文档库 最新最全的文档下载
当前位置:文档库 › 实验三三段式电流保护实验

实验三三段式电流保护实验

实验三三段式电流保护实验
实验三三段式电流保护实验

实验三三段式电流保护实验

【实验名称】

三段式电流保护实验

【实验目的】

1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电

路原理,工作特性及整定原则;

2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器

的功用;

3.掌握阶段式电流保护的电气接线和操作实验技术。

【预习要点】

1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关

知识。

2.根据给定技术参数,对三段式电流保护参数进行计算与整定。【实验仪器设备】

【实验原理】

1.无时限电流速断保护

三段式电流保护通常用于3-66kV电力线路的相间短路保护。在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。短路电流值还与系统运行方式及短路的类型有关。图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。

图3-1 瞬时电流速断保护的整定及动作范围

由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。这样,就不能保证应有的选择性。为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即

I op1.1 I f.b.max,I op1.1=K rel I f.b.max

式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。

显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其

他各种运行方式和短路类型下,其保护范围均不至于超出本线路范围。但是,按照以上公式整定的结果(如图3-1中的直线3)。保护范围就必然不能包括被保护线路的全长。因为只有当短路电流大于保护的动作电流时,保护才能动作。从图3-1中能够得出保护装置的保护范围。还可以看出,这种保护的缺点是不能保护线路的全长,而且随着运行方式及故障类型的不同,其保护范围也要发生的相应变化。图3-1中在最大运行方式下三相短路时,其保护范围为l max ;而在最小运行方式下两相短路时,其保护范围则缩小至l min 。无时限电流速断保护的优点是:因为不反应下一线路的故障,所以动作时限将不受下一线路保护时限的牵制,可以瞬时动作。

无时限电流速断保护的灵敏度可用其保护范围占线路全长的百分数来表示。通常,在最大运行方式下保护区达到线路全长的50%、在最小运行方式下发生两相短路时能保护线路全长的15%—20%时,即可装设瞬时电流速断。所以在线路始端一定范围内短路时,无时限电流速断保护可以做到快速地切除附近故障。

2.带时限电流速断保护

无时限电流速断保护(也称第I 段保护)虽然能实现快速动作,但却不能保护线路的全长。因此,必须装设第II 段保护,即带时限电流速断保护,用以反应无时限电流速断保护区外的故障。对第II 段保护的要求是能保护线路的全长,还要有尽可能短的动作时限。

(1)带时限电流速断保护的保护范围分析

带时限电流速断保护要求保护线路的全长,那么保护区必然会延伸至下一线路,因为本线路末端短路时流过保护装置的短路电流与下一线路始端短路时的短路电流相等,再加上还有运行方式对短路电流的影响,如若较小运行方式下保护范围达到线路末端,则较大运行方式下保护范围必然延伸到下一线路。为尽量缩短保护的动作时限,通常要求带时限电流速断延伸至下一线路的保护范围不能超出下一线路无时限电流速断的保护范围,因此线路L1带时限电流速断保护的动

作电流II op I 1.1应大于下一线路无时限电流速断保护的动作电流I op I 2.1,即

I

op II op I I 2.11.1> I op rel II op I K I 2.11.1=

式中,K rel—可靠系数,考虑到非周期分量的衰减一般取K rel=1.1~1.2。

图3-2 限时电流速断保护的保护范围分析

该保护的保护范围分析见图3-2。由图可知,为保证保护动作的选择性,带时限电流速断保护的动作时限需要与下一线路的无时限电流速断保护相配合,即应比后者的时限大一个时限级差Δt。

时限级差,从快速性的角度要求,应愈短愈好,但太短了保证不了选择性。其时限配合如图3-3所示。当在下一线路首端f点发生短路故障时,本线路L1的带时限电流速断保护和下一线路L2的无时限电流速断保护同时启动,但本线路L1的带时限电流速断保护需经过延时后才能跳闸,而下一线路L2的无时限电流速断保护瞬时跳闸将故障切除,这就保证了选择性。要做到这一点Δt应在0.3-0.6s间,一般取0.5s。

图3-3 限时电流速断保护和瞬时电流速断的时限配合(2)灵敏度校验

为了使带时限电流速断能够保护线路的全长,应以本线路的末端作为灵敏度的校验点,以最小运行方式下的两相短路作为计算条件,来校验保护的灵敏度。

其灵敏度为

II op B f sen I I K 1

m in

..=

式中:If.B.min —在线路L1末端短路时流过保护装置的最小短路电流; II

op I 1

—线路L1带时限电流速断保护的动作电流值折算到一次电路的

值。

根据规程要求,灵敏度系数应不小于1.3。如果保护的灵敏度不能满足要求,有时还采用降低动作电流的方法来提高其灵敏度。为此,应使线路L1上的带时限电流速断保护范围与线路L2上的带时限电流速断保护相配合,即

II

op rel II op I K I 2.11.1= t t t II II ?+=21

式中:II

op I 2.1——L2上的带时限电流速断保护的一次动作电流值。

II

t 2——L2上的带时限电流速断保护的动作时间。

显然,动作时限增大了,但灵敏度却提高了,而且仍保证了动作的选择性。 3.定时限过电流保护

无时限电流速断保护和带时限电流速断保护能保护线路全长,可作为线路的主保护用。为防止本线路的主保护发生拒动,必须给线路装设后备保护,以作为本线路的近后备和下一线路的远后备。这种后备保护通常采用定时限过电流保护(又称为第III 段保护),其动作电流按躲过最大负荷电流整定,动作时限按保证选择性的阶梯时限来整定。其原理接线图与带时限电流速断保护相同,但由于保护范围和保护的作用不同,其动作电流和动作时限则不同。

(1)定时限过电流保护的工作原理和动作电流 过电流保护工作原理:

正常运行时,线路流过负荷电流,保护不动。当线路发生短路故障时,保护启动,经过保证选择性的延时动作,将故障切除。

过电流保护动作电流:

过电流保护动作电流的整定,要考虑可靠性原则,即只有在线路存在短路故障的情况下,才允许保护装置动作。

过电流保护应按躲过最大的负荷电流计算保护的动作电流,根据可靠性要求,过电流保护的动作电流必须满足以下两个条件。

a . 在被保护线路通过最大负荷电流的情况下,保护装置不应该动作,即

max 1L III op I I >。

式中,III op I 1——保护的一次动作电流值

m a x

L I ——被保护线路的最大负荷电流 最大负荷电流要考虑电动机自启动时的电流。由于短路时电压下降,变电所母线上所接负荷中的电动机被制动,在故障切除后电压恢复时,电动机有一个自启动过程,电动机自启动电流大于正常运行时的额定电流I N.M ,则线路的最大负荷电流I Lmax 也大于其正常值I R ,即R ast L I K I =max 。

式中,K ast ——自启动系数,一般取1.5~3。

图3-4 过电流保护动作电流

b .对于已经启动的保护装置,故障切除后,在被保护线路通过最大负荷电流的情况下应能可靠地返回。如图3-4所示,在线路L1、L2分别装有过电流保护1和保护2,当在f 点短路时,短路电流流过保护1也流过保护2,它们都启动。按选择性的要求,应该由保护2动作将QF2跳开切除故障。但由于变电所B 仍有其他负荷,并且因电动机自启动,线路L1可能出最大负荷电流,为使保护1的电流继电器可靠返回,它的返回电流Irel (继电器的返回电流折算到一次电路的值),应大于故障切除后线路L1最大负荷电流ILmax 。

R ast rel I K I > R ast rel rel I K K I =

式中,Irel ——保护1的返回电流 由于op re re I I K =

,即re

rel op K I

I =1

R re

ast

rel III op I K K K I =

1 式中:K rel ——可靠系数,取1.

2 ~1.25。

K re ——电流继电器的返回系数,取0.85~0.95。 (2)动作时限的整定

定时限过电流保护的动作时限,应根据选择性的要求加以确定。例如,在图3-5所示的辐射形电网中,线路L1上装设有过电流保护1,线路L2和线路L3上也都分别装设有过电流保护2和3。那么当线路L3上的f2点发生短路故障时,短路电流将从电源经线路L1、线路L2和线路L3而流向短路点。这样,过电流保护1、2及3均启动。但是,根据选择性的要求,应该只由保护3动作使QF3跳闸。为此,就应使保护2的动作时限t2大于保护2的延时t2。由此可见,装于辐射形电网中的各定时限过电流保护装置,其动作时限必须按选择性的要求互相配合。配合的原则是:离电源较近的上一级保护的动作时限,应比相邻的、离电源较远的下一级保护的动作时限要长(注意:是过电流保护之间的配合)。在图3-5中将各级保护的整定时限特性画于图3-5b )中,好似一个阶梯,这就是通常所说的阶梯形时限特性。

图3-5 定时限过电流保护的动作时限

若线路L3有几条并行的出线,那么保护2的时限应与其中最大的时限配合。由此可见,每条电力线路过电流保护的动作时限,不能脱离整个电网保护配置的实际情况及时限的配合要求,不能孤立地加以整定。处于电网终端的保护,其动作时限是无时限的或只带一个很短的时限,因为它没有下一线路保护需要配合。在这种情况下,过电流保护常可作为主保护,而无需再装设无时限动作的其他保护。

按照时限配合的要求,保护装设地点离电源愈近,其动作时限将愈长,而故障点离电源愈近,短路电流却愈大,对系统的影响也愈严重。所以,定时限过电流保护虽可满足选择性的要求,却不能满足快速性的要求。故障点离电源近,其动作时间反而长。这是它的缺点。正因为如此,定时限过电流保护在电网中一般用作其他快速保护的后备保护。

这种过电流保护的动作时限是由时间继电器建立的,整定后其定值与短路电流的大小无关,故称为定时限过电流保护。 (3)灵敏度校验

为了使保护达到预期的保护效果,还应进行灵敏度的校验,即在保护区内发生短路时,验算保护的灵敏系数是否满足要求。显然,这种验算应针对最不利的条件,亦即在短路电流的计算值为最小的条件下进行。因为只有在这种情况下的灵敏系数满足要求时,才能保证在其他任何情况下的灵敏系数都能满足要求。

电流保护的灵敏系数K sen ,等于保护区末端金属性短路时,短路电流的最小

计算值I fmin 与保护动作电流III

op I 1之比,即

III

op f sen I I K 1

min

=

作为本线路近后备保护时,I fmin 为本线路末端短路时流过保护的最小短路电流,要求灵敏系数K sen ≥1.3-1.5;作为下一线路远后备保护时,最小计算值为下一线路末端短路时流过保护的最小短路电流,要求灵敏系数K sen ≥1.2。

4.线路相同短路的三段式电流保护装置

由无时限电流速断保护、带时限电流速断保护、定时限过电流保护相配合而构成三段式电流保护装置。这三部分保护分别叫作I 、II 、III 段,其中I 段无时限电流速断保护、II 段带时限电流速断保护是主保护,III 段定时限过电流保护是后备保护。

(1)三段式电流保护的保护范围及时限配合

如图3-6所示,当在L1线路首端f1点短路时,保护1的I 、II 、III 段均启动,由I 段将故障瞬时切除,II 段和III 段返回;在线路末端f2点短路时,保护II 段和III 段启动,II 段以0.5s 时限切除故障,III 段返回。若I 、II 段拒动,则过电流保护以较长时限将QF1跳开,此为过电流保护的近后备作用。当在线路

L2上f3点发生故障时,应由保护2动作跳开QF2,但若QF2拒动,则由保护1的过电流保护动作将QF1跳开,这是过电流保护的远后备作用。

图3-6 三段式电流保护各段保护范围及时限配合(2)三段式电流保护的原理图

三段式电流保护的原理图如图3-7所示,图中各元件均以完整的图形符号表示,有交流回路和直流回路,图中所示的接线方式是广泛应用于小接地电流系统电力线路的两相不完全是星形接线。接于A相的三段式电流保护,由继电器KA1、KS1组成I段;KA3、KT1、KS2组成II段;KA5、KT2、KS3组成III段。接于C相的三段式电流保护,由继电器KA2、KS1组成I段;KA4、KT1、KS2组成I段,KA4、KT1、KS2组成II段;KA6、KT2、KS3组成III段。KA7反映A相和C相的电流和,它与KT2、KS3组成III段,可提高保护的灵敏性。为使保护接线简单,节省继电器,A相与C相共用其中的中间继电器、信号继电器及时间继电器。

图3-7 三段式电流保护实验原理图

四.三段式电流保护实验参数整定计算

如图3-6所示,单侧电源辐射式线路,L1的继电保护方案拟定为三段式电流保护,保护采用二相二继电器接线,其接线系数1=con k ,电流互感器采用1:1,在最大运行方式下及最小运行方式下f1、f2、f3、f4点三相短路电流值见下表:

表3-1

三段式保护的动作值的整定计算 1.线路L1的无时限电流速断保护

电流速断保护的动作电流I op1-1按大于本线路末端f2点在最大运行方式下发

生三相短路时流过的短路电流)3(max ..B f I 来整定,即保护的一次动作电流为:

A

I K I B f rel I op 028.256.13.1)

3(max ..1.1=?==

继电保护的动作电流为: A

I K I I

op con I dj 028.21.11.== 选用DL -21C/6型电流继电器,其动作电流的整定范围为1.5~6A ,本段保护整定2A ,线圈采用串联接法。

2.线路L1的带时限电流速断保护

(1)要计算线路L 1的限时电流速断保护的动作电流,必须首先算出线路L2无时限电流速断保护的动作电流I op1.2,按大于本线路末端f4点在最大运行方

式下发生三相短路时流过的短路电流)

3(max ..C f I 来整定。

A

I K I C f rel I op 845.065.03.1)

3(max ..2.1=?== 线路L1的带时限电流速断保护的一次动作电流为:

A

I K I I

op rel II op 93.0845.01.12.11.1=?== 继电器的动作电流为:A

I K I II

op con II dj 93.0111.==- 选用DL -21C/3型电流继电器,其动作电流的整定范围为0.5~2A ,本保护整定为0.93A ,线圈采用串联接法。

动作时限应与线路L2的瞬时电流速断保护配合,即:

s t t t I II 5.05.002.1.=+=?+=

选用DS -21型时间继电器,其时限调整范围为0.25~1.25s ,为了便于学生在操作中观察本保护整定为0.75秒。

(2)灵敏度校验

带时限电流速断保护应保证在本线路末端短路时可靠动作,为此以f2点最小短路电流来校验灵敏度,最小运行方式下的二相短路电流为:

A I I

B f B f 247.144.1866.02

3)

3(min ..)2(min ..=?==

则在线路末端短路时,灵敏系数为3.134.193

.0247

.11

.1)2(min ..>==

=II op B f sen I I K 3.线路L1的定时限过流保护 (1)过电流保护的一次动作电流为:

A I K K K I R re ast rel III

op 423.02.085

.05

.12.11=??==

继电器动作电流为

A

I K I III

op con III dj 423.011== 选用DL -21C/3型电流继电器,其动作电流的整定范围为0.5~2A ,本保护整定为0.5A ,线圈采用串联接法。 (2)过电流保护动作时限的整定

为了保证选择性,过电流保护的动作时限按阶梯原则整定,这个原则是从用户到电源的各保护装置的动作时限逐级增加一个△t ,所以动作时限III t 1应与电路L2过电流保护动作时限III t 2相配合。如:L2过电流保护动作时间为2秒,L1过电流保护动作时间为:

5.25.0221=+=?+=t t t III

III

选用DS -21型时间继电器,其时限调整范围为0.25~1.25s ,本保护整定为1.25秒。

(3)灵敏度校验:

保护作为近后备时,对本线路L1末端f2点短路校验,灵敏系数为:

(2)..min ..min

1.1

0.866 1.44

2.49 1.50.5

f B f B sen III

op I K I

?=

=

=>

4.三段式保护选用的继电器规格及整定值列表

【实验内容】

1.根据预习准备,将计算获得的动作参数整定值(电源线电压为100V ),对各段保护的每个继电器进行整定。

2.实验接线见图3-8,按实验要求进行正确接线。

图3-8 三段式电流保护实验接线图

3.把各按钮、开关的初始位置设定如下:

系统运行方式切换开关置于“最小”,A、B站实验内容切换开关置于“正常工作”,A相短路、B相短路、C相短路按钮处于弹出位置,并分别把EPL-03A和EPL-03B的线路故障点设置旋钮置于顺时针到底位置,三相调压器旋钮置于逆时针到底位置。

4.合上漏电断路器和线路电源绿色按钮开关及直流电源船形开关,按下合闸按钮。

缓慢调节三相调压器旋钮,注意观察交流电压表的读数至100V;

5.把B站实验内容切换开关置于“电流保护”,模拟BC线路末端短路,观察各继电器动作情况,作好动作记录;

6.逆时针调节EPL-03B的线路故障点设置旋钮,分别模拟BC线路中间和始端短路,观察各继电器动作情况,作好动作记录;

7.把B站实验内容切换开关置于“正常工作”,解除BC线路的故障;分别按下A相、B相、C相短路按钮,并把A站实验内容切换开关置于“电流保护”,参考步骤5、6,分别模拟AB线路末端、中间和始端短路,观察各继电器动作情况,作好动作记录;

8.系统运行方式切换开关置于“最大”,重复以上实验。

表3-1

【实验报告】

1.整理实验数据,填入对应的数据表格中。

2.问题与思考

1)三段式电流保护为什么要使各段的保护范围和时限特性相配合?

2)三段式保护模拟动作操作前是否必须对每个继电器进行参数整定?为什么?

三段式过流保护

无时限电流速断保护(电流I段) 反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。 1.几个基本概念 (1)系统最大运行方式与系统最小运行方式 最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。 最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。 (2)最小短路电流与最大短路电流 在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。(3)保护装置的起动值 对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。 (4)保护装置的整定 所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。 2、整定计算 (1)动作电流 为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。即 Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3, 结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。 (2) 保护范围(灵敏度KLm)计算(校验) 《规程》规定,在最小运行方式下,速断保护范围的相对值Lb%>(15%~20%)时,为合乎要求,即 (3)动作时限 无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。t=0s 3、对电流速断保护的评价 优点:是简单可靠,动作迅速。 缺点:(1)不能保护线路全长; (2)运行方式变化较大时,可能无保护范围。 注意: (1) 在最大运行方式下整定后,在最小运行 方式下无保护范围。 二、限时电流速断保护(电流II段)的电流速断保护 限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。 1、工作原理 (1)为了保护本条线路全长,限时电流速断保护的保护范围必须延伸到下一条线路中去。(2)为了保证选择性,就必须使限时电流速断保护的动作带有一定的时限。

输电线路电流微机保护实验报告

实验报告 姓名: 班级: 学号: 实验二 输电线路电流微机保护实验 一、实验目的 1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。 2.了解电磁式保护与微机型保护的区别。 二、基本原理 1.试验台一次系统原理图 试验台一次系统原理图如图3-1所示。 2.电流电压保护基本原理 1)三段式电流保护 当网络发生短路时,电源与故障点之间的电流会增大。根据这个特点可以构成电流保护。电流保护分无时限电流速断保护(简称I 段)、带时限速断保护(简称II 段)和过电流保护(简称III 段)。下面分别讨论它们的作用原理和整定计算方法。 (1) 无时限电流速断保护(I 段) 单侧电源线路上无时限电流速断保护的作用原理可用图3-2来说明。短路电流的大小I k 和短路点至电源间的总电阻R ∑及短路类型有关。三相短路和两相短路时,短路电流I k 与R ∑的关系可分别表示如下: l R R E R E I s s s k 0)3(+== ∑ 图3-1 电流、电压保护实验一次系统图

l R R E I s s k 0)2(* 23 += 式中, E s ——电源的等值计算相电势;R s —— 归算到保护安装处网络电压的系统等值电阻;R 0—— 线路单位长度的正序电阻;l —— 短路点至保护安装处的距离。 由上两式可以看到,短路点距电源愈远(l 愈长)短路电流L k 愈小;系统运行方式小(R s 愈大的运行方式)I k 亦小。I k 与l 的关系曲线如图3-2曲线1和2所示。曲线1为最大运行方式(R s 最小的运行方式)下的I K = f (l )曲线,曲线2为最小运行方式(Rs 最大的运行方式)下的I K = f (l )曲线。 线路AB 和BC 上均装有仅反应电流增大而瞬时动作的电流速断保护,则当线路AB 上发生故障时,希望保护KA 2能瞬时动作,而当线路BC 上故障时,希望保护KA 1能瞬时动作,它们的保护范围最好能达到本路线全长的100%。但是这种愿望是否能实现,需要作具体分析。 以保护KA 2为例,当本线路末端k 1点短路时,希望速断保护KA2能够瞬时动作切除故障,而当相邻线路BC 的始端(习惯上又称为出口处)k 2点短路时,按照选择性的要求,速断保护KA 2就不应该动作,因为该处的故障应由速断保护KA 1动作切除。但是实际上,k 1和k 2点短点时,从保护KA 2安装处所流过短路电流的数值几乎是一样的,因此,希望k 1点短路时速断保护KA2能动作,而k 2点短点时又不动作的要求就不可能同时得到满足。 图3-2 单侧电源线路上无时限电流速断保护的计算图 为了获得选择性,保护装置KA2的动作电流I op2必须大于被保护线路AB 外部(k 2点)短路时的最大短路电流I k max 。实际上k 2点与母线B 之间的阻抗非常小,因此,可以认为母线B 上短路时的最大短路电流I k B max =I k max 。根据这个条 件得到:max B 12op k rel I K I = 式中,1 rel K ——可靠系数,考虑到整定误差、短路电流计算误差和非周期分

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

实验三三段式电流保护实验

实验三三段式电流保护实验 【实验名称】 三段式电流保护实验 【实验目的】 1.掌握无时限电流速断保护、限时电流速断保护及过电流保护的电 路原理,工作特性及整定原则; 2.理解输电线路阶段式电流保护的原理图及保护装置中各继电器 的功用; 3.掌握阶段式电流保护的电气接线和操作实验技术。 【预习要点】 1.复习无时限电流速断保护、限时电流速断保护及过电流保护相关 知识。 2.根据给定技术参数,对三段式电流保护参数进行计算与整定。【实验仪器设备】

【实验原理】 1.无时限电流速断保护 三段式电流保护通常用于3-66kV电力线路的相间短路保护。在被保护线路上发生短路时,流过保护安装点的短路电流值,随短路点的位置不同而变化。在线路的始端短路时,短路电流值最大;短路点向后移动时,短路电流将随线路阻抗的增大而减小,直至线路末端短路时短路回路的阻抗最大,短路电流最小。短路电流值还与系统运行方式及短路的类型有关。图3-1曲线1表示在最大运行方式下发生三相短路时,线路各点短路电流变化的曲线;曲线2则为最小运行方式下两相短路时,短路电流变化的曲线。 图3-1 瞬时电流速断保护的整定及动作范围 由于本线路末端f1点短路和下一线路始端的f2点短路时,其短路电流几乎是相等的(因f1离f2很近,两点间的阻抗约为零)。如果要求在被保护线路的末端短路时,保护装置能够动作,那么,在下一线路始端短路时,保护装置不可避免地也将动作。这样,就不能保证应有的选择性。为了保证保护动作的选择性,将保护范围严格地限制在本线路以内,就应使保护的动作电流I op1.1(为保护1的动作电流折算到一次电路的值)大于最大运行方式下线路末端发生三相短路时的短路电流I f.B.max,即 I op1.1 I f.b.max,I op1.1=K rel I f.b.max 式中,K rel—可靠系数,当采用电磁型电流继电器时,取K rel=1.2~1.3。 显然,保护的动作电流是按躲过线路末端最大短路电流来整定,可保证在其

三段式电流保护的整定及计算范文

第1章输电线路保护配置与整定计算 重点:掌握110KV及以下电压等级输电线路保护配置方法与整定计算原则。 难点:保护的整定计算 能力培养要求:基本能对110KV及以下电压等级线路的保护进行整定计算。 学时:4学时 主保护:反映整个保护元件上的故障并能以最短的延时有选择地切除故障的保护称为主保护。 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。 辅助保护:为补充主保护或后备保护的不足而增设的简单保护。 一、线路上的故障类型及特征: 相间短路(三相相间短路、二相相间短路) 接地短路(单相接地短路、二相接地短路、三相接地短路) 其中,三相相间短路故障产生的危害最严重;单相接地短路最常见。相间短路的最基本特征是:故障相流动短路电流,故障相之间的电压为零,保护安装处母线电压降低;接地短路的特征: 1、中性点不直接接地系统 特点是: ①全系统都出现零序电压,且零序电压全系统均相等。 ②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°。 ③故障线路的零序电流由全系统非故障元件、线路对地电容形成,零序电流滞后零序电压90°。显然,当母线上出线愈多时,故障线路流过的零序电流愈大。 ④故障相电压(金属性故障)为零,非故障相电压升高为正常运行时的相间电压。 ⑤故障线路与非故障线路的电容电流方向和大小不相同。

因此中性点不直接接地系统中,线路单相故障可以反应零序电压的出现构成零序电压保护;可以反应零序电流的大小构成零序电流保护;可以反应零序功率的方向构成零序功率方向保护。 2、中性点直接接地系统 接地时零序分量的特点: ①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零。 ②零序电流的分布,主要决定于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。 ③在电力系统运行方式变化时,如果输电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的。但电力系统正序阻抗和负序阻抗要随着系统运行方式而变化,将间接影响零序分量的大小。 ④对于发生故障的线路,两端零序功率方向与正序功率方向相反,零序功率方向实际上都是由线路流向母线的。 二、保护的配置 小电流接地系统(35KV及以下)输电线路一般采用三段式电流保护反应相间短路故障;由于小电流接地系统没有接地点,故单相接地短路仅视为异常运行状态,一般利用母线上的绝缘监察装置发信号,由运行人员“分区”停电寻找接地设备。对于变电站来讲,母线上出线回路数较多,也涉及供电的连续性问题,故一般采用零序电流或零序方向保护反应接地故障。 对于短线路、运行方式变化较大时,可不考虑Ⅰ段保护,仅用Ⅱ段+Ⅲ段保护分别

继电保护实验

实验一:微机型电网电流、电压保护实验 实验台工作原理及接线 实验台一次接线如图,它是单侧电源供电的输电线路,由系统电源,AB 、BC 线路和负载构成。系统实验电源由三相调压器TB 调节输出线电压100V 和可调电阻R s 组成;线路AB 和BC 距离长短分别改变可调电阻R AB 、R BC 阻值即可;负载由电阻和灯组成。A变电站和B变电站分别安装有S300L 微机型电流电压保护监控装置。线路AB 、BC 三相分别配置有保护和测量用的电流互感器,变比15/5。 图 电流、电压实验台一次接线 线路正常运行时:线电压100V ,2,8,15,28s AB BC f R R R R =Ω=Ω=Ω=Ω 实验台对应设备名称分别是: (1)1KM 、2KM :分别为A 变电站和B 变电站模拟断路器; (2)R AB 、R BC :分别是线路AB 和BC 模拟电阻; (3)3KM 、4KM :分别是线路AB 和BC 短路实验时模拟断路器; (4)3QF 、4QF :分别是线路AB 和BC 模拟三相、两相短路开关; 实验内容: 1、正确连接保护装置A 站、B 站的电流保护回路和测量回路,注意电流互感器接线。 2、合上电源开关,调节调压器电压从0V 升到100V ,根据计算得到: A 站=set A I I . 7 A ,=set A II I . 3 A ,=set A III I . 2 A ,t =I A 0 s , t =II A s , t =III A 1 s ; B 站=set B I I . 3 A ,=set B III I . 2 A ,t =I B 0 s ,t =III B s ,将整定值分别在S300L 保护监控装置A 站、B 站保护中设定。注:A 站保护配置电流I 、II 、III 段保护,B 站只配置电流I 、III 段保护。 3、正常运行:调节Ω=Ω=Ω=15,8,2BC AB s R R R ,分别合上1KM 、2KM ,使A 站、B 站投入运行,此时指针式电流、电压表及S300L 保护监控装置显示正常运行状态的电气量。

KV线路过电流保护实验

TKDZB-1型电力自动化及继电保护实验装置交流及直流电源操作说明实验中开启及关闭交流或直流电源都在控制屏上操作。 一、开启三相交流电源的步骤为: 1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。控制屏左侧面上安装的自耦调压器必须 调在零位,即必须将调节手柄沿逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口U、V、W处可得到0~450V的线电压输出,并可由控制屏上方的三只交流电压表指示。当屏上的“电压指 示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示 切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。 4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。实验完毕,须将自耦调压器调回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后,需关断“电源总开关”。 二、开启单相交流电源的步骤为: 1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须 调至零位。 2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器”开关拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。 3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。实验完毕,将调 压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。 三、开启直流操作电源的步骤为: 1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220V、1.5A不可调的直流电 压输出。接通“可调直流电压输出”开关,可获得40~220V、3A可调节的直流电压输出。固定电 压及可调电压值可由控制屏下方中间的直流电压表指示。当将该表下方的“电压指示切换”开关拨 向“可调电压”时,指示可调电源电压的输出值,当将它拨向“固定电压”时,指示输出固定的电 源电压值。

三段式电流保护整定计算(答案)

4、下图所示网络,其中各条线路均装设三段式电流保护。试整定线路AB装设的三段式电流保护(计算三段式电流保护中各段动作电流、动作时限并校验灵敏性)。 s s .s x min .s x 已知:线路AB正常运行时流过的最大负荷电流为230A; B、C、D母线处发生短路故障时的最大及最小短路电流分别为A k 509 .1 )3( max . = KB I、A k 250 .1 )2( min . = KB I,A k 722 .0 )3( max . = KC I、A k 612 .0 )2( min . = KC I,A k 638 .0 )3( max . = KD I、A k 542 .0 )2( min . = KD I;整定计算使用的可靠系数:25 .1 = I rel K、1.1 = II rel K、15 .1 = III rel K; 自启动系数:5.1 A = st K;返回系数85 .0 = re K;时间级差s5.0 = ?t;并且,电流II段的灵敏度系数应大于1.2,电流III段作为远后备及近后备时的灵敏度系数应分别大于1.1、1.5。 解:对保护1的三段式电流保护进行整定计算。 (1)电流I段(瞬时电流速断保护): 动作电流计算,kA 886 .1 509 .1 25 .1 )3( max . 1. = ? = = KB I rel I op I K I 动作时限计算,s0 1 = I t 校验灵敏性, 最小保护范围计算为: % 5. 51 % 100 ] 14 886 .1 2 3 115 3 [ 80 4.0 1 % 100 ] 2 3 [ 1 (%) max . 1. 1 min . = ? - ? ? ? ? = ? - = s I op AB p x I E l x lφ % 20 ~ 15 (%) min . > p l,可见满足要求。 (2)电流II段(限时电流速断保护): 动作电流计算, (1)与保护2的I段配合时:kA 993 .0 ) 722 .0 25 .1( 1.1 2. 1. = ? ? = =I op II rel II op I K I (2)与保护3的I段配合时:kA 877 .0 ) 638 .0 25 .1( 1.1 3. 1. = ? ? = =I op II rel II op I K I 取大者,于是kA 993 .0 1. = II op I

三段式过电流保护

三段式过电流保护: 第Ⅰ段―――电流速断保护 第Ⅱ段―――限时电流速断保护 第Ⅲ段―――过电流保护 ①电流速断保护: 电流速断保护按被保护设备的短路电流整定,当短路电流超过整定值时,则保护装置动作,断路器跳闸,电流速断保护一般没有时限,不能保护线路全长(为避免失去选择性),即存在保护的死区.为克服此缺陷,常采用略带时限的电流速断保护以保护线路全长.时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护的一部分,其动作时限比相邻线路的无时限保护大一个级差。 特点: 1.没有时限。 2.不能保护线路全长(存在死区)(一般设定为保护线路全长的85%)。 ②限时电流速断保护: 电流速断保护不能保护线路全长,故需要增加一段新的保护,用以切除本线路上速断范围以外的故障,同时也作为电流速断保护的后备保护(电流速断保护拒动,可能原因主要有测量误差,非金属性短路)(非金属性短路即存在过渡电阻,此时短路电流比金属性短路电流小,可能达不到电流速断保护的整定值)。 特点: 1.有时限,一般比下一条线路的速断保护高出一个时间阶段△t,通常取0.5s。 2.能保护线路全长,要求灵敏度大于1.3~1.5。(灵敏度指保护长度比总长度,零度1即表示保护全长)。 3.电流速断保护与限时电流速断保护配合,构成一条线路的主保护,保证了全线路范围的故障都能在0.5秒内切除,在一般情况下都能满足速动要求。 ③过电流保护: 当电流超过预定最大值时,使保护装置动作的一种保护方式。一般可用熔断体(没有太大冲击电流时,即负荷中电动机容量较少)或断路器。 特点: 1.有时限。如果下一级有限时电流速断保护,则比限时电流速断保护高出一个时间 阶段(区别于定时限,过电流保护作为第三段保护时,可以使反时限:故障电流越大,动作时间越短)。 2.能保护线路全长。

三段式电流保护整定计算实例

三段式电流保护整定计算实例: 如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB 线路的保护进行整 定计算并校验其灵敏度。其中25.1=I rel K ,15.1=II rel K ,15.1=III rel K ,85.0=re K 整定计算: ① 保护1的Ⅰ段定值计算 )( 1590)4.0*204.5(337 )(31min .)3(max .A l X X E I s s kB =+=+= )(1990159025.1) 3(max ,1A I K I kB I rel I op =?== 工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。 按躲过变压器低压侧母线短路电流整定: 选上述计算较大值为动作电流计算值. 最小保护范围的校验: =

满足要求 ②保护1的Ⅱ段限时电流速断保护 与相邻线路瞬时电流速断保护配合 )(105084025.12A I I op =?= =×=1210A 选上述计算较大值为动作电流计算值,动作时间。 灵敏系数校验: 可见,如与相邻线路配合,将不满足要求,改为与变压器配合。 ③保护1的Ⅲ段定限时过电流保护 按躲过AB 线路最大负荷电流整定: )(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel III op =??????== = 动作时限按阶梯原则推。此处假定BC 段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。 灵敏度校验: 近后备时: B 母线最小短路电流:

三段式零序电流保护(精)

实习(实训报告 实习(实训名称:电力系统继电保护课程设计学院: 专业、班级: 指导教师: 报告人: 学号: 时间: 2017年 1月 5日 目录 1设计题 目 ...............................................................................................................................3 2分

析设计要求 (4) 2.1设计规定 (5) 2.2本线路保护 计 .......................................................................................................................6 2.3 系统等效电路图.............................................................................. . (7) 3三段式零序电流保护整定计 算 ............................................................................................8 3.1 三段式零序电流保护中的原则 ...........................................................................................9 3.2 M侧保护 1零序电流保护Ⅰ段整定 (10) 3.3 N侧保护 1零序电流保护Ⅰ段整 定 (11) 4 零序电流保护评 价 ..............................................................................................................12 4.1原理与内容………………………………………………… . …………………………… .13 4.2零序电流保护的优缺点………………………………………………………………… ..13 5 总 结 (1) 4 参考文 献 .......................................................................................................................................... 15 1设计题目 如图 1所示为双电源网络中,已知线路的阻抗km X /4. 01Ω=, km X /4. 10Ω=,两侧系统等值电源的参数:

三段电流保护实验报告

Beijing Jiaotong University 电力系统继电保护实验报告 三段电流保护实验 姓名: 学号: 班级:电气1103 实验指导老师:倪平浩

一、电力系统继电保护实验要求 ①认真预习实验,保证在进实验室前,要掌握继电保护实验基础知识,熟悉继电保护实验环境。 要有一份详细的预习报告,预习报告必须认真写,须包含自己设计的实验电路。不得有相同的或者复印的预习报告。如果没有预习报告、预习报告雷同或者复印预习报告,则报告相同的同学都不得进入实验室做实验,回去重新预习,以后约时间做实验。 ②实验过程中要认真记录数据和实验中出现的问题,积极思考实验中的问题,可以讨论,但不能大声喧哗,不得做与实验无关的事情。 ③实验报告要认真写,要写出调试过程的问题,分析问题原因,和如何解决问题,不得抄袭。 ④保持实验室卫生,不得在实验室里乱丢弃垃圾。实验结束后,把实验桌周围的垃圾打扫干净。 二、电力系统继电保护常用继电器 1、电流继电器 电流继电器装设于电流互感器二次回路中,当电流大于继电器动作电流时动作,经跳闸回路作用于断路器跳闸。 结构图内部接线图 1.电磁铁2.线圈3.Z型舌片 4.弹簧5.动触点6.静触点 8.刻度盘9.舌片行程限制杆 7.整定值调整把 手 10.轴承 图13-1 DL-11型电流继电器结构图 动作原理: 如图13-1,当继电器线圈回路(图中2)中有电流通过时,产生电磁力矩,使舌片(图中3)向磁极靠近,但由于舌片转动时必须克服弹簧(图中4)的反作用力,因此通过线圈的电流必须足够大,当大于整定的电流值时(图中7、8),产生的电磁力矩使得舌片足以克服弹簧阻力转动,使继电器动作,接点闭合(图中5、6)。

三段式电流保护的设计(完整版)[1]

学号 2010 《电力系统继电保护》 课程设计 (2010届本科) 题目:三段式电流保护课程设计 学院:物理与机电工程学院 专业:电气程及其自动化 作者姓名: 指导教师:职称:教授 完成日期:年12 月26 日

目录 1 设计原始资料........................................................................................................................................ - 3 - 1.1 具体题目..................................................................................................................................... - 3 - 1.2 要完成的内容............................................................................................................................. - 3 - 2 设计要考虑的问题................................................................................................................................ - 3 - 2.1 设计规程..................................................................................................................................... - 3 - 2.1.1 短路电流计算规程.......................................................................................................... - 3 - 2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 - 2.2 本设计的保护配置..................................................................................................................... - 5 - 2.2.1 主保护配置...................................................................................................................... - 5 - 2.2.2 后备保护配置.................................................................................................................. - 5 - 3 短路电流计算........................................................................................................................................ - 5 - 3.1 等效电路的建立......................................................................................................................... - 5 - 3.2 保护短路点及短路点的选取..................................................................................................... - 6 - 3.3 短路电流的计算......................................................................................................................... - 6 - 3.3.1 最大方式短路电流计算 .................................................................................................. - 6 - 3.3.2 最小方式短路电流计算 .................................................................................................. - 7 - 4 保护的配合及整定计算........................................................................................................................ - 8 - 4.1 主保护的整定计算..................................................................................................................... - 8 - 4.1.1 动作电流的计算............................................................................................................ - 8 - 4.1.2 灵敏度校验...................................................................................................................... - 9 - 4.2 后备保护的整定计算................................................................................................................. - 9 - 4.2.1 动作电流的计算.............................................................................................................. - 9 - 4.2.2 动作时间的计算............................................................................................................ - 10 - 4.2.3 灵敏度校验.................................................................................................................... - 10 - 5 原理图及展开图的的绘制.................................................................................................................. - 10 - 5.1 原理接线图............................................................................................................................... - 10 - 5.2 交流回路展开图........................................................................................................................- 11 - 5.3 直流回路展开图....................................................................................................................... - 12 - 6 继电保护设备的选择.......................................................................................................................... - 12 - 6.1 电流互感器的选择................................................................................................................... - 12 - 6.2 继电器的选择........................................................................................................................... - 13 - 7 保护的评价.......................................................................................................................................... - 14 -

4-6-10KV线路过电流保护

实验四、6~10KV线路过电流保护实验 一、实验目的 1、掌握过流保护的电路原理,深入认识继电保护、自动装置的二次原理接线图和展开接线图。 2、学会识别本实验中继电保护实际设备与原理接线图和展开接线图的对应关系,为以后各项实验打下良好的基础。 3、进行实际接线操作, 掌握过流保护的整定调试和动作试验方法。 二、预习与思考 1、参阅有关教材做好预习,根据本次实验内容,参考图5-1、图5-2设计并绘制过电流保护实验接线图,参照图5-3。 2、为什么要选定主要继电器的动作值,并且进行整定? 3、过电流保护中哪一种继电器属于测量元件? 三、原理说明 电力自动化与继电保护设备称为二次设备,二次设备经导线或控制电缆以一定的方式与其他电气设备相连接的电路称为二次回路,或叫二次接线。二次电路图中的原理接线图和展开接线图是广泛应用的两种二次接线图。它是以两种不同的型式表示同一套继电保护电路。 1、原理接线图 原理接线图用来表示继电保护和自动装置的工作原理。所有的电器都以整体的形式绘在一张图上,相互联系的电流回路、电压电路和直流回路都综合在一起,为了表明这种回路对一次回路的作用,将一次回路的有关部分也

画在原理接线图里,这样就能对这个回路有一个明确的整体概念。图5—1表示6~10KV线路的过电流保护原理接线图,这也是最基本的继电保护电路。 从图中可以看出,整套保护装置由五只继电器组成,电流继电器3、4的线圈接于A、C两相电流互感器的二次线圈回路中,即两相两继电器式接线。当发生三相短路或任意两相短路时,流过继电器的电流超过整定值,其常开触点闭合,接通了时间继电器5的线圈回路,直流电源电压加在时间继电器5的线圈上,使其起动,经过一定时限后其延时触点闭合,接通信号继电器6和保护出口中间继电器7的线圈回路、二继电器同时起动,信号继电器6触点闭合,发出6-10KV过流保护动作信号并自保持,中间继电器7起动后把断路器的辅助触点8和跳闸线圈9二者串联接到直流电源中,跳闸线圈9通电,跳闸电铁磁励磁,脱扣机构动作,使断路器跳闸,切断故障电路,断路器1跳闸后,辅助触点8分开,切断跳闸回路。 原理接线图主要用来表示继电保护和自动装置的工作原理和构成这套装置所需要的设备,它可作为二次回路设计的原始依据。由于原理接线图上各元件之间的联系是用整体连接表示的,没有画出它们的内部接线和引出端子的编号、回路的编号;直流仅标明电源的极性,没有标出从何熔断器下引出;信号部分在图中仅标出“至信号”,无具体接线。因此,只有原理接线图是不能进行二次回路施工的,还要其他一些二次图纸配合才可,而展开接线图就是其中的一种。 2、展开接线图 展开接线图是将整个电路图按交流电流回路、交流电压回路和直流回路分别画成几个彼此独立的部分,仪表和电器的电流线圈、电压线圈和触点要分开画在不同的回路里,为了避免混淆,属于同一元件的线圈和触点采用相同的文字符号。

实验一 过电流保护实验

实验一过电流保护实验 一.实验目的 1.掌握过电流保护的电路原理,深入认识继电器保护自动装置的二次原理接线图和展开接线图。 2.进行实际接线操作,掌握过电流保护的整定调试和动作试验方法。 二.原理说明 电力自动化与继电保护设备称为二次设备,二次设备经导线或控制电缆以一定的方式 与其他电气 设备相连接 的电路称为 叫二次接线。 二次电路图 中的原理接 线图和展开 接线图是广 泛应用的两 种二次接线 图。它是以两 种不同的型 式表示同一 套继电保护 电路。 1.原理接线图图1-1 6~10KV线路的过电流保护原理接线图 原理接线图用来表示继电保护和自动装置的工作原理。所有的电器都以整体的形式绘在一张图上,相互联系的流回路、电压电路和直流回路都综合在一起,为了表明这种回路对一次回路的作用,将一次回路的有关部分也画在原理接线图里,这样就能对这个回路有一个明确的整体概念。图1-1表示6~10KV线路的过电流保护原理接线图,这也是最基本 的继电保护电路。

图1-2 线路过电流保护展开图 从图1-1中可以看出,整套保护装置由五只继电器组成,电流继电器KA2.KA1的线圈接于A、C两相电流互感器的二次线圈回路中,即两相两继电器式接线。当发生三相短路或任意两相短路时,流过继电器的电流超过整定值,其常开触点闭合,接通了时间继电器KT的线圈回路,直流电源电压加在时间继电器KT的线圈上,使其起动,经过一定时限后其延时触点闭合,接通信号继电器KS和保护出口中间继电器KM的线圈回路、二继电器同时起动,信号继电器KS触点闭合,发出6~10KV过流保护动作信号并自保持,中间继电器KM起动后把断路器的辅助触点和跳闸线圈YR二者串联接到直流电源中,跳闸线圈YR通电,跳闸电铁磁励磁,脱扣机构动作,使断路器跳闸,切断故障电路,断路器QF 跳闸后,辅助触点分开,切断跳闸回路。 原理接线图主要用来表示继电保护和自动装置的工作原理和构成这套装置所需要的设备,它可作为二次回路设计的原始依据。由于原理接线图上各元件之间的联系是用整体连接表示的,没有画出它们的 内部接线和引出端子的编号、回路的编号;直流仅标明电源的极性,没有标出从何熔断器下引出;信号部分在图中仅标出“至信号”,无具体接线。因此,只有原理接线图是不能进行二次回路施工的,还有其他一些二次图纸配合才可,而展开接线图就是其中的一种。 2.展开接线图 展开接线图是将整个电路图按交流电流回路、交流电压回路和直流回路分别画成几个彼此独立的部分,仪表和电器的电流线圈、电压线圈和触点要分开画在不同的回路里,为了避免混淆,属于同一元件的线圈和触点采用相同的文字符号。 展开接线图一般是分成交流电流回路、交流电压回路、直流操作回路和信号回路等几个主要组成部分。每一部分又分成若干行,交流回路按a、b、c的相序,直流回路按继电器的动作顺序各行从上至下排列。每一行中各元件的线圈和触点按实际连接顺序排列,每

相关文档
相关文档 最新文档