有蒸发器2、压缩机3、冷凝器4、膨胀阀(节流阀)6等。所用循环工质均为低沸点介质,如氟利昂、氨等。机械压缩式热泵系统的工作过程如下:低佛点工质流经蒸发器时蒸发成蒸汽,此时从低温位处吸收热量,来自蒸发器的低温低压蒸汽,经过压缩机压缩后升温升压,达到所需温度和压力的蒸汽流经冷凝器,在冷凝器中,将从蒸发器中吸取的热量和压缩机耗功所相当的那部分热量排出。放出的热量Q就传递给高温热源5,使其温位提高。蒸汽冷凝降温后变成液相,流经节流阀6膨胀后,压力继续下降,低压液相工质流入蒸发器,由于沸点低,因而很容易从周围环境吸收热量而再蒸发,又形成低温低压蒸汽,依此不断地进行重复循环。此时,若将蒸发器放在盛水的容器中,蒸发器内的低沸点介质,就吸收水中的热量,使水温不断下降而成冰水(甚至结冰)。吸收了周围环境热量的蒸汽再进入压缩机,供给压缩机以功(机械功或电能)而驱动压缩机不断运行,如此循环往复不断,就能使低温热量连续不断地传递到高温热源处,以满足工艺和其他方面的需要,从而使难以直接利用的低温位热能得到有效的利用,达到节能目的。故热泵是一种充分利用低品位热能的高效节能装置。

相关文档