文档库 最新最全的文档下载
当前位置:文档库 › 42CrMo钢疲劳裂纹扩展剩余寿命评估_张国胜

42CrMo钢疲劳裂纹扩展剩余寿命评估_张国胜

42CrMo钢疲劳裂纹扩展剩余寿命评估_张国胜
42CrMo钢疲劳裂纹扩展剩余寿命评估_张国胜

热处理裂纹的修补方法【汇总】

热处理裂纹的修补方法 内容来源网络,由深圳机械展收集整理! 一渗碳 (1)浓度过高:可将工件在中性介质中加热到正火温度,是碳在中性介质气氛中向内部扩散,减低表面浓度。 (2)浓度不够:可重新升温再渗。 (3)渗层脱碳:可重新进行一次短时渗碳 (4)淬火后硬度过低出现大量残余奥氏体:将工件进行高温回火,保温可延长,使残余奥氏体及马氏体转变为珠光体,随后在750——780低温淬火,此时合金元素和碳均不能完全溶解于奥氏体,淬火就可减少残余奥氏体含量。 二氮化 1.硬度不够的主要原因: (1)氮化温度过高或者一度过高 (2)第一阶段氮的分解率过高 (3)氮化时间过短,氮化层太薄 (4)炉罐新换,氮气没适度增加, 对于出现硬度低的不合格工件,可先给予退氮,然后重新氮化 2.深度浅,氮化层不足原因分析

(1)第二阶段氮化温度低,时间短 (2)工件氮化前未经调质处理 (3)氮分解率控制不当防止出现这一缺陷的主要措施是将工件的组织基体处理为索氏体,稳定分解率,足够保温时间。对于氮化出现以上问题的补救方法是在正常温度下重新氮化。 3.表面氧化 (1)出炉时温度过高 (2)冷却过程中有空气进入 4.氮化层脆性大甚至有裂纹 (1)氮分解率过低 (2)氮化温度低 (3)退氮气处理不当 (4)冷却速度过慢 (5)预先热处理造成脱碳或组织粗大 措施:适当提高氮的分解率和氮化温度,退氮要充分,降温过程中加大氮的流量,以加快冷却速度可避免以上缺陷。对于出现脆性的工件可将工件在500——520(保温3——5小时)进行退氮处理,或将在570——580(在氮的气氛中回火4——5小时),在630——650回火2小时左右均可。 5.工件变形大

炉管剩余寿命预测

剩余寿命预测 1 高温炉管剩余寿命预测的基本原则和方法 1.1 高温炉管寿命预测的基本原则 炉管检测后的最终质量通常用A、B、C三个级别进行评价。即“A”级管有较轻度或没有蠕变裂纹,这种炉管继续使用没有问题;“B”级管有一定程度的蠕变裂纹,但可以继续使用,同时应加强监视;“C”级管的蠕变深度及面积已达到极限。这类炉管不能继续使用,必须更换。要预测炉管的残余寿命,实际上就是预测“B”级管的使用年限,因为对大多数高温炉管来说,“C”级管是必须更换的。 目前,炉管的检测通常釆用专业炉管检测装置进行。虽然炉管检测装置具有它的可靠性、稳定性和准确性,但它只有一个单一的蠕变裂纹深度指标,如果要估算炉管的残余寿命必须要综合考虑,不能绝对地靠检测到“A、B”级来对炉管残余寿命下定义,因为化学成分和原始组织决定材料的原始强度,而运行时间、温度及应力的变化决定材料受蠕变损伤的程度。 根据国内外对高温炉管的研究结果,本文在对扬子石化公司芳烃厂BA1051制氢转化炉炉管进行评定时,按照如下的基本原则预测炉管的寿命。首先确定导致炉管损伤的主要原因,然后根据炉管的损伤状态,选择相应的预测方法。在对预测结果进行修正时同时兼顾其它因素的影响,在最终得到的使用寿命中应包含一定的安全余度,以适应炉管工作条件的变化。 1.2 高温炉管寿命预测的方法 为了最经济地利用炉管,剩余寿命评价技术必须准确,同时工程上又要求其实施必须简便。近年来国内外对高温炉管剩余寿命评价技术的研究投入了大量的人力和物力,提出了多种预测炉管剩余寿命的方法,归纳起来可大致可分为间接法和直接法两类。直接法即非破坏检查和破坏检查两类剩余寿命诊断技术,间接法即理论解析法。解析法和破坏检查所需时间较长,而非破坏检查可在较短时间,对较多部位进行诊断,且能定期监测。所以采用非破坏检查的方法预测炉管剩余寿命更为实用。 目前非破坏性检查的剩余寿命诊断技术主要有: (1)金属组织变化测定法,炉管长期在高温、应力和环境共同作用下服役,材料的微观组织会发生变化,如碳化物的析出、蠕变空洞的增殖等等。金属组织变化测定法就是通过测定组织的变化来评价炉管的剩余寿命。这种方法需要事先搞清楚金属组织变化与寿命之间的定量关系。目前比较成熟的法有A参数法、晶粒变形法、微结构法、另外还有空洞面积率法。A参数法是英国(ERA、CEGB)、美国(EPRI)于1983年提出的方法,其主要思路是沿主应力方向引一参考线,A参数就是参考线横切晶界总数与存在空洞晶界数的比值。预先求得各种材料的A参数与蠕变寿命比,通过复制试样法测定A参数,进行评价剩余寿命。实验验证表明:A参数能较好地定量损伤状态。空洞面积率是空洞所占面积与全观察面积的比值,它比较容易计量且与寿命的相关性好。应用该方法应注意要把蠕变空洞与碳化物或夹杂物脱落所造成的空洞区别开来,以免误判。A参数法和空洞面积率法还有两个问题需解决: a.有裂纹时,如何来测A参数和空洞面积率,虽然测定方法较多,但不同的方法得到的值不同; b.空洞分布不均匀性的计算及其影响。有些材料往往寿命后期才出现空洞,此时用A参

热处理变形与裂纹

热处理变形与裂纹 工件热处理后常产生变形和开裂,其结果不是报废,也要花大量工时进行修整。 工件变形和开裂是由于在冷、热加工中产生的应力所引起的。当应力超过弹性极限时,工件产生变形;应力大于强度极限时,工件产生裂纹。 热处理中热应力和组织应力是怎样产生的只有不断认识这个问题,才能采用各种工艺方法来减小和近控制这两种应力。 在加热和冷却时,由于工件热胀冷缩而产生的热应力和组织转变产生的组织应力是造成变形和开裂的主要原因,而原材料缺陷、工件结构形状等因素也促使裂纹的产生和发展。 后面主要叙述热处理操作中的变形和开裂产生原因及一般防止方法,也讨论原材料质量、结构形状等对变形和开裂的影响。 一、钢的缺陷类型 1、缩孔:钢锭和铸件在最后凝固过程中,由于体积的收缩,得不到钢液填充,心部形 成管状、喇叭状或分散的孔洞,称为缩孔。缩孔将显著降低钢的机械性能。 2、气泡:钢锭在凝固过程中会析出大量的气体,有一部分残留在处于塑性状态的金属 中,形成了气孔,称为气泡。这种内壁光滑的孔洞,在轧制过程中沿轧制方向延伸,在钢材横截面的酸浸试样上则是圆形的,也叫针孔和小孔眼。气泡将影响钢的机械 性能,减小金属的截面,在热处理中有扩大纹的倾向。 3、疏松:钢锭和铸件在凝固过程中,因部分的液体最后凝固和放出气体,形成许多细 小孔隙而造成钢的一种不致密现象,称为疏松。疏松将降低钢的机械性能,影响机 械加工的光洁度。 4、偏析:钢中由于某些因素的影响,而形成的化学成份不均匀现象,称为偏析。如碳 化物偏析是钢在凝固过程中,合金元素分别与碳元素结合,形成了碳化物。碳化物 (共晶碳化物)是一种非常坚硬的脆性物质,它的颗粒大小和形状不同,以网状、 带状或堆集不均匀地分布于钢的基体中。根据碳化物颗粒大小、分布情况、几何形 状、数量多少将它分为八级。一级的颗粒最小,分布最均匀且无方向性。二级其次,八级最差。碳化物偏析严重将显著降低钢的机械性能。这种又常常出现于铸造状态 的合金具钢和高速钢中。对热处理工艺影响很大,如果有大块碳化物堆集或严重带 状分布,聚集处含碳量较高,当较高温度淬火时,工件容易因过热而产生裂纹。但 为了避免产生裂纹,而降低淬火温度,结果又会使硬度和红硬性降低。碳化物偏析 严重将直接影响产品质量,降低使用寿命或过早报废。 5、非金属夹杂物:钢在冶炼、浇铸和冷凝等过程中,渗杂有不溶解的非金属元素的化 合物,如氧化物、氮化物、硫化物和硅酸盐等、总称为非金属夹杂物。钢中非金属 夹杂物存在将破坏基体金属的连续性,影响钢的机械性能、物理性能、化学性能及 工艺性能。在热处理操作中降低塑性和强度而且夹杂物处易形成裂纹。在使用过程 中也容易造成局部应力集中,降低工件使用寿命。夹杂物的存在还降低钢的耐腐蚀 性能。 6、白点:钢经热加工后,在纵向断口上,发现有细小的裂纹,其形状为圆形或椭圆形 的,呈银亮晶状斑点。在横向热酸宏观试样上呈细长的发裂,显微观察裂缝穿过晶 粒,裂缝附近不发现塑性变形,裂缝处无氧化与脱碳现象。这种缺陷称为白点。白 点将显著降低横向塑性与韧性,在热处理中易形成开裂。 7、氧化与脱碳:钢铁在空气或氧化物气氛中加热时,表面形成一层松脆的氧化皮,称

热处理淬火十种裂纹分析与措施

热处理淬火十种裂纹分析与措施 2007-4-16 1、纵向裂纹 裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生: (1)钢中含有较多S、P、***、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹; (2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸为25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。 预防措施: (1)严格原材料入库检查,对有害杂质含量超标钢材不投产; (2)尽量选用真空冶炼,炉外精炼或电渣重熔模具钢材; (3)改进热处理工艺,采用真空加热、保护气氛加热和充分脱氧盐浴炉加热及分级淬火、等温淬火; (4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。 2、横向裂纹 裂纹特征是垂直于轴向。未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。锻造模块中S、P.***,Bi,Pb,Sn,As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。 预防措施: (1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2—3之间,锻造采用双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小,匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源; (2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力为热应力,

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

管道腐蚀剩余寿命预测

管道腐蚀剩余寿命预测 埋地管道长年埋置地下,不可避免地遭受腐蚀。特别是随着埋地管道服役时间的增加,管道腐蚀情况越来越严重,给管道使用单位的安全生产和经济效益带来严重的影响。开展埋地管道腐蚀的剩余寿命预测评估,对提高埋地管道事故隐患区段的预测能力,实施管道运行完整性管理具有十分重要的意义。 埋地管道因遭受内在和外在因素的破坏,使其设计寿命严重地受到威胁。其中内在因素如管道本身的擦痕、划痕、压痕等机械损伤,管道制造和施工过程中的质量问题;外在因素如地下管道受到腐蚀、人为破坏、管道运行管理不善等。目前,我国埋地管道面临着管道老化、变质等问题,管道使用寿命和剩余使用寿命问题越来越受到重视。 管道的设计寿命一般为33年,为保持管道预期设计寿命,管道使用单位都制定了严格的管道定期检测和日常维护计划,同时十分重视管道的管理、检查和维护工作,有些国家则把管道线路的腐蚀和泄漏检测纳入SCADA系统。 在役埋地管道的剩余寿命预测实际上是一个涵盖管道在线检测、安全状况评价、剩余寿命预测的一个系统工程。 与设计寿命密切相关的是埋地管道的诊断问题。所谓管道腐蚀剩余寿命的基本概念是管道个别地段的剩余使用寿命。对个别管道的持续运行寿命进行诊断,不仅可预防未来可能发生的故障,而且会对管道运行制度和预检修措施进行正确的规划。在很多情况下,还可使这段管道在降低负荷的条件下继续利用其有效期。为此,应将整个埋地管道线路划分成各自不同的典型地段(如按规则规定划分为四种地段),在此基础上进行危险区段的剩余寿命预测。 对管道内、外部结构进行早期诊断,可预测管道剩余使用寿命。埋地管道失效多数情况下是由管体外部腐蚀造成的,其主要机理是土壤的电化学腐蚀。根据管道失效的特点可将腐蚀缺陷分为均匀腐蚀、局部腐蚀和点腐蚀三大类,但因腐蚀影响因素具有极大不确定性,以及缺陷的发生和发展的不确定性(特别是对点蚀),需要从概率统计的角度出发对整条管线或整个管段的剩余寿命进行统计分析,找出其统计规律。 管道本体存在的裂纹也是影响管道使用寿命的重要因素,裂纹的扩展速度会严重影响管道的剩余寿命。所以管道剩余寿命预测中还包括低周疲劳裂纹扩展寿命评估方法,主要是规定当裂纹尺寸达到某一给定长度时的疲劳周次为疲劳裂纹的萌生寿命。但由于裂纹萌生过程中存在很大的随机性,即使同一材料在其相邻区域上截取不同的试样,同一裂纹长度指标对应的循环周期可能处于裂纹扩展的不同阶段。所以也需要利用恰当的物理模型与统计方法确定一种可靠的裂纹尺寸与寿命的关系。 研究表明,金属的老化效应和管道表面的腐蚀损伤会导致管材脆变,从而改变材料的塑

电力设备的寿命评估

电力设备的寿命评估 摘要:综述了电力设备寿命评估的各种方法、理论,介绍了国内外对电力设备寿命评估技术的研究动态,同时还对变压器、发电机和电动机的寿命评估方案进行了阐述。 关键词:电力设备;寿命评估;方法;理论 Abstract: Different methods and theories for life evaluation of power equipment have been summarized, and the research developments of life evaluation technique for power equipments at home and abroad have been introduced as well. At the sa me time, the life evaluation schemes for transformer, generator and electric mot or have been set forth. Key words: power equipment; life evaluation; method; theory 电力设备的寿命评估是一项复杂的系统工程。变压器、发电机、电动机等大型电力设备经数万小时的运行,实际上就是长期的热处理或者高强度的负荷试验,材料老化、绝缘受损等问题是高温运行的必然结果,尤其是那些超期服役的电力设备,除少量报废外,大部分仍在使用,老化问题日益突出,延长寿命使用依据不足,风险性很大。为了有效延长电力设备的使用寿命,让投资和回报有一个最佳平衡,必须进行寿命评估[1]。如何科学地评估其剩余寿命,保证超期服役的电力设备安全运行是一个亟待解决的问题。 1国内外电力设备寿命评估技术的研究动态 1.1日本电力设备寿命评估技术简介 日本对电力设备部件残余寿命评估的办法是按照1987年日本自然资源与能源署与日本国际贸易与工业部联合颁布的国家导则进行的,第一阶段的研究内容包括3部分:(1)用制造锅炉与汽轮机的典型材料进行破坏性与非破坏性试验,同时进行解析分析作寿命评估,比较这3 种方法并提出其各自的使用范围;(2)在实际运行部件上作非破坏性试验或取样作破坏性试验并进行解析分析,进一步验证3种方法的适用范围;(3)对3种方法综合评价,总结出各种改进办法。第二阶段的研究工作包括超临界机组设备部件的寿命评估以及疲劳-蠕变损伤的非线性数学模型。 1.2美国电力设备寿命评估技术简介 美国电力研究院采用多数国家使用的“三级评估法”并制定出较完整的“综合寿 命管理程序”作为美国电力企业寿命管理工作的通用导则。在三级评估工作中,“一级评估”是在企业上层机构中进行的,尽量使用现有资料进行企业规模的全面综合分

锻造裂纹与热处理裂纹原理形态

一:锻造裂纹与热处理裂纹形态 一:锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X 的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其形态特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型形态外,有时会出现有些锻造裂纹比较细。裂纹周围不是全脱碳而是半脱碳。 淬火加热过程中产生的裂纹与锻造加热过程形成的裂纹在性质和形态上有明显的差别。对结构钢而言,热处理温度一般较锻造温度要低得多,即使是高速钢、高合金钢其加热保温时间则远远小于锻造温度。由于热处理加热温度偏高,保温时间过长或快速加热,均会在加热过程中产生早期开裂。产生沿着较粗大晶粒边界分布的裂纹;裂纹两侧略有脱碳组织,零件加热速度过快,也会产生早期开裂,这种裂纹两侧无明显脱碳,但裂纹内及其尾部充有氧化皮。有时因高温仪器失灵,温度非常高,致使零件的组织极粗大,其裂纹沿粗大晶粒边界分布。 结构钢常见的缺陷: 1 锻造缺陷 (1)过热、过烧:主要特征是晶粒粗大,有明显的魏氏组织。出现过烧说明加热温度高、断口晶粒粗大,凹凸不平,无金属光泽,晶界周围有氧化脱碳现象。 (2)锻造裂纹:常产生于组织粗大,应力集中处或合金元素偏析处,裂纹内部常充满氧化皮。锻造温度高,或者终端温度低,都容易产生裂纹。还有一种裂纹是锻造后喷水冷却后形成的。 (3)折叠:冲孔、切料、刀板磨损、锻造粗糙等原因造成了表面缺陷,在后续锻造时,将表面氧化皮等缺陷卷入锻件本体内而形成折缝。在显微镜上观察时,可发现折叠周围有明显脱碳。 2 热处理缺陷 (1)淬裂:其特点是刚健挺直,呈穿晶分布,起始点较宽,尾部细长曲折。此种裂纹多产生于马氏体转变之后,故裂纹周围的显微组织与其它区域无明显区别,也无脱碳现象。(2)过热:显微组织粗大,如果是轻度过热,可采用二次淬火来挽救。 (3)过烧:除晶粒粗大外,部分晶粒已趋于熔化,晶界极粗。 (4)软点:显微组织有块状或网状屈氏体和未溶铁素体等。加热不足,保温时间不够,冷却不均匀都会产生软点。 二:锻造裂纹与热处理裂纹产生原因 锻造裂纹:钢在锻造过程中,由于钢材存在表面及内部缺陷,如发纹、砂眼、裂纹、夹杂物、皮下气泡、缩孔、白点和夹层等,都可能成为锻打开裂的原因。另外,由于锻打工艺不良或操作不当,如过热、过烧或终锻温度太低,锻后冷却速度过快等,也会造成锻件开裂。 热处理裂纹:淬火裂纹是宏观裂纹,主要由宏观应力引起。在实际生产过程中,钢制工件常由于结构设计不合理,钢材选择不当、淬火温度控制不正确、淬火冷速不合适等因素,一方面增大淬火内应力,会使已形成的淬火显微裂纹扩展,形成宏观的淬火裂纹,另一方面,由于增大了显微裂纹的敏感度,增加了显微裂纹的数量,降低了钢材的脆断抗力Sk,从而增大淬火裂纹的形成可能性。 影响淬裂的因素很多,这里仅将生产中常碰到的几种情况作一介绍: 1.原材料已有缺陷而导致的淬裂:

国家科技支撑计划项目申报书-电站锅炉主要承压部件寿命评估技术扩展性研究申报书

附件4 国家科技支撑计划课题申报书 (试行) 项目名称:基于风险的特种设备安全监管关键技术研究任务名称:“电站锅炉主要承压部件寿命评估技术导则” 扩展性研究 项目组织单位:中国特种设备检测研究院 课题申报单位:中国特种设备检测研究院 课题负责人:窦文宇 起止年限: 2011年01月至 2013年12月 中华人民共和国科学技术部

二○年月

编写说明 1.本申报书由课题申报单位组织编写,经单位主管部门[国务院有关部门(单位)科技司(局),地方科技厅(委、局),国资委直属公司]审核同意后上报项目组织单位。 2.编写要求: (1)课题目标符合项目的课题申报指南的要求,定位准确,指标明确、可考核; (2)课题任务明确,要充分考虑经济、技术等方面的可行性; (3)课题管理与实施符合《国家科技支撑计划管理暂行办法》; (4)课题所需国拨经费按《国家科技支撑计划专项经费管理暂行办法》管理和使用,并另编制《国家科技计划课题预算申报书》一并上报; 3.课题申报书A4打印,由项目组织单位确定上报份数。同时,通过科技部门户网站(https://www.wendangku.net/doc/0012148030.html,)上的“国家科技计划经费预算申报中心”,将《国家科技计划课题预算申报书》报送科技部。

课题申报书提纲 一、任务概述 在我国,由于电站发展的历史造成了我国电站锅炉用钢的多样和复杂,也决定了电站高温部件寿命评估研究的繁杂和艰巨,本任务将在十一五期间形成的电站锅炉承压部件寿命评估技术导则国家标准草案稿的基础上,通过中国特种设备检测研究院、上海发电设备成套设计研究院、苏州热工研究院有限公司、西安交通大学、上海交通大学等单位联合攻关,针对我国电站锅炉尤其是超(超)临界电站锅炉近些年新出现的问题,结合我国电站锅炉的技术现状,吸收我国电站锅炉寿命评估方面最新研究成果,并参照国外发达国家寿命评估技术,对该标准草案进行扩展性研究,最终形成适合我国国情的电站锅炉承压部件寿命评估技术导则国家标准报批稿,以不断适应我国电站锅炉长周期安全运行的需要。 二、任务的目标与任务 1.项目确定的课题目标与任务需求分析 在十一五形成的初步研究成果的基础上,通过十二五的扩展性研究,进一步丰富和完善我国电站锅炉主要承压部件寿命评估所需的基础数据、基本步骤和常用评估方法,重点制定国家标准报批稿,一方面为电站锅炉的延寿运行提供技术上的依据,另一方面可以充分发挥电站锅炉的运行潜力。 2.课题目标与任务解决的主要技术难点和问题分析 (1)超(超)临界电站锅炉典型失效模式统计分析 由于我国在役的超(超)临界锅炉普遍投运时间不长,各种经验

金属疲劳寿命预测

金属疲劳寿命的预测 摘要 当一个金属样品受到循环载荷时,大量的起始裂纹将在它的体内出现。样品形成了有初始裂纹的样本:样品越大,样本也越大。在作者先前的研究中表明,在极值统计的帮助下,通过估计最大预期裂纹深度能够预测疲劳极限。本来表明,在一个类似的方式下,疲劳极限以上的疲劳裂纹萌生时间是可以预测的。用最小的分布可得到最短预期初始时间的预测,代替了用最大分布估计最大裂纹尺寸,并以广泛的实验数据获得了好的赞同。 本文为构件的总的疲劳寿命估计提供了一种新的方法。当得知了预计的裂纹萌生寿命和临界裂纹尺寸时,稳定的裂纹扩展就能通过Paris law计算出来。总的疲劳寿命的估算值是裂纹萌生和裂纹扩展的总和。本文介绍的是:为发现任何一种材料裂纹萌生寿命而相应的构建设计曲线的方法。 1、介绍 估计金属构件疲劳寿命的最古老和最常用的方法是S-N曲线,尽管它的缺点众所周知。其中之一是,因观察试样缺口的光滑程度不同而使得疲劳寿命有很大的不同。有些手册尝试通过为不同的应力值浓度的因素单独设计曲线解决这个问题,如Buch。其被当时看作是避免这一问题的局部应变方法。在这种方法中,提出了无论试样的形状如何,相同的应变振幅总是相同的疲劳寿命。 一个构件的总疲劳寿命可以分为3个阶段:裂纹产生、裂纹稳定扩展和裂纹失稳生长。最后一个阶段很迅速,在估计总的疲劳寿命时可以在实际工作中忽略。利用LEFM可获得裂纹稳定生长的可靠样本。不同几何的应力强度因子和所收录例子的大量的公式都可在文献中找到,并且权函数的使用为扩展这种方法的使用提供了可能性。 用类似LEFM的方式对裂纹初始相位的建模,或裂纹的扩展做了很多的尝试,例如:Miller,Austen,Cameron and Smith。另一种方法是用局部应变方法仅对初始寿命进行估计,然后用LEFM和一个合适的计算机程序完成对总疲劳寿命的计算。 经Makkonen研究表明,统计方法能够用来预测金属构件的疲劳极限。当一个构件受到交变载荷时,大量的微裂纹将在它的内部产生,裂纹的数量取决于试样的大小。运用极值统计法来计算裂纹样品类型中的最大裂纹的估计值成为可

火电厂超期服役机组寿命评估技术导则 DLT 654——1998

火电厂超期服役机组寿命评估技术导则 DLT 654——1998 The technical guide for the life assessment of overage units in fossil Power plants 本导则规定了火力发电厂超期服役机组热力机械部分要进行寿命评估的基本原则,提出了寿命评估的基本步骤,推荐了常用的寿命评估方法,并给出若关干关键部件寿命评估实例。本导则适用于火力发电厂 50MW(含 50MW)以上机组的热力机械部分, 50MW以下的超期服役机组应按国家有关能源政策处理,但如仍要使用,亦应进行寿命评估。企业自备电站、地方电站的火电机组可参照执行。下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时所示版本均为有效。所有标准都会被修订,使用本标准的各方,应探讨使用下列标准最新版本的可能性。 GB 2038—91 金属材料延性断裂韧度J1C 试验方法 GB 2039—80 金属拉伸蠕变试验方法 GB 2358—94 裂纹张开位移(COD)试验方法 GB 4161—84 金属材料平面应变断裂韧度K1c试验方法 GB 6395—86 金属高温拉伸持久试验方法 GB 6398—86 金属材料疲劳裂纹扩展速率试验方法 GB 6399—86 金属材料轴向等辐低循环疲劳试验方法 GB 9222—88 水管锅炉受压元件强度计算 DL 438—91 火 91 火力发电厂高温紧固件技术导则 DL 力发电厂金属技术监督规程 DL 439— 440—91 在役电站锅炉汽包检验、评定及处理规程 DL 441—91 火力发电厂高温、高压主蒸汽管道蠕变监督导则 DL 505—93 汽轮机焊接转子超声波探伤规程DL,T551—94 低合金耐热钢蠕变孔洞检验技术工艺导则 ASME—86 锅炉和压力容器规范,规范实例 N—47,高温工作条件下的 I类部件 ASME—89 锅炉和压力容器卷第 8章(Section ? Division 2) CVDA,84 压力容器缺陷评定规规范,第 2 范 TRD 300—92 蒸汽锅炉强度计算 TRD 301—92 承受内压的圆筒 TRD 508—92 按持久强度值计算的构件的补充检验本标准采用下列技术术语: 3.1 机组寿命

疲劳与寿命评估技术

9.3疲劳与寿命评估技术 1.疲劳基础 疲劳研究拥有120多年的漫长历史,在此段时间内取得了显着进展。然而,直至今天似乎没有终止由于疲劳的事故发生。这意味着,由于一些因素干预对疲劳性能的影响是巨大的,在长时期将需要充分体现。此外,新问题出现在新材料的使用和环境变化。鉴于此,疲劳研究可以理所当然地被称为基础研究。 疲劳的基本机制是细裂缝不断展开和生长由于重复的负载而导致破裂。宏观结构发生变化,譬如疲劳的基本机制是微裂纹不断展开了,在任何情况,较大的疲劳塑性变形都是的周期,但是没有宏观的结构变化发生在高周期疲劳中,其中只有轻微的塑性变形发生。此外,高对缺陷是疲劳的另一种特性。即使微小的缺陷,在静态拉伸测试中,也是影响疲劳的一个因素。 有许多因素影响金属材料的疲劳性能,如冶金因素,外形尺寸因素,使用环境条件,等等。在这里,我将重点的解释冶金因素的影响。也就是说,我们将证明金属材料在室温的氛围的一些标准疲劳性能。 2.疲劳强度的评估 大致对影响疲劳性能的冶金因素分类,这些可以被划分成结构和静态力量。当然,这两者是相互关联的,当评估疲劳强度时主要针对金属静态强度。例如,钢铁材料的疲劳极限σw与抗拉强度σb和维氏硬度HV有关系。在这里,疲劳极限是指到了极限应力在疲劳断裂而不会发生重复,即使它是一个无限循环,在循环疲劳试验中确定了次数高达10000000。此外,不仅是疲劳极限,但也是有限的使用寿命展现了维氏硬度和抗拉强度的关系方程,可以通过坐标图表现,是有可能的总结多种材料的S—N曲线不同的静态优势。可以采用这种标准化的S—N曲线估计有限使用寿命或疲劳寿命。其中,面积(微米)是轴向平方根缺陷的投影面积的。在缺陷存在情况下,材料分子系数由1.43成为1.56 。 上述内容表现出材料的疲劳极限。另一方面,许多金属材料不表现出的疲劳极限。例如, 在高强度钢疲劳强度消失的情况下,即表现出了钢铁材料的疲劳极限。图9.3.1显示材料的拉伸强度和疲劳强度之间的关系,但是式(1)高估疲劳极限的情况出现在抗拉强度在1,200 兆帕以上的钢。这种现象被称为吉赫疲劳,并在近几年已积极研究。 图9.3.2显示了一个典型的高强度钢的S—N曲线。在普通的试片表面裂缝从疲劳断裂中出现,但是在长久疲劳寿命中包括的内部破裂或其它情况。因此,吉赫的疲劳评估对内部疲劳寿命估计很重要。但是在吉赫疲劳评估情况下,由式(2)估计(系数为1.56),在它的疲劳寿命在10000000个周期条件下。此外,还有一种理论即认为它也可以预测的)4)疲劳寿命周期的强度比10000000多。然而,由于疲劳试验数据不足,没有明确的结论得到。该数据导致的短缺是该地

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

常见淬火裂纹有以下10种类型

常见淬火裂纹有以下10种类型 模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术经济效益。常见淬火裂纹有以下10种类型。 1纵向裂纹裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生:(1)钢中含有较多S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹;(2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。预防措施:(1)严格原材料入库检查,对有害杂质含量超标钢材不投产;(2)尽量选用真空冶炼、炉外精炼或电渣重熔模具钢材;(3)改进热处理工艺,采用真空加工热、保护气氛加热和充分脱氧盐浴炉加热及分析淬火、等温淬火;(4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。 2横向裂纹 裂纹特征是垂直于轴向。未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。锻造模块中S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。 预防措施:(1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2-3之间,锻造之间双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小、匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源;(2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力为热应力,表层为压应力,内层为张应力,相互抵消,有效防止热应力裂纹形成,在钢的Ms-Mf之间缓冷,大幅度降低形成淬火马氏体时的组织应力。当钢中热应力与相应应力总和为正(张应力)时,则易淬裂,为负时,则不易淬裂。充分利用热应力,降低相变应力,控制应力总和为负,能有效避免横向淬火裂纹发生。CL-1有机淬火介质是较理想淬火剂,同时可减少和避免淬火模具畸变,还可控制硬化层合理分布。调正CL-1淬火剂不同浓度配比,可得到不同冷却速度,获得所需硬化层分布,满足不同模具钢需求。 3弧状裂纹 常发生在模具棱角、凸台、刀纹、尖角、直角、缺口、孔穴、凹模接线飞边等形状突变处。这是因为,淬火时棱角处产生的应力是平滑表面平均应力的10倍。另外,(1)钢中含碳(C)

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

热处理淬火裂纹产生的原因及防止措施分析

热处理淬火裂纹产生的原因 及防止措施分析 摘要:在热处理生产实践时,常常会遇到一些零件和工具,特别是形状复杂时,淬火过程因处理不当以及一些其他因素,造成工件内部存在有强大的淬火应力,以致引起淬火裂纹。淬火裂纹直接导致零件的报废,产生的原因和条件及防止方法具有很摘要的现实意义。 关键词:淬火裂纹的实质产生原因和条件防止方法 一、淬火裂纹的实质 钢件在进行淬火是,在冷却的过程中同时产生了热应力和组织应力。由于温度的降低使零件内部产生了热应力,由于奥氏体向马氏体的转变使内部产生了组织应力,组织应力是钢件表面淬火时拉应力,钢件表面在拉应力的作用下,有开裂的危险。根据淬火裂纹断口形式和外观状态分析,淬火裂纹是在内应力作用下的脆性断裂。 二、淬火裂纹产生的原因和条件 1、钢的化学成分对淬火裂纹敏感性的影响 在一定的淬火介质中冷却时,钢的化学成分对热处理裂纹形成的影响,是由于它使钢件的内应力分布于应力集中的敏感性和钢的机械性能发生了改变的缘故。合金元素对内应力的影响,则主要是由于合金元素对钢的组织结构影响的结果。 在钢中含有的所有元素中,碳对钢机械性能的影响最大,随着含碳量的增加,钢件淬火后组织应力也有所增大,由于组织应力作

用的结果,使钢的表面具有危险的拉应力。因此,淬裂倾向将随着含碳量的增多而增大。 钢中其他常存因素,如硫、磷等夹杂物较多,呈条状、网状分布时,往往在正常淬火条件下形成裂纹。 合金元素能够在不同程度上使奥氏体的等温曲线的位置右移,即增大其淬透性,这样可以用缓慢的冷却介质进行淬火。从而残余应力较小,是钢的马氏体转变温度降低,则残余奥氏体数量增多,组织应力减小,有利于降低钢件的淬裂倾向。 2、原材料缺陷对淬火时形成裂纹的影响 钢件内部的发纹、皮下气泡、较严重的碳化物偏析以及非金属夹杂等在淬火过程中,有可能在这些缺陷处产生裂纹。 各种锻件加工时,不论是温度过高或过低都容易在锻轧过程出现细小裂纹。由于毛坯在锻轧后,表面上存在一些氧化皮,因此这些细小裂纹便不容易被发现。但钢件机械加工后一些淬火处理,将会使原来存留的的裂纹扩展开来,从而使其暴露于钢件的表面。 3、钢件的结构特点对形成裂纹的影响 钢件的淬火裂纹的形成倾向与钢件的尺寸和形状等设计结构特点有关。生产实践表明,具有截面急剧变化的工件或者有尖锐槽口的工件,在淬火冷却时这些部位会淬火时大的应力集中,都易于产生淬火裂纹。 4、淬火前的原始组织和应力状态对形成裂纹的影响 根据加热时的相变理论可以知道,钢的原始组织对加热时奥氏

电力设备的寿命评估

电力设备的寿命评估 郝江涛,刘念,幸晋渝,薄丽雅,陈卓 (四川大学电气信息学院,四川成都610065) 摘要:综述了电力设备寿命评估的各种方法、理论,介绍了国内外对电力设备寿命评估技术的研究动态,同时还对变压器、发电机和电动机的寿命评估方案进行了阐述。 关键词: Abstract: Different methods and theories for life evaluation of power equipment have been summarized, and the research developments of life evaluation technique for power equipments at home and abroad have been introduced as well. At the sa me time, the life evaluation schemes for transformer, generator and electric mot or have been set forth. Key words: power equipment; life evaluation; method; theory 电力设备的寿命评估是一项复杂的系统工程。变压器、发电机、电动机等大型电力设备经数万小时的运行,实际上就是长期的热处理或者高强度的负荷试验,材料老化、绝缘受损等问题是高温运行的必然结果,尤其是那些超期服役的电力设备,除少量报废外,大部分仍在使用,老化问题日益突出,延长寿命使用依据不足,风险性很大。为了有效延长电力设备的使用寿命,让投资和回报有一个最佳平衡,必须进行寿命评估[1]。如何科学地评估其剩余寿命,保证超期服役的电力设备安全运行是一个亟待解决的问题。 1国内外电力设备寿命评估技术的研究动态 1.1 日本对电力设备部件残余寿命评估的办法是按照1987年日本自然资源与能源署与日本国际贸易与工业部联合颁布的国家导则进行的,第一阶段的研究内容包括3部分:(1)用制造锅炉与汽轮机的典型材料进行破坏性与非破坏性试验,同时进行解析分析作寿命评估,比较这3 种方法并提出其各自的使用范围;(2)在实际运行部件上作非破坏性试验或取样作破坏性试验并进行解析分析,进一步验证3种方法的适用范围;(3)对3种方法综合评价,总结出各种改进办法。第二阶段的研究工作包括超临界机组设备部件的寿命评估以及疲劳-蠕变损伤的非线性数学模型。 1.2美国电力设备寿命评估技术简介 美国电力研究院采用多数国家使用的“三级评估法”并制定出较完整的“综合寿命管理程序”作为美国电力企业寿命管理工作的通用导则。在三级评估工作中,“一级评估”是在企业上层机构中进行的,尽量使用现有资料进行企业规模的全面综合分析,包括发电规划、电网规划、用电规划与老厂寿命评估更新改造做经济分析对比。“二级评估”以设备的无损检测为主要手段配合一般常规技术检查。“三级评估”一般需要破坏性试验、各种取样、机理研究,甚至需要安装一些监测系统来最终确定损伤根源并提出解决办法。 中国的寿命管理工作目前还是处于初级阶段,它仅限于某些技术专业内的活动,而且只

相关文档