文档库 最新最全的文档下载
当前位置:文档库 › 材料分析与表征综述

材料分析与表征综述

AES实验报告-材料分析与表征

《材料分析与表征》 俄歇电子能谱(AES)实验报告 学院:材料学院班级:xxx 姓名:xx 学号:xxxxxxxx 一.实验目的 1. 了解俄歇电子能谱的背景知识和基本原理; 2. 了解俄歇电子能谱的基本实验技术及其主要特点; 3. 了解俄歇谱仪的基本结构和操作方法; 4. 了解俄歇电子能谱在材料表面分析中的应用。 二.实验原理 1. AES简介 俄歇电子能谱,英文全称为Auger Electron Spectroscopy,简称为AES,是材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析的一种有效的手段。俄歇电子能谱仪具有很高表面灵敏度,通过正确测定和解释AES 的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等信息。 当原子的内层电子被激发形成空穴后,原子处于较高能量的激发态。这一状态是不稳定的,它将自发跃迁到能量较低的状态——退激发过程,存在两种退激发过程:一种是以特征X射线形式向外辐射能量——辐射退激发;另一种通过原子内部的转换过程把能量交给较外层的另一电子,使它克服结合能而向外发射——非辐射退激发过程(Auger过程)。向外辐射的电子称为俄歇电子。其能量仅由相关能级决定,与原子激发状态的形成原因无关,因而它具有“指纹”特征,可用来鉴定元素种类。 2. 俄歇效应 处于基态的原子若用光子或电子冲击激发使内层电子电离后,就在原子的芯能级上产生一个空穴。这一芯空穴导致外壳层收缩。这种情形从能量上看是不稳定的,并发生弛豫,K空穴被高能态L1的一个电子填充,剩余的能量(E K-E L1)用于释放一个电子,即俄歇电子。如图1所示。

材料的表征方法总结

材料的表征方法 2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM

材料表征与分析论文

材料表征与分析 1红外光谱 1.1.红外光谱的基本知识 1800年赫舍尔测定太阳光谱时确认了红外辐射的存在。可以说,这时已经有了红外光谱的萌芽。但由于检测手段的限制,直到约100年后才有人测定了一些有机化合物的红外吸收谱。1905年科伯伦次发表了128种化合物的红外吸收谱,揭示了分子结构与红外吸收谱之间的联系.给出了红外光谱方法有实用价值的结果。从本世纪40年代末至今,红外光谱仪器从第一代以棱镜为分谱元件,第二代以光栅为分谱元件,直至70年代发展起来的第三代以干涉因为基础进行傅里叶变换获得分诺的红外分光光度计,经历了大约半个世纪的发展,形成很多有效的实用光谱技术。特别是激光出现之后,给红外光谱技术注入了新的活力,诞生了更高级的红外光谱方法,推动了众多科技领域研究工作的发展。红外光谱技术与激光技术以及计算技术的结合,无疑在今后的发展中将继续给它增添新的内容。 1.1.1红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化合物和测定分子结构的最有用方法之一。 红外光谱是一种吸收光谱.通常是指有机物质的分子在4000一400cm“红外线(中红外区)的照射下,选择性地吸收其中某些频率后,用红外光谱仪记录所形成的吸收谱带,就称为红外光谱.红外吸收光谱是研究分子结构与红外吸收间的关系一种重要手段.一张红外吸收光谱图(或曲线)可以提供与分子结构相适应的信息.反映在吸收峰的位置(峰位)、吸收峰的形状(峰形)、吸收峰的强度(峰强)上. 1.1.2红外光区的划分

材料表征与仪器分析

材料表征与仪器分析 引言 一. 通用X射线粉末衍射 二. 无定形结构、纤维和层状结构的衍射 三. EXAFS 四. HRTEM 五. 电子衍射 六. 光谱 七. 结构预测 引言 材料表征或结构测定是大部分材料和化学研究工作重要的第一步。Accelrys的软件可帮助研究者用先进算法预测结构,模拟、解释及应用由分析仪器得到的数据。这些工具集成于Cerius2软件,一个支持分子结构的模型搭建、操纵和高质量三维结构显示的成熟的软件环境。 了解你制备出了什么物质以及它的物理性质怎样,是能够明智和有益地使用一种材料所必需的。基于晶体结构和原子组成的可靠的材料表征技术的使用仅有50年历史。这些工具的存在对科学家们了解材料的结构带来了巨大变化。 计算技术的使用可以有两种方式: · 通过分析解释传统分析手段的结果来鉴别一种实验化合物; ·通过模拟分析仪器来预测分子模型的性质。 分析手段可分为下面三大类: · 衍射 · 光谱 · 显微技术 对上述分析方法计算机都可以进行模拟。 衍射 衍射是电磁辐射波动性的一种表现,当辐射经过一边缘或通过一小孔时发生弯曲而形成。当电磁辐射经过一化合物时波的干涉就揭示了材料的结构信息。 辐射的种类影响所得衍射图像的分辨率,并由此判断是否适合测定该种材料。常用的有电子衍射、中子衍射和X射线衍射,而X射线衍射是用于确定晶体结构的最常用的工具。 粉末衍射是X射线在粉末状晶体物质上的衍射。粉末X射线衍射给出的信息比单晶X射线衍射少,但更简单和快捷。 光谱 光谱技术根据原子或分子(或者原子和分子的离子)对电磁波的吸收、发射或散射来定性定量研究原子、分子或物理过程。 IR(红外)光谱测定样品对中红外线的吸收波长和强度。对红外发射的吸收取决于化学键。 显微技术 显微技术是利用辐射和光学来得到一物体的放大图像。电子显微学分析手段有扫描电镜(SEM)、扫描隧道电镜(STM)和透射电镜(TEM)。 结构预测 用分子动力学可以对分子体系进行快速近似的能量计算,快速得到最低能量结构。量子力学技术提供精确的第一原理的原子和电子结构预测。

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min)0.1-100℃/min 天平灵敏度(μg)0.1μg 温度范围(°C)室温-1000℃ 五、操作条件

第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG 曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在

材料综述

材料综述

氧化铝材料的制备及其应用 摘要通过不同的化学合成方法制备氧化铝材料,并用不同的化学方法对其进行测定,利用XRD、热分析、N2 吸附脱附和TEM对粉末多孔氧化铝进行表征,溶胶凝胶法制备的粉末氧化铝比表面积最大,达到263 m2/g,且具有较宽的孔径分布、较大的孔容。观察研究其性能。实验结果表明得到的氧化铝材料具有较好的热稳定性。 关键词氧化铝工业催化剂载体制备及表征 前言 工业催化剂载体中氧化铝是应用最为广泛的载体,氧化铝不仅价格便宜,而且各种催化反应所要求的晶相,表面积和孔径分布范围等物性, 能通过制备条件的改变而得到。对于一般工业催化剂而言, 载体氧化铝的孔径分布为微孔、中孔、大孔,经过大量的实践,人们越来越清楚的认识到对催化性能有重要影响的不是催化剂的总孔容,而是其孔径分布, 即有效孔容[1]。因此近年来用新的合成方法来制备孔径分布集中的中孔催化材料成为研究中新的热点[2]。但是目前文献报道的制备方法是通过模板剂来形成中孔[3,4]。本文主要介绍两中新的合成方法。一是以无机盐或 SB 粉为原料经过溶胶凝胶过程,在不使用模板剂的前提下成功的制备得到了中孔分布集中的氧化铝催化材料;二是通过二次阳极氧化法来实现。分别使用加热法、水热法制备粉末多孔氧化铝,利用XRD、热分析、N2 吸附脱附和TEM对粉末多孔氧化铝进行表征。溶胶凝胶法制备的粉末氧化铝比表面积最大,达到263 m2/g,且具有较宽的孔径分布、较大的孔容。

制备中控分布集中的氧化铝: 实验部分过量的25%氨水溶液逐步滴加到25mL096M 硝酸铝溶液中, 使最终溶液的pH值大于920。然后离心,将得到的沉淀加入50mL 水中洗涤多次,直到体系的pH 值接近70左右。接着按一定比例加入094M 硝酸并在超声水浴中作用 10min 得到铝溶胶。在整个制备过程中体系温度始终保持在室温的条件下。然后将得到的铝溶胶样品放置于真空干燥箱中进行干燥。在整个干燥过程中保持真空度为008MPa。最后将得到的凝胶样品在550o C条件下,焙烧10h得到氧化铝材料。用无机盐为原料制备得到的溶胶、凝胶分别称为INS溶胶和INS凝胶。将SB粉(一种具有一水铝石晶型的工业粉体)与去离子水混合并加热到80o C搅拌20min- 30min, 然后按一定比例加入16M硝酸解胶。在形成溶胶以后,保持80o C继续搅拌约6h左右制得浓度为1M的溶胶[5]。将得到的溶胶放置在冰箱的冷藏室(5)中干燥。最后将得到的凝胶样品在指定温度下焙烧10h得到氧化铝材料。 根据DTA的分析结果说明在INS凝胶中的成分主要是拟薄水铝石。由此可以说明以无机盐为原料制备的铝溶胶中主要含有拟薄水铝石,而以SB粉为原料制备的溶胶中主要存在的是薄水铝石。通过实验, 发现以SB粉为原料制备的中孔氧化铝具有较好的热稳定性。在经过800o C焙烧以后,材料仍然保持较大的比表面积。以上结果表明用本方法以 SB 粉为原料可以制备得到热稳定性较好的氧化铝催化材料。这可能是因为用溶胶凝胶法制备的前驱体溶胶的粒度分布比较均匀使得由它制得的材料具有良好的规整性和均一的孔结构,从而提高了材

材料表征的方法(英语)

材料表征的方法 1.Elemental Analysis 元素分析 Atomic absorption spectroscopy 原子吸收光谱 Auger electron spectroscopy (AES) 俄歇电子能谱 Electron probe microanalysis (EPMA) 电子探针微分析 Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱 Energy dispersive spectroscopy (EDS) 能量色散谱 Flame photometry 火焰光度法 Wavelength dispersive spectroscopy (WDS) X-ray fluorescence X射线荧光 2. Molecular and Solid State Analysis 分子与固态分析 Chromatography [gas chromatography (GC), size exclusion chromatography (SEC)] 色谱[气相色谱,体积排除色谱] Electron diffraction 电子衍射 Electron microscopy [scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning TEM (STEM)] 电子显微镜 Electron spin resonance (ESR) 电子自旋共振 Infrared spectroscopy (IR) 红外光谱 Mass spectrometry 质谱 Mercury porosimetry 压汞法 Mossbauer spectroscopy 穆斯堡尔谱 Nuclear magnetic resonance (NMR) 核磁共振 Neutron diffraction 中子衍射 Optical microscopy 光学显微镜 Optical rotatory dispersion (ORD) 旋光色散 Raman spectroscopy 拉曼光谱 Rutherford back scattering (RBS) 卢瑟福背散射 Small angle x-ray scattering (SAXS) 小角X射线散射 Thermal analysis [differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) temperature desorption spectroscopy (TDS), thermomechanical analysis (TMA)] 热分析[差示扫描量热计法,热-重分析,微分热分析,升温脱附,热机械分析] UV spectroscopy 紫外光谱 X-ray techniques [x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), x-ray emission, x-ray absorption] X射线技术[x射线光电子能谱,x射线衍射,x射线发射,x射线吸收] 3. Surface Characterization Techniques 表面表征技术

材料表征与分析技术复习整理

第一部分原子物理简介 1、原子态符号、L-S耦合、j-j耦合 原子的原子态常用2s+1L j=2L j表示。因电子自旋量子数s=1/2,所以2s+1=2表示原子态, 总角量子数j=l+s,l+s-1,……︱l-s︱;s=1/2 为什么S态不分裂,P、D、F等态分裂为两层?(仅为个人理解) 对于S态,总角量子数j只能取一个1/2;而对于P、D、F等态j可分别取3/2,1/2;5/2,3/2;7/2,5/2。所以S态不分裂,而P、D、F等态分裂为两层 L-S耦合:(s1s2…)(l1l2…)=(SL)=J 由于S有两个值:0和1,所以对应于每一个不为零的L值,J值有两组: 一组是当S=0时,J=L; 另一组是当S=1时,J=L+1,L,L-1。 求3p4p电子组态的原子态 s1=1/2,s2=1/2,S=1,0; l1=1,l2=1,L=2,1,0; 所以原子态为 洪特定则 每个原子态对应一定的能级。由多电子组态形成的原子态对应的能级结构顺序有两条规律可循:1. 从同一电子组态形成的诸能级中, (1)那重数最高的,亦即S值最大的能级位置最低; (2)从同一电子组态形成的,具有相同S值的能级中那些具有最大L值的位置最低。 2. 对于同科电子,即同nl,不同J值的诸能级顺序是: (1)当同科电子数≤闭合壳层电子占有数一半时,以最小J值(|L-S|)的能级为最低,称正常序。 (2)同科电子数>闭层占有数之一半时,以最大J(=L+S)的能级为最低,称倒转序。铍4Be基态电子组态:1s22s2形成1S0 激发态电子组态:2s3p形成1P1,3P2,1,0(会画能级图) 求一个P电子和一个d电子(n1p n2d)可能形成的原子态 L=0 1 2 S=0 (1S0) 1P1 (1D2) S=1 3S1 (3P2,1,0) 3D3,2,1

答案1 材料特性表征 第1篇 组织形貌分析

材料特性表征 第一篇 组织形貌分析 作业题 1. 光学显微镜的分辨本领和数值孔径? 光学显微镜的分辨率:样品上相应的两个物点间距离?r 。定义为透镜能分辨的最小距离,也就是透镜的分辨本领。 提高分辨率的方法:使用低波长光源, 提高对比度。 光学显微镜数值孔径NA= nsin α(n )和半孔径角(α)的正弦之乘积 2. 什么是电子显微分析?电子显微分析的特点是什么? 电子显微分析是利用聚焦电子束与试样物质相互作用产生的各种物理信号分析试样物质的微区形貌、晶体结构和化学组成。 电子显微分析的特点:(1) 可以在极高放大倍率下直接观察试样的形貌、结构,选择分析区域。分辨率高:0.2~0.3nm; 放大倍数高:20~30 万倍 (2) 是一种微区分析方法,具有高度分辨率,成像分辨率达到0.2~0.3mm,可直接分辨原子,能进行nm 尺度的晶体结构及化学组成分析。(3) 各种电子显微镜分析仪器日益向多功能、综合性方向发展,可以进行形貌、物相、晶体结构和化学组成等的综合分析 3. 电子波长由什么决定? 电子波波长与电子运动速度的关系:mv h =λ 所以电子波长由电子运动速度决定。 4. 什么是静电透镜和磁透镜?各有什么特点? 静电透镜:能使电子波折射聚焦的具有旋转对称等电位曲面簇的电极装置。 磁透镜:能使电子波聚焦的具有旋转对称非均匀的磁极装置。 5. 电磁透镜的像差有哪几种? 电磁透镜的像差分成两类:第一是因为透镜磁场几何上的缺陷造成的,叫做几何像差,包括球面像差、像散和像畸变。 第二是由于电子波长或者能量非单一性而引起的,与多色光相似,叫做色差。 6. 电磁透镜的场深? 电磁透镜的场深或景深:在保持象清晰的前提下,试样在物平面上下沿镜轴可移动的距离,或者说试样超越物平面所允许的厚度。 7. 电子的弹性散射有什么特点?用于什么分析? 如果在散射过程中入射电子只改变方向,但其总动能基本上无变化,则这种散射称为弹性散射。弹性散射的电子符合布拉格定律。携带有晶体结构、对称性、取向和样品厚度等信息。在电子显微镜中用于分析材料的结构。 8. 简述透射电镜的工作原理。 透射电子显微镜:是以波长极短的电子束作为照明源,用电子透镜聚焦成像的一种具有高分辨本领、高放大倍数的电子光学仪器。 9. 透射电镜光学成像系统的结构分为哪几部分? ααmin 22tan 2d X X D f =?=

材料基本表征方法

化学化工学院材料化学专业实验报告 实验名称:材料基本表征方法 年级: 2010级 日期: 2012—9—12 姓名: 学号: 同组人: 一、预习部分 1、材料的表征方法: 1.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径。 1.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。. 1.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。 1.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。 1.5 X 射线能量弥散谱仪 每一种元素都有它自己的特征X 射线,根据特征X 射线的波长和强度就能得 出定性和定量的分析结果,这是用X 射线做成分分析的理论依据。EDS 分析的元 素范围Be4-U9a ,一般的测量限度是0.01%,最小的分析区域在5~50A ,分析时 间几分钟即可。X 射线能谱仪是一种微区微量分析仪。用谱仪做微区成分分析的 最小区域不仅与电子束直径有关,还与特征X 射线激发范围有关,通常此区域范

材料分析方法周玉第二版综述

第一章X 射线物理学基础 1、在原子序24(Cr)到74(W)之间选择7 种元素,根据它们的特征谱波长(Kα),用图解法验证莫塞莱定律。(答案略) 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少? 答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章X 射线衍射方向 2、下面是某立方晶第物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。

材料的表征方法总结

2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1 min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E 高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV o 2.3.5 X 射线能量弥散谱仪 每一种元素都有它自己的特征X 射线,根据特征X 射线的波长和强度就能得

材料分析与表征方法实验报告

材料分析与表征法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙Ca C2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min)0.1-100℃/min 天平灵敏度(μg)0.1μg 温度围(°C)室温-1000℃

五、操作条件 第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG 曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每mo CaC2O4·H2O失掉1mol H2O,其热分解反应为:

材料分析报告

X射线分析在材料研究中的最新应用 摘要:阐述了x射线的产生原理,x射线衍射分析内容及其在材料分析中的应用。关键词:X射线衍射;材料分析;应用。 对于物质结构的分析尽管可采用中子衍射、电子衍射、红外光谱等分析方法,但是X射线衍射是最有效和应用最广泛的手段。 工作原理 X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 满足衍射条件,可应用布拉格公式:2dsinθ=λ应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型;根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中,所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。 X射线照射晶体,晶体中电子受迫振动产生了晶体的衍射波,衍射方向(衍射线在空间分布的方位)和衍射强度是据以实现材料结构分析等工作的2个基本特征.X射线衍射具有无损和结构分析的优点,由它的衍射图谱可进行如下基本分析:①固体有哪些物质组成(物相定性分析);②固体中各物相含量组成(物相定量分析);③有多大量的物质是结晶态(结晶度);④固体中多大应力(残余应力分析);⑤构成固体的晶粒大小及分布(晶粒分析);⑥构成固体的晶粒取向(组织结构分析)。

材料意义+材料基本表征方法

1、材料对人类社会的重要意义 材料material ,是人类用以制成用于生活和生产的物品、器件、物件、机器和其他产品的那些物质。 自古至今,材料与人类生活密切相关,是人类生存和发展、征服自然和改造自然的物质基础,也是人类社会现代文明的重要支柱。 纵观人类利用材料的历史可以清楚地看到每一种重要的新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平,材料科学技术的每一次重大突破,都会引起生产技术的革命,大大加快社会发展的进程,并给社会生产和人们生活带来巨大的变化。因此,材料也成为人类历史发展过程的重要标志之一。 2、材料的表征方法: 1、XRD X 一射线衍射物相分析 原理:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径。 使用方法: 用途:用于对固体样品进行物相分析,还可用来测定晶体结构的晶胞参数、点阵型式及简单结构的原子坐标。主要适用于无机物,对于有机物的应用较少。 2、SEM 扫描电子显微镜 扫描电子显微镜的制造依据是电子与物质的相互作用。 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x 射线和连续谱X 射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 2、热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制备过程中的重量变化、热变化和状态变化。 热重法(TG )、微商热重法(DTG )、差示扫描量热法(DSC )、差热分析(DTA ) 3、STM 扫描隧道显微术 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时,可以得到表面的扫描隧道谱,用以研究表面电子结构。 4、TEM 透射电子显微术

试题材料分析表征技术2011

2011年《材料分析测试技术》期末考试试题 姓名:院/系:学号: 一、填空(26分) 1.化学电源可以分为一次电池、二次电池和燃料电池三类,化学电源主 要由正负极、隔膜和电解液三部分构成。 2.可逆电极反应在循环伏安测试中最重要的两个特征是和。 3.交流阻抗谱的三个基本条件是因果性条件、和。 1-3电化学 4.核磁共振波谱分析不能直接使用固体样品的原因是:。 5.影响红外光谱基团频率的因素包括:、、、 和。 6.拉曼光谱分析技术是以为基础建立起来的分子结构表征技术,其信号来 源与分子的和。 7.引起原子吸收线变宽的因素包括:、、、 和。 8.人们判断太阳主要是由氢元素和氦组成,判断的依据是方法。 9.通过磁化强度的测量,可获得的材料信息包括(列举两例):、 。 二、问答题(24分) 1. 举例说明紫外-可见光谱的生色团和助色团。 2. 请简述标准加入法及其在原子吸收光谱法与原子发射光谱中的异同。 3. 下图是Pt电极在硫酸溶液中的循环伏安曲线,请解释各峰的含义,从中能得到关于 氢、氧吸附行为的什么信息?

4. 下图是一个典型的实际电极过程的交流阻抗谱,试给出其等效电路,并结合等效电路 简述如何求取有关电极过程参数。 三、判断题(16分) 1. 某个有机化合物的分子式是:C8H10,其NMR氢谱如下图所示,求其结构式。并请 给出各个峰的归属。(6分) 3H 5H 2H

2. (10分)(1)红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程。(2)未知物分子式为C8H8O,测得的红外谱图如下,计算不饱和度,并确定其结构。 四、(12分)简述X射线光电子能谱(XPS)、紫外光电子能谱(UPS)和俄歇电子能 谱(AES)的异同点,可各自获得样品的哪些信息? 五、(12分)(1)简述热重分析(TGA)和差热分析(DTA)有何区别及在材料研究中 的应用。 (2)采用草酸亚铁(FeC2O4·2H2O)、氢氧化锂(LiOH·H2O)和草酸二氢胺(NH4H2PO4)为原料制备磷酸铁锂(LiFePO4)正极材料,图1是三种反应原材料在Ar+5%H2气氛下的热重分析曲线,图2为上述原材料采用丙酮混合均匀干燥后的前驱体烧结的热重和差热曲线图。请对图1和图2进行分析,并根据分析说明磷酸铁锂的烧结温度应如何选择? 图1 反应原材料的热重曲线(TGA)

1205中编综述(材料分析题)

中编综述翻天覆地地三十年 材料分析题 列宁《战争和社会民主党》(年):“各国地政府和资产阶级政党准备了几十年地欧洲大战终于爆发了.军备地扩张,在各先进国家资本主义发展地最新阶段即帝国主义阶段争夺市场斗争地极端尖锐化,以及最落后地各东欧君主国王朝利益,都不可避免要导致而且已经导致了这场战争.强占别国领土,征服其他国家;打垮竞争地国家并掠夺其财富;转移劳动群众对俄、德、英等国国内政治危机地注意力;分裂工人,用民族主义愚弄工人,消灭他们地先锋队,以削弱无产阶级地革命运动——这就是当前这场战争唯一真实地内容、作用和意义”. .“准备了几十年地欧洲大战”指地是(). .塞尔维亚战争 .俄国土耳其战争 .第一次世界大战 .俄、德、英战争 .这场战争是两大军事集团疯狂()地必然结果. .掠夺财富 .军备扩张 .瓜分世界 .政治交易 .具体讲,导致这场战争地直接原因是(). .欧洲各国准备了几十年.民族解放运动 .争夺市场极端尖锐化 .东欧君主国利益 .这场战争唯一真实地内容是() .强占别国领土 .征服其他国家 .转移国内人民地注意力 .削弱无产阶级地革命运动 .这场战争地性质是,帝国主义各国() .重新瓜分世界 .解放其他民族 .化解国内危机 .不义之战 列宁《战争和社会民主党》(年):“两个参战国集团在战争中都在掠夺,都表现出野蛮和无限残暴,谁也丝毫不比对手逊色.但是,为了愚弄无产阶级……各国资产阶级都在用爱国主义地虚伪言辞极力地宣传为‘自己’国家进行战争地意义,硬说他们竭力战胜对方,并不是为了掠夺和侵占领土,而是为了‘解放’除自己本国人民以外地所有其他各国人民”. .列宁所说地这场战争是(). .塞尔维亚战争 .俄国土耳其战争 .第一次世界大战 .俄、德、英战争 .两个参战国集团分别指()军事集团. .协约国 .轴心国 .同盟国 .盟国 .“爱国主义地虚伪言辞”恰恰说明这场战争唯一真实地内容是(). .强占别国领土 .征服所有其他各国人民 .转移国内人民地注意力 .野蛮和无限残暴地掠夺 .“‘解放’所有其他各国人民”地真正目地是().

答案3 材料特性表征 第2篇 分子结构分析 2 核磁3

第二部分 核磁作业: 任选20道 1. 简述核磁共振的基本原理?核磁共振波谱法中的电磁辐射在什么区域?波长大约在什 么范围?频率约为什么数量级?核磁共振波谱仪中磁铁的作用是什么?射频发生器的作用是什么?1HNMR 法中常用的有机溶剂? 核磁共振波谱是用波长在射频区(106-109 μm )、频率为兆赫数量级、能量很低(10-6-10-9 eV )的电磁波照射分子,这种电磁波不会引起分子振动或转动能级跃迁,更不会引起电子能级的跃迁,但是却能与磁性原子核相互作用。磁性原子核的能量在强磁场的作用下可以分裂为两个或两个以上的能级,吸收射频辐射后发生磁能级跃迁,称为核磁共振波谱。利用磁铁提供强磁场,利用射频发生器产生射频区电磁波,1HNMR 中常用的有机溶剂是氘代氯仿。 2. 请指出下列原子核中:1H 、2H 、12C 、13C 、14N 、16O 、17O ,在适当条件下能产生NMR 信 号的有哪几种? 1H 、2H 、13C 、14N 、17O 3. 自旋量子数为0的原子核的特点是什么? 质量数和原子序数都为偶数,没有自旋现象,不产生磁矩。 4. 核磁共振波谱法中, 什么是进动频率(或称Larmor 频率)? 它与外磁场强度有关吗?它有 什么特点? 具有一定磁矩的原子核放进外磁场H 0中后,原子核在自旋的同时绕H 0旋进,如同重力场中的陀螺一样,称为原子核绕H 0的进动运动。进动频率ω0为: 进动频率v 0与磁场强度H 0成正比,与核的磁旋比g 相关,而与质子原子核轴在磁场方向的倾斜角度无关 5. 核磁共振波谱的屏蔽作用,及化学位移是怎样产生的?化学位移的公式? 质子被电子云包围,而电子在外部磁场垂直的平面上循环,会产生与外部磁场方向相反的感应磁场。核周围的电子对抗外加磁场所起的作用叫屏蔽作用。由于受到屏蔽作用每个质子实际上受到的磁场强度并不完全与外部磁场强度相同。 由于化合物分子中各种质子受到不同程度的屏蔽效应,因而在NMR 谱的不同位置上出现吸收峰。但这种屏蔽效应所造成的位置上的差异是很小的,难以精确地测出其绝对值,因而需要用一个标准来做对比,常用四甲基硅烷(CH 3)4 Si 作为标准物质,人为将其吸收峰出现的位置定为零。某一质子吸收峰出现的位置与标准物质质子吸收峰出现的位置之间的差异称为该 6. 核磁共振波谱法中, 什么是磁旋比?它与外加磁场强度有关吗? 原子核自旋时,产生的磁矩与角动量之比称为旋磁比,与核的特性有关,特定的原子核具有特定旋磁比,与外加磁场强度无关。 7. 1HNMR 法中常用四甲基硅烷Si(CH 3)4(TMS)作为测定质子化学位移时用的参比物质, 它的优点? 0002v H πγω=?=

相关文档