文档库 最新最全的文档下载
当前位置:文档库 › 张吉培300MW汽轮机热力系统方案

张吉培300MW汽轮机热力系统方案

张吉培300MW汽轮机热力系统方案
张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR

专科生毕业设计开题报告

2011 年 09 月 24 日

摘要

节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。

热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。

本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法——

常规计算方法、简捷计算、等效热降法。

关键词:节能、热经济性分析、热力系统

目录

N300MW汽轮机组热力系统分析- TMCR (1)

专科生毕业设计开题报告 (1)

摘要 (4)

关键词 (4)

第一章绪论 (9)

1.1 毕业设计的目的 (9)

1.2国外研究综述 (9)

第二章 300MW汽轮机组的结构与性能 (11)

2.1汽轮机工作的基本原理 (11)

第三章热力系统的设计 (14)

3.1主、再热蒸汽系统 (14)

3.1.1主蒸汽系统 (15)

3.1.2再热蒸汽系统 (15)

3.2主给水系统 (16)

3.2.1除氧器 (16)

3.2.2高压加热器 (16)

3.2.3其他 (17)

3.3凝结水系统 (17)

3.3.1凝结水用户 (17)

3.3.2凝结水泵及轴封加热器 (18)

3.4抽汽及加热器疏水系统 (18)

3.5轴封系统 (19)

3.6高压抗燃油系统 (20)

3.6.1磁性过滤器 (20)

3.6.2自循环滤油系统 (21)

3.7润滑油系统 (21)

3.8本体疏水系统 (21)

3.9发电机水冷系统 (22)

3.10原则性热力系统 (23)

3.11调节保安系统图 (24)

3.11.1电子控制器柜 (24)

3.11.2操作系统 (24)

3.11.3蒸汽阀伺服执行机构 (24)

3.11.4EH供油系统 (24)

3.11.5保安系统 (25)

第五章设计总结 (56)

致 (56)

参考文献 (57)

附录 (57)

附录2 附图 (73)

第一章绪论

1.1 毕业设计的目的

汽轮机是高等院校热能与动力工程专业的一门专业课程,是现代化国家重要的动力

机械设备。通过本次设计,可以使我进一步深入学习汽轮机原理,基本结构等相关知识,同时也为我以后的工作打下了良好的理论基础。通过这次设计,还可以培养我的实践技能,总结合巩固已学过的基础理论知识,培养查阅资料、使用国家有关设计标准规,进

行实际工程设计,合理选择和分析数据的能力,锻炼提高运算、识图计算机绘图等基本

技能,增强工程概念,培养了我对工程技术问题的严肃、认真和负责的态度,并在实践过程中吸取新的知识。

二、国外现状和发展趋势

·汽轮机的起源

公元1世纪,亚历山大的希罗记述的利用蒸汽反作用力而旋转的汽转球,又称为风神轮,是最早的风式汽轮机的雏形。1629年,意大利的G.de布兰卡提出由一股蒸汽冲击叶片而旋转的转轮。1882年,瑞典的C.G.P.de拉瓦尔制成第一台5马力(3.67千瓦)的单级冲动式汽轮机。1884年,英国的C.A.帕森斯制成第一台10马力(7.35千瓦)的多级动式汽轮机。1910年,瑞典的B.& F.容克斯川兄弟制成辐流式汽轮机。

19世纪末,瑞典拉瓦尔和英国帕森斯分别创制了实用的汽轮机。拉瓦尔于1882年制成了第一台5马力(3.67千瓦)的单级冲动式汽轮机,并解决了有关的喷嘴设计和强度设计问题。单级冲动式汽轮机功率很小,现在已很少采用。

20世纪初,法国拉托和瑞士佐莱分别制造了多级冲动式汽轮机。多级结构为增大汽轮机功率开拓了道路,已被广泛采用,机组功率不断增大。帕森斯在1884年取得英国专利,制成了第一台10马力的多级式汽轮机,这台汽轮机的功率和效率在当时都占领先地位。

20世纪初,美国的柯蒂斯制成多个速度级的汽轮机,每个速度级一般有两列动叶,在第一列动叶后在汽缸上装有导向叶片,将汽流导向第二列动叶。现在速度级的汽轮机只用于小型的汽轮机上,主要驱动泵、鼓风机等,也常用作中小型多级汽轮机的第一级。

发展前景

汽轮机的出现推动了电力工业的发展,到20世纪初,电站汽轮机单机功率已达10兆瓦。随着电力应用的日益广泛,美国纽约等大城市的电站尖峰负荷在20年代已接近1000兆瓦,如果单机功率只有10兆瓦,则需要装机近百台,因此20年代时单机功率就已增大到60兆瓦,30年代初又出现了165兆瓦和208兆瓦的汽轮机。

此后的经济衰退和第二次世界大战期间爆发,使汽轮机单机功率的增大处于停顿状态。50年代,随着战后经济发展,电力需求突飞猛进,单机功率又开始不断增大,陆

续出现了325~600兆瓦的大型汽轮机;60年代制成了1000兆瓦汽轮机;70年代,制成了1300兆瓦汽轮机。现在许多国家常用的单机功率为300~600兆瓦。

汽轮机在社会经济的各部门中都有广泛的应用。汽轮机种类很多,并有不同的分类方法。汽轮机的蒸汽从进口膨胀到出口,单位质量蒸汽的容积增大几百倍,甚至上千倍,因此各级叶片高度必须逐级加长。大功率凝汽式汽轮机所需的排汽面积很大,末级叶片须做得很长。

汽轮机装置的热经济性用汽轮机热耗率或热效率表示。汽轮机热耗率是每输出单位机械功所消耗的蒸汽热量,热效率是输出机械功与所耗蒸汽热量之比。对于整个电站,还需考虑锅炉效率和厂用电。因此,电站热耗率比单独汽轮机的热耗率高,电站热效率比单独汽轮机的热效率低。

一座汽轮发电机总功率为1000兆瓦的电站,每年约需耗用标准煤230万吨。如果热效率绝对值能提高1%,每年可节约标准煤 6万吨。因此,汽轮机装置的热效率一直受到重视。为了提高汽轮机热效率,除了不断改进汽轮机本身的效率,包括改进各级叶片的叶型设计(以减少流动损失)和降低阀门及进排汽管损失以外,还可从热力学观点出发采取措施。

根据热力学原理,新蒸汽参数越高,热力循环的热效率也越高。早期汽轮机所用新蒸汽压力和温度都较低,热效率低于20%。随着单机功率的提高,30年代初新蒸汽压力已提高到3~4兆帕,温度为400~450℃。随着高温材料的不断改进,蒸汽温度逐步提高到535℃,压力也提高到6~12.5兆帕,个别的已达16兆帕,热效率达30%以上。50年代初,已有采用新蒸汽温度为600℃的汽轮机。以后又有新蒸汽温度为650℃的汽轮机。

现代大型汽轮机按照其输出功率的不同,采用的新蒸汽压力又可以分为各个压力等级,通常采用新蒸汽压力24.5~26兆帕,新蒸汽温度和再热温度为535~578℃的超临界参数,或新汽压力为16.5兆帕、新汽温度和再热温度为535℃的亚临界参数。使用这些汽轮机的热效率约为40%。

另外,汽轮机的排汽压力越低,蒸汽循环的热效率就越高。不过排汽压力主要取决凝汽器的真空度,真空度又取决于冷却水的温度和抽真空的设备(通常称为真空泵),如果采用过低的排汽压力,就需要增大冷却水流量、增大凝汽器冷却水和冷却介质的换热面、降低被使用的冷却水的温度和抽真空的设备,较长的末级叶片,但同时真空太低

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

2-、4-汽轮机大修技术协议书范本

2#、4#汽轮机大修技术要求 甲方: 乙方: 甲方就2#、4#汽轮发电机组的所有标准项目大修和下列的特殊项目大修委托乙方进行工作,经甲、乙双方协商,达成协议如下: 一、大修重点项目的质量标准: (一)2#、4#汽轮机大修重点: 1、若更换轴封,质量标准见汽轮机安装使用说明书。 2、消除调速系统漏油缺陷,使各处无任何渗漏痕迹。 3、推力间隙达到汽轮机安装使用说明书要求,满负荷时,各瓦块温度达到电力建设施工及验收技术规(汽轮机组篇)标准。 4、阻汽片间隙:调节级1.0-1.5mm,压力级1.5-2.0mm,隔板阻汽片检查。 5、检查汽缸结合面、高压调节汽室结合面是否漏汽,必要时进行处理,符合要求。 6、电磁阀动作不泄油,解体检修。保证能够正常动作。 (二)2#、4#发电机大修项目重点及标准要求: 1、发电机转子抽装 2、按标准规进行2#、4#发电机及1#主变的预防性试验及保护试验,并出具试验报告。 3、转子抽出后按标准对定子、转子进行清灰检查 4、对解体发电机检查有异常的部位按相关标准要求进行处理 二、汽轮机大修标准项目的质量标准: 1、汽缸检修质量标准: 1.1汽缸结合面不漏汽,汽缸疏水导管无漏汽痕迹,质量保证期要在一个大修期(3年)。 1.2汽缸结合面及汽缸洼窝清扫干净。 1.3汽缸法兰螺栓丝扣完整无毛刺,与螺栓配合灵活无松动。 1.4上下汽缸无裂纹、无损伤,汽缸水平横向坡度≤0.01mm/m。 1.5汽缸无任何异物杂质,各疏排水孔要畅通。 1.6汽缸结合面的涂料一定要均匀,无杂质,涂层厚度为0.2-0.5mm。 1.7滑销系统中各处滑销无锈蚀,表面光滑,间隙均匀,清理干净,涂铅粉后安装。 1.8滑销系统中的各处间隙值按汽轮机安装使用说明书的标准进行。 2、汽封检修质量标准: 2.1汽封体、汽封环及洼窝清扫干净。所有汽封片完整无损伤 2.2前汽封齿与汽封环之间的径间隙为0.15-0.2mm。 2.3隔板汽封齿与汽封环之间的径间隙0.25-0.3mm。 2.4后汽封齿与汽封环之间的径间隙0.15-0.2mm。 2.5汽封环安装后应灵活无卡涩。 3、转子检修质量标准: 3.1调整后通流部分动静间隙值应符合汽轮机安装使用说明书要求。

600MW凝汽式汽轮机组的热力计算

超临界压力600MW 中间再热凝汽式汽轮机在额定工况下的热经济指标计 机组型号:N600-24.2/566/566 汽轮机型式:超临界、单轴、三缸(高中压合缸)、四排汽、一次中间再热 凝汽式 蒸汽初参数:MPa p 2.240=,5660=t ℃;MPa p 51546.00=?, 再热蒸汽参数:冷段压力MPa p in rh 053.4=,冷段温度5.303=in rh t ℃;热段压 力MPa p out rh 648.3=,热段温度0.566=out rh t ℃;MPa p rh 4053 .0=?, 排汽压力:kPa p c 4.5= (0.0054MPa ) 抽汽及轴封参数见表1。给水泵出口压力MPa p pu 376.30=,凝结水泵出压 力为MPa 84.1。机械效率、发电机效率分别取为99.0=m η,988.0=g η。 汽动给水泵用汽系数pu α为0.05177 表1 N600-24.2/566/566型三缸四排汽汽轮机组回热抽汽及轴封参数

解: 1.整理原始资料 (1)根据已知参数p 、t 在s h -图上画出汽轮机蒸汽膨胀过程线,得到新 汽焓等。0.33960=h kg kJ ,82.2970=in rh h kg kJ ,2425.3598=out rh h kg kJ , 9.62782.29702425.3598=-=rh q kg kJ 。 (2)根据水蒸汽表查的各加热器出口水焓wj h 及有关疏水焓'j h 或d wj h ,将机 组回热系统计算点参数列于表2。

图1 超临界压力600MW三缸四排汽凝汽式机组蒸汽膨胀过程线

汽轮机技术协议

2χ12MW焦炉煤气发电工程 汽轮机设备订货 技 术 协 议 目录 第一章工厂技术条件 第二章技术参数 第三章汽轮机技术性能 第四章汽轮机结构说明 第五章汽轮机供货范围 第六章发电机技术要求 第七章汽轮机备品备件及随机工具 第八章图纸资料 第九章技术标准 第一十章技术服务 第十一章其它 总则 (以下简称买受方)煤气发电项目,安装2台75t/h焦炉煤气锅炉,配套2台12MW的次高温次高压抽凝式汽轮发电机组,本技术协议提出了汽轮发电机组的功能设计、结构、性能、安装和试验等方面的技术协议要求。 本技术协议所提出的是最低限度的技术要求,并未对所有技术细节作出明确规定,也未充分引述有关标准、规范中的条文。出卖方应保证提供符合本技术协议和工业标准的优质产品。 如出卖方没有以书面形式对本技术协议的所有条文提出异议,那么买受方可以认为出卖方提供的产品完全满足本技术协议的要求。 本技术协议所引用的标准如遇与出卖方所执行的标准发生矛盾时,按较高标准执行。合同签订后7天,出卖方提出合同设备的设计、制造﹑检验/试验﹑装配﹑安装﹑调试﹑试运﹑验收﹑试验﹑运行和维护等标准清单给买受方确认。 本设备技术协议书未尽事宜,由买受方、出卖方共同协商确定。

本技术协议经买受方、出卖方确认后作为订货合同的技术附件,与合同正文具有同等效力。 1. 设计基础资料: 1.1. 汽机安装位置 设备安装在煤气发电站内。 1.2. 气象地质资料 第一章工厂技术条件 1、冷却水 循环水:进口压力:≤0. 2MPa 进口温度:正常25℃最高33℃ PH值 7~8 清洁系数 0.8 冷却水量 6400m3/h 2、电力: 动力电源:10000V 380V 50HZ 三相;220V 50HZ 单相; 事故电源:DC 220V , DC 24V

汽轮机课程设计(中压缸)

题目:600MW超临界汽轮机通流部分设计 (中压缸) 学生姓名:丁艳平 院(系)名称:能源与动力工程 班级: 热能与动力工程03-03班 指导教师:谭欣星 2006 年11 月

能源与动力工程学院 课程设计任务书 热能动力工程专业036503班 课程名称汽轮机原理 题目600MW超临界汽轮机通流部分设计(中压缸)任务起止日期:2006年11 月13 日~ 2006年12 月4 日 学生姓名丁艳平2006年12月4日指导教师谭欣星2006年11月5日教研室主任年月日院长年月日

能源与动力工程学院 2. 此任务书最迟必须在课程设计开始前三天下达给学生。

600MW超临界汽轮机通流部分设计(中压缸) 摘要 本文根是根据给定的设计条件,确定通流部分的几何尺寸,以求获得较高的相对内效率。 设计原则是保证运行时具有较高的经济性;在不同的工况下工作均有高的可靠性;同时在满足经济性和可靠性要求的同时,考虑了汽轮机的结构紧凑,系统简单,布置合理,成本低廉,安装与维修方便,心以及零件的通用化和系列化等因素。 主要设计过程是:分析与确定汽轮机热力设计的基本参数,选择汽轮机的型式,配汽机构形式,通流部分及有关参数;拟定汽轮机近似热力过程曲线,并进行热经济性的初步计算;根据通流部分形状和回热抽汽点的要求,确定中压级组的级数并进行各级比焓降的分配,对各级进行详细的热力计算,确定汽轮机实际热力过程曲线,根据热力计算结果,修正各回热汽点压力以符合热力过程曲线的要求,并修正回热系统的热平衡计算,汽轮机热力计算结果。

目录 摘要 (1) 第一章:汽轮机热力计算的基本参数 (2) 第二章:汽轮机蒸汽流量的初步计算 (3) 第三章:通流部分选型 (9) 第四章::压力级比焓降分配及级数确定 (10) 第五章:汽轮机级的热力计算 (14) 第六章;高中压缸结构概述 (17) 第七章:600MW汽轮机热力系统 (19) 第八章:总结 (20) 参考文献 (23)

600MW汽轮机汽水热力计算

第三章 热力分析 3.1汽轮机主要参数 汽轮机类型:600-24.2/566/566 蒸汽初参数 ;024.2p MPa =, 0566t =.0℃ 再热蒸汽参数:冷段压力 4.33in rh p MPa =,冷段温度314.9in rh t =℃: 热段压力 3.90out rh p MPa =,热段温度566.0out rh t =℃。 排气压力:0.00490c p MPa = 。 抽汽及轴封参数见表3-1和表3-2。机械效率、发电机效率分别取为0.99m η=、 0.988g η=。 表3-1 项目 单位 各 段 回 热 抽 汽 参 数 加热器编号 — H1 H2 H3 H4 H5 H6 H7 H8 抽汽压力 j p MPa 5.62 4.33 2.31 1.16 0.438 0.128 0.0619 0.0237 抽汽温度j t ℃ 349.2 314.9 483.9 379.6 261.3 139.8 86.8 63.8 表3-2 项 目 单 位 1sg α 2sg α 3sg α 来 源 高压杆漏汽 低压缸后轴封 漏汽 高中压缸之间漏汽 轴封汽量sg α 0.0006339 0.001038 0.00007958 轴封汽比焓sg h kJ/kg 3396.0 2753.7 2993.7 去 处 H8 SG H2

原则性热力系统图3-1如下: 图 3-1 3.2热平衡法 热平衡式一般有两种写法:一是吸热量=放热量×h η,h η为加热器的效率;另一种方法是流入热量=流出热量。为了在同一系统计算中采用相同的标准,应采用统一的,h η故热平衡式的写法,在同一热力系统计算中也采用同一个方法。 拟定热平衡式时,最好根据需要与简便的原则,选择最合适的热平衡范围。热平衡范围可以是一个加热器或数个加热器,乃至全部加热器,或包括一个水流混合点与加热器组合的整体。 3.2.1 整理原始资料

汽轮机详细计算

300MW汽轮机热力计 算数据汇总表 项目符号单位调节级高压缸1高压缸2高压缸3高压缸4蒸汽流量G kg/s250.6250.82250.82250.82250.82喷嘴平均直径dn mm1155796816836856动叶平均直径do mm1155796816836856级前压力po Mpa15.836512.167411.3291910.58489.7538级前温度/干度to/x C533.62493.87485.4474.5462.5级前比焓值ho kj/kg3396.133336.3833317.583298.0543277.755圆周速度u m/s181.335124.9829128.1033131.2609134.3796理想比焓降⊿ht kj/kg8522.5923.4624.3525.24理想速度Ct m/s412.3106212.5559216.6102220.6808224.6775假想速比Xt-0.4398020.5880.59140.59480.5981反动度Ωm%847.942.948.347.9利用上级余速动能⊿hco kj/kg00 1.21 1.3 1.34喷嘴理想比焓降⊿hn kj/kg78.211.7693913.3956612.5889513.15004喷嘴滞止比焓降⊿hn*kj/kg78.211.7693913.3956612.5889513.15004喷嘴出口理想速度C1t m/s395.4744153.4235163.6805158.6755162.173喷嘴速度系数ψ-0.970.970.970.970.97喷嘴出口实际速度c1m/s383.6102148.8208158.7701153.9152157.3078喷嘴损失⊿hnζkj/kg 4.621620.6955710.7916840.7440070.777167喷嘴出口理想焓值h1t3317.933324.6133304.1843285.4653264.605熵st 6.4338 6.46 6.47 6.476749 6.483727喷嘴后压力p1Mpa12.433311.7410.9433710.14689.333897喷嘴后温度/干度t1/x C/490.347487.39479.201468.172455.962喷嘴出口理想比体v1t m3/kg0.02530.0268740.0285280.0303950.032609喷嘴出口截面积An cm2165.2737452.9297450.6714495.3104519.943喷嘴出汽角α1(o)15.114.7814.7914.814.78喷嘴高度Ln mm2079.8129877.4173882.9951685.19964部分进汽度e-0.891111喷嘴出口焓h13322.5523325.3093304.9763286.2093265.382 p112.433311.7410.9433710.14689.333897 s1 6.44084 6.46047 6.471979 6.47858 6.485347动叶进口相对速度w1m/s213.7542.4158947.8351143.0552443.86994相对于W1的比焓降⊿hw1kj/kg22.844530.899554 1.1440990.9268770.962286动叶滞止比焓降⊿h*b kj/kg29.6445311.7201611.2084412.6879313.05225动叶出口理想速度W2t m/s243.4935153.1023149.7227159.298161.5688动叶速度系数Ψ-0.9280.93550.93550.93550.9365动叶损失⊿hbζkj/kg 4.115135 1.463142 1.399259 1.583958 1.605005动叶出口相对速度w2m/s225.9619143.2272140.0656149.0233151.3092动叶出口绝对速度c2m/s83.3625235.6355735.5533836.6125336.95065余速损失⊿hc2kj/kg 3.4746550.6349470.6320220.6702390.682675 h2t3315.7523314.4883294.9113274.4483253.292 s1 6.44084 6.46047 6.471979 6.47858 6.485347动叶后压力p2Mpa12.167411.3291910.58489.75388.9521动叶后温度/干度t2/x2℃/489.52482.419473.951461.955449.581动叶出口比体积v2m3/kg0.0258820.027650.0293580.0314060.033667动叶出口面积Ab cm3273.3054464.777504.6194507.3747536.2627动叶出汽角β2(o)20.0318313.1375614.3584113.144313.22654动叶高度lb mm2281.8129879.4173884.9951687.19964轮周损失hu12.21141 2.79366 2.822964 2.998203 3.064848轮周有效比焓降⊿hu kj/kg72.7885919.7963420.6370421.351822.17515轮周功率pu kw18240.824965.3185176.1815355.4585561.972轮周效率ηu%85.6336487.633287.9669187.6870587.85718

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

哈尔滨汽轮机技术协议最终版

中国石油化工股份有限公司长岭分公司 煤(石油焦)代油热电联产工程 CC50-9.20/3.92/1.08双抽冷凝式汽轮机 技术协议书 需方:中国石油化工股份有限公司长岭分公司 设计方: 中国联合工程公司 供方:哈尔滨汽轮机厂有限责任公司 2006.4 ○、总则 本协议书适用于中国石油化工股份有限公司长岭分公司煤(石油焦)代油热电联产工程50MW汽轮机。 本协议书提出的是最低限度的技术要求,其中并未规定所有的技术要求和适用的标准。卖方提供一套满足本技术协议和所列标准要求的高质量全新的产品及其相应服务。 卖方须执行本技术协议所列标准,如有矛盾时按较高标准执行。 本协议作为合同的附件,与供货合同具有同等法律效力。在供货合同生效时,本协议随即生效,未尽适宜双方随时随时协商解决。 一、工程概述 中国石油化工股份有限公司长岭分公司拟建设一座全烧石油焦的热电联产电站,工程建设规模为1×260t/h高温高压循环流化床锅炉+1×50MW双抽凝汽式汽轮发电机组(配60MW发电机),为本工程配套汽轮机设备即为此工程建设热电联产电站用的一台双抽凝汽式汽轮机。 二、气象资料及地震烈度 年平均气温(℃): 16.5 连续最冷5天平均温度 最低4年的平均值(℃):-4.52 最大积雪深度mm: 160

冰冻线cm 50 极端最高温度(℃): 40.4 极端最低温度(℃): -18.1 年平均相对湿度(%) 80 年平均降雨量(mm/a): 1443.2 地震烈度:根据《中国地震动参数区划图》本项目拟建场地按基本烈度7度考虑。 三、汽轮机主要技术规格及参数: 汽轮机形式:双抽冷凝式 台数: 1 汽轮机型号:CC50-9.20/3.92/1.08 功率: 额定:50000 kW 最大:63000 kW 纯凝:50000 kW 转速:3000 r/min 转向:顺时针(顺汽流方向看) 主汽门前新蒸汽参数: 蒸汽压力:9.20 +0.2-0.3 MPa(a) 蒸汽温度:535 +5-10℃进汽量: 额定:311.1 t/h 最大:411.5 t/h 纯凝:192.93 t/h 1级工业可调抽汽参数: 抽汽压力: 3.92+0.3-0.2MPa(a) 抽汽温度:450 ℃ 额定抽汽量:80 t/h 最大抽汽量:120 t/h 2级工业可调抽汽参数: 抽汽压力: 1.08+0.2-0.2MPa(a) 抽汽温度:295 ℃ 额定抽汽量:60 t/h 最大抽汽量:90 t/h 排汽压力: 额定工况:<7 kPA(a) 纯凝工况:<8 kPA(a)

汽轮机课程设计---23MW凝汽式汽轮机热力设计.

第一章 23MW凝汽式汽轮机设计任务书 1.1 设计题目: 23MW凝汽式汽轮机热力设计 1.2 设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与 整机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3 设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MP a 新汽温度:435℃ 排汽压力:0.005MP a 冷却水温:22℃ 机组转速:3000r/min 回热抽汽级数:5 给水温度:168℃ 1.4 设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1 近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1 汽轮机各阀门及连接管道中节流损失和压力估取范围 图2-1 进排汽机构损失的热力过程曲线

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p 0、t 0,可得汽轮机进汽状态点0,并查得初比焓h 0=3304.2kj/kg 。由前所得,设进汽机构的节流损失ΔP 0=0.04 P 0=0.1372 MPa 得到调节级前压力P 0'= P 0 - ΔP 0=3.2928MPa ,并确定调节级前蒸汽状态点1。过1点作等比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 ()'0 23304.221201184.2mac t t h h h ?=-=-=3304.2-2128=1176 kj/kg 。由上估计进汽量后得到的相对内效率 ηri =83.1%,有效比焓降Δht mac =(Δht mac )' ηri =1176×0.831=977.3kj/kg ,排汽比 焓03304.2986.3282317.872mac z t h h h =-?=-=3304.2-977.3=2326.9 kj/kg ,在h-s 图上得排汽点Z 。用直线连接1、Z 两点,在中间'3点处沿等压线下移21~25 kj/kg 得3点,用光滑连接1、3、Z 点,得该机设计工况下的近似热力过程曲线,如图2-2所示。 图2-2 12MW 凝汽式汽轮机近似热力过程曲线

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

汽轮机课程设计说明书

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,研究各级抽汽有效火用降时,Ej的计算是从排挤l kg抽汽的火用降(e j-e c)ηej中减去某些固定

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

5MW汽轮机技术协议书

5MW汽轮机技术协议书 买方:柳州正菱鹿寨水泥有限公司 卖方:广西青汽电力工程技术有限公司 工程设计方:大连易世达新能源发展股份有限公司 2010年7月30日 自然条件 抗震设防烈度:里氏6级厂区海拔高度:105m 年最高气温极端最高温度:38.5℃ 年最低气温极端最低温度:0℃~0.9℃ 年平均气温年日平均温度:19.7℃ 年平均相对湿度最高相对湿度 最大风速0.58m/s 年降雨量年降雨量:1442.1mm、日最大降雨量:153.2mm 1. 设备名称及数量 本合同货物为驱动汽轮发电机用混压进汽式汽轮机,型号为BN5—2.29/0.2,计一套。 2. 汽轮机的主要技术参数(额定工况) 型式:背压式□补汽冷凝式√抽背式□凝式□ 型号:产品代号BN5—2.29/0.2 布置形式:双层 运行层标高:8.00 额定电功率:5000kw(发电机效率为96.5%,按电功率计) 顺汽流看汽轮机转向:顺时针 汽轮机转速:3000r/min 经济电功率:4500kw(发电机效率为96.5%,按电功率计) 最大连续安全运行电功率:5400kw(发电机效率为96.5%,按电功率计) 蒸气参数及要求: 新蒸气 压力:正常:2.29MPa(绝对,下同)最大:2.45MPa最小:2.09MPa 温度:正常: 365℃最大:385℃最小:335℃ 补汽压力 正常:0.2MPa 最大:0.3MPa 最小:0.15MPa 补汽温度 正常:150℃最大:165℃最小:饱和 排汽压力 正常:0.007MPa 最大:0.01MPa 最小:0.006MPa 冷却水水质:淡水√海水□ 温度:正常:25℃最高33℃ 压力:进口0.2MPa(g) 冷却水清洁系数:0.8 PH值:7~7.5 冷却水量≤2000t/h 补给水温度:18~35℃ 3.功率、汽耗率及运转率 1)功率、汽耗率单位:功率:kw,汽耗率:kg/kwh,汽量t/h 序号

N25-3.5435汽轮机通流部分热力计算

第一节25MW汽轮机热力计算 一、设计基本参数选择 1. 汽轮机类型 机组型号: N25-3.5/435。 机组形式:单压、单缸单轴凝器式汽轮机。 2. 基本参数 额定功率:P el=25MW; 新蒸汽压力P0=3.5MPa,新蒸汽温度t0=435℃; 凝汽器压力P c=5.1kPa; 汽轮机转速n=3000r/min。 3. 其他参数 给水泵出口压力P fp=6.3MPa; 凝结水泵出口压力P cp=1.2MPa; 机械效率ηm=0.99 发电机效率ηg=0.965 加热器效率ηh=0.98 4. 相对内效率的估计 根据已有同类机组相关运行数据选择汽轮机的相对内效率,ηri=83% 5. 损失的估算 主汽阀和调节汽阀节流压力损失:ΔP0=0.05P0=0.175Mpa。 排气阻力损失:ΔP c=0.04P c=0.000204MPa=0.204kPa。 二、汽轮机热力过程线的拟定 (1)在h-s图上,根据新蒸汽压力P0=3.5MPa和新蒸汽温度t0=435℃,可确定汽轮机进气状态点0(主汽阀前),并查得该点的比焓值h0=3303.61kJ/kg,比熵s0=6.9593kJ/kg (kg·℃),比体积v0= 0.0897758m3/kg。 (2)在h-s图上,根据初压P0=3.5MPa及主汽阀和调节汽阀节流压力损失ΔP0=0.175Mpa 可以确定调节级前压力p0’= P0-ΔP0=3.325MPa,然后根据p0’与h0的交点可以确定调节级级前状态点1,并查得该点的温度t’0=433.88℃,比熵s’0= 6.9820kJ/kg(kg·℃),比体积v’0= 0.0945239m3/kg。 (3)在h-s图上,根据凝汽器压力P c=0.0051MPa和排气阻力损失ΔP c=0.000204MPa,可以确定排气压力p c’=P c+ΔP c=0.005304MPa。 (4)在h-s图上,根据凝汽器压力P c=0.0051MPa和s0=6.9593kJ/kg(kg·℃)可以确定气缸理想出口状态点2t,并查得该点比焓值h ct=2124.02kJ/kg,温度t ct=33.23℃,比体积v ct=22.6694183 m3/kg,干度x ct=0.8194。由此可以的带汽轮机理想比焓降 1179.59kJ/kg,进而可以确定汽轮机实际比焓降

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

相关文档
相关文档 最新文档