文档库 最新最全的文档下载
当前位置:文档库 › 基于神经网络反步法的移动机器人路径跟踪控制_贾鹤鸣

基于神经网络反步法的移动机器人路径跟踪控制_贾鹤鸣

基于神经网络反步法的移动机器人路径跟踪控制_贾鹤鸣
基于神经网络反步法的移动机器人路径跟踪控制_贾鹤鸣

(完整word版)智能跟随机器人项目申请书

申请编号: 入选编号: 上海市研究生创新创业能力培养计划项目申请书 项目名称:智能跟随机器人 所在高校: 申请部门负责人: 申请部门负责人职务、职称: 上海市大学生科技创业基金会制表 填表日期:年月日

填表说明 一、填写本申请书前,应仔细阅读《上海市研究生创新创业能力培养计划管理办 法》、《关于开展2017年上海市研究生创新创业能力培养计划申报工作的通知》等有关文件,务必实事求是地填写。 二、本申请书作为上海市研究生创新创业能力培养计划评审入选与培养创业项目 存档备查之用,用A4纸打印,使用骑马钉左侧装订,封面之上不得另加其他封面。申请单位须在规定时间内将本申请书一式2份及表格电子版光盘报送上海市大学生科技创业基金会。 三、研究生申请书须经研究生教育管理单位(部门)审核,本科生申请书须经创 业基金会分会审核,签署明确意见并加盖公章后方可上报。 四、部分栏目填写说明: 1.封面上“申请编号”、“入选编号”由创业基金会填写。 2.学科门类名称、学科名称及其代码按照国务院学位委员会颁布的《学位授 予和人才培养学科目录(2011年)》填写。 3.本表中涉及的人员均指人事关系隶属本单位的在编人员,兼职人员不计在 内。除学术带头人简况外,表中涉及的成果(论文、专著、专利、科研奖项、教学成果等)指本学科人员署名本单位获得的成果,凡署名其他单位所获得的成果不填写、不统计。 4.封面“申请部门负责人”一般应为高校研究生教育管理部门或者分会负责 人;申请内容中的“项目申请人”应为申请培训的研究生或本科生,项目团队成员不超过5人。 5.本表填写内容不涉及国家秘密并可公开。 6.本申请书所有信息必须全部填写,空白处请一律填“无”。

移动机器人控制系统的发展方向

移动机器人控制系统的发展方向 摘要随着计算机技术、传感器技术的不断发展,对于机器人领域的发展具有一定的促进作用。而由于移动机器人具有能够自治与移动的特征,在机器人领域处于核心地位。在复杂、危险的环境中,移动机器人所发挥的作用是有目共睹的。对此,对当前国内外较为常见的移动机器人控制系统进行剖析,并在此基础上论述了该领域的未来发展方向。 【关键词】移动机器人控制系统发展方向 移动机器人属于能够自动执行工作任务的机器,不但能够按照事先编译的程序运行,同时人类还可对其指挥。当前主要被运用在生产业、建筑业以及航空航天领域,而该领域的发展情况直接关系到国家综合实力的提升速度,对此加强对移动机器人控制系统的发展情况,以及未来发展方向的研究势在必行。 1 国内外常见的移动机器人控制系统 相对于国内在移动机器人的研究状况,能够看出国外在该领域的研究是较早的,其中具有代表性的有Saphira、TeamBots以及ISR。而在国内方面,代表性的有OSMOR、ZJMR以及Agent。下面,便对较为常用的控制系统进行介绍:

1.1.1 Saphira控制系统 Saphira控制系统是移动机器人领域中最早的系统,是有SRI国际人工智能中心在1990年所研发的,此系统是基于本地感知空间的共享内存与黑板,来实现协调与通信进程。由于Saphira是采用C语言来进行开发的,同时支持Windows 与Unix系统,因此具有文档资料相对完整、系统资源占用少等特征。但是需注意的是,由于Saphira系统在定位方面无法达到当前的实际需求,因此运用是相对较少的。 1.1.2 TeamBots控制系统 本系统是基于Java包与Java应用程序而构建的,经过20余年的发展后,此系统截止到目前已经被运用到多种类型的机器人平台当中。除此之外,在适用的操作系统方面,其中具有代表性的有Windows、MacOS以及Linux等,因此其运用的范围是更加广泛的。 1.1.3 ISR控制系统 ISR是基于行为的控制模式,其中是有任务执行层、反映层以及推理层所构成的,是有CAS研究中心所研发的。其中,任务执行层的作用是执行推理层所传输的指令;反映层其中包含资源、控制器以及行为;推理层的功能是根据用户的指令来对决策进行制定。此外,ISR控制系统仅能够在Linux中进行操作,并且没有公开化使用。

基于动态滑模控制的移动机器人路径跟踪

第32卷第1期 2009年1月 合肥工业大学学报 (自然科学版) J OU RNAL OF H EFEI UN IV ERSIT Y OF TECHNOLO GY Vol.32No.1  J an.2009  收稿日期:2008204221;修改日期:2008206202 基金项目;先进数控技术江苏省高校重点建设实验室基金资助项目(KX J 07127)作者简介:徐玉华(1985-),男,江西乐平人,合肥工业大学博士生; 张崇巍(1945-),男,安徽巢湖人,合肥工业大学教授,博士生导师. 基于动态滑模控制的移动机器人路径跟踪 徐玉华1, 张崇巍1, 鲍 伟1, 傅 瑶1, 汪木兰2 (1.合肥工业大学电气与自动化工程学院,安徽合肥 230009;2.南京工程学院先进数控技术江苏省高校重点实验室,江苏南京 211167) 摘 要:文章研究了室内环境下基于彩色视觉的移动机器人路径跟踪问题,利用颜色信息提取路径,简化了图像的特征提取;拟合路径参数时引入RANSAC 方法,以提高算法的可靠性;在移动机器人非线性运动学模型的基础上,设计了一阶动态滑模控制器,并通过仿真验证了控制器的有效性。关键词:移动机器人;视觉导航;路径跟踪;动态滑模 中图分类号:TP24 文献标识码:A 文章编号:100325060(2009)0120028204 Mobile robot ’s path following based on dynamic sliding mode control XU Yu 2hua 1, ZHAN G Chong 2wei 1, BAO Wei 1, FU Yao 1, WAN G Mu 2lan 2 (1.School of Electric Engineering and Automation ,Hefei University of Technology ,Hefei 230009,China ;2.Jiangsu Province College Key Laboratory of Advanced Numerical Control Technology ,Nanjing Institute of Technology ,Nanjing 211167,China ) Abstract :In t his paper ,mobile ro bot ’s pat h following in indoor environment based on color vision is st udied.Firstly ,t he image feat ures are extracted by color information so t hat t he real 2time perform 2ance of t he algorit hm is imp roved.To enhance t he ro bust ness of pat h parameter fitting ,a least square met hod based on RANSAC is adopted.Then ,a first 2order dynamic sliding mode cont roller is designed based on t he nonlinear vision 2guided robot ’s kinematics.The simulation proves t he validity of t he con 2t roller. K ey w ords :mobile robot ;visual navigation ;pat h following ;dynamic sliding mode 轮式移动机器人亦称自动引导车(A GV ),有着广泛的应用价值[1]。近年来,随着计算机技术和图像处理技术的发展,移动机器人视觉导航技术成为研究的热点[2]。视觉引导的路径跟踪是视觉导航技术之一。文献[3]基于移动机器人线性化的运动学模型,运用线性二次型最优控制理论设计最优控制器。该控制器对于较小角度的转向控制有一定的优越性,但没有讨论在较大偏差情况下的控制问题。文献[4]提出了一种模仿人工预瞄驾驶行为的移动机器人路径跟踪的模糊控制方法。而在实际应用中,模糊规则难以制定。文献[5]针对全局视觉条件下的轮式移动机器人路径跟踪问题,将基于图像的视觉伺服控制方法引 入到运动控制中,提出一种基于消除图像特征误差的跟踪控制方法。但该方法只适用于小规模环境条件下的使用。 针对以上存在的问题,本文采用价格低廉的车载彩色CCD 相机获取预先铺设引导线的路面实时图像,利用颜色信息提取路径。拟合路径参数时引入了RANSAC 方法,提高了参数拟合的鲁棒性。在移动机器人非线性运动学模型基础之上,设计了一阶动态滑模控制器(Dynamic Sliding Mode Cont roller ,简称DSMC ),在存在较大偏差的情况下也能达到良好的跟踪效果。滑模变结构控制对满足匹配条件的外界干扰和参数变化具有不变性,是一种适用于非线性系统的鲁棒控制方

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

移动机器人轨迹跟踪软件设计(站点设计)(DOC)

燕山大学 课程设计说明书 题目:移动机器人轨迹跟踪软件设计(站点设计)学院(系):电气工程学院 年级专业: 10级过程控制二班 学号: 学生姓名: 指导教师:陈贵林李雅倩

燕山大学课程设计(论文)任务书

2013年11 月25 日

目录 前言……………………………………………………………………………第一章设计思路……………………………………………………………第二章程序…………………………………………………………… 第三章算法…………………………………………………………… 心得体会

前言 机器人的应用越来越广泛,几乎渗透到所有领域。移动机器人是机器人学中的一个重要分支。早在60年代,就已经开始了关于移动机器人的研究。关于移动机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式、腿式的,对于水下机器人,则是推进器。其次,必须考虑驱动器的控制,以使机器人达到期望的行为。第三,必须考虑导航或路径规划,对于后者,有更多的方面要考虑,如传感融合,特征提取,避碰及环境映射。因此,移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。对移动机器人的研究,提出了许多新的或挑战性的理论与工程技术课题,引起越来越多的专家学者和工程技术人员的兴趣,更由于它在军事侦察、扫雷排险、防核化污染等危险与恶劣环境以及民用中的物料搬运上具有广阔的应用前景,使得对它的研究在世界各国受到普遍关注 关键字:移动机器人

第一章设计思路 1.1 机器人的介绍 机器人的诞生和机器人控制技术发展作为20世纪自动控制原理最具说服力的成就、人类科学技术进步的重大成果[1],是现代计算机与自动化等技术高速发展的产物,同时也是当代最高意义上的自动化。自1956年第一台工业机器人诞生之日起,机器人的应用越来越普及。20世纪60年代末机器人开始进入商业化和工业领域以来,机器人的应用范围已经遍及到工业、国防、宇宙空间、海洋开发、医疗保健、抢险救灾等人类生活的各个方面。机器人由于具有高度的灵活性、快速的反应能力以及巨大的信息处理能力,使其能够在很多环境替代人进行工作。从重复动作的流水线机械手到智能机器人,从平地到高山海底甚至太空,以至于在比较恶劣危险的工作环境,都是机器人发挥其作用的重要舞台,然而控制系统作为机器人的心脏,其性能的好坏直接决定了机器人的智能化水平。近年来对移动机器人的研究已成为了一大热点,促进了移动机器人在各个领域中的进一步应用,本文也将在这一方面进行一些分析和研究。智能移动机器人,是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 1.2 实训任务分配 本次的设计任务在老师的帮助下得到了细致地划分,而且也增加了一些项目,总体来说任务分为三大块:1.轨迹的识别与跟踪。2.站的设计。3.自定义轨迹的运行。这三部分的任务既是相互独立的又是相互联系的。 首先来分析第一个任务:轨迹的识别与跟踪,这个任务包含了摄像头的初始化以及图像的采集以及图像的存取,轨迹的识别用到了一个算法。机器人的控制也是这个任务包含的一个总要部分,其中包括了速度控制,方向控制等等。 第二个任务是站的设计,老师提到了“站”这个概念,这是在工厂的生产中的一些重要的机制,也是非常有实用性的一个设计。 第三个任务是自定义轨迹的运行,老师提到了可以设计一个圆形轨迹也可以设计一个方形轨迹,机器人的这种运动在生产生活中的应用也是很广泛的。

巡检目标自动识别跟踪的方法、系统及机器人与相关技术

图片简介: 一种巡检目标自动识别跟踪的方法,包括:使用云台相机拍摄包含有多个检测目标的原始图像;对原始图像中的多个检测目标进行识别与定位,对漏识别的检测目标进行人工标记,确认所有检测目标在所述原始图像中的位置;当前所述云台相机的拍摄中心与所述原始图像的中心点重合,以原始图像的中心点为原点,使用现有的计算几何中心的计算方式构建十字坐标系,将当前原点标记为第二坐标,将其他单个检测目标在原始图像中所在区域图像的中心点标记为多个第一坐标,并将多个第一坐标保存至数据库,通过第一坐标与第二坐标的转换使得所述云台相机能够对准检测目标进行拍照,而且本技术运算方法简单,适合在户外的云台相机运行。 技术要求 1.一种巡检目标自动识别跟踪的方法,其特征在于,包括: 使用云台相机拍摄包含有多个检测目标的原始图像;

对原始图像中的多个检测目标进行识别与定位,对漏识别的检测目标进行人工标记,确认所有检测目标在所述原始图像中的位置; 当前所述云台相机的拍摄中心与所述原始图像的中心点重合,以原始图像的中心点为原点,使用现有的计算几何中心的计算方式构建十字坐标系,将当前原点标记为第二坐标,将其他单个检测目标在原始图像中所在区域图像的中心点标记为多个第一坐标,并将多个第一坐标保存至数据库; 转动所述云台相机,使当前所述云台相机的拍摄中心从第二坐标转移至其中一个第一坐标,使单个检测目标位于当前所述云台相机的拍摄中心; 所述云台相机进行相应比例放大拍摄,获取该单个检测目标所在区域图像的放大图像,并将该第一坐标重新标记为第二坐标,调用数据库中其他第一坐标; 重复上述步骤,直至获取所有检测目标所在区域图像的放大图像,并将所有放大图像上传至云端。 2.根据权利要求1所述一种巡检目标自动识别跟踪的方法,其特征在于; 转动所述云台相机,包括获取云台相机的旋转角度,所述旋转角度包括水平方向的角度与垂直方向的角度; 其中获取旋转角度前,使用所述云台相机对一个参照物在不同距离下进行拍摄,获取所述参照物在不同拍摄距离下的像素值,通过多组像素值与拍摄距离之间的比例关系获取像素值与距离的线性关系,通过所述线性关系确认所述云台相机在一个像素值与距离对应的像素距离; 获取当前原始图像的像素值,通过所述像素距离计算所述云台相机到所述检测目标之间的实际距离; 将所述云台相机与所述检测目标之间的实际距离代入公式一计算得出所述旋转角度; 公式一:,其中dx为云台相机与检测目标的距离,lx为第一坐标与第二坐标的距离。

移动机器人控制系统设计

? 197 ? ELECTRONICS WORLD?技术交流 移动机器人控制系统设计 广东工业大学 侯晓磊 随着移动机器人在人们社会生活中的地位不断提高,设计一种 可靠、稳定的机器人控制系统越发的变得重要起来,以NI公司的MyRIO控制器以其安全可靠、编程开发简单而脱颖而出。本文基于上述控制器、L298N电机驱动芯片Labview设计一种移动机器人控制软硬件系统系统,经验证,该系统运行稳定、可靠、高效。 1.前言 新一轮科技革命引发新一轮产业革命。“互联网+制造”构建工业4.0,智能制造成为我国由制造大国向制造强国转变的关键一步,移动机器人作为智能制造中的一个组成部分,作用越发的变得举足轻重。本文给出一种以MyRIO+L298N+Labivew的移动机器人控制系统。 2.IN MyRIO控制器 NI myRIO是NI最新设计的嵌入式系统设计平台。NI myRIO中内含双核ARM Cortex-A9,实时性高,并且还可以便捷定制FPGA I/ O,给开发设计人员提供更好的设计复杂系统的平台。 NI myRIO作为可重配置控制器具有以下重要特点: 易于上手使用:引导性安装和启动界面可使开发人员更快地熟悉操作,协助开发人员快速了解工程概念,完成设计任务。编程设计简单,利用实时应用、内置WiFi等功能,开发人员可以实现远程部署应用,“无线”操控。 板载资源众多:有丰富的数字I/O接口,提供SPI串行外设接口、PWM脉宽调制输出端口、正交编码器输入端口、UART异步收发器端口和I2C总线接口、多个单端模拟输入、差分模拟输入和带参考的模拟输入等可供选择的资源。 另外,NI MyRIO还提供可靠性能较好的控制器保护电路,防止由于意外操作造成控制器不可恢复性损坏,总之,NI MyRIO为开发人员提供了一个编程简易,设计电路方便,不用刻意担心意外操作而影响控制器使用的平台。 3.L298N电机控制芯片 L298N是一种用来驱动电机的集成电路,可以较稳定的输出平稳电流和较强的功率。工作均电流为2A,最高可达4A,最高输出电压为50V,能够带动带有感性元件的负载。控制器可以直接通过输入输出口与电机驱动芯片联接,从而方便控制驱动芯片的输出。如将芯片驱动直流电机时,可以直接与步进电机相联接,通过调节控制器输出实现步进电机的的正反转功能当控制直流电机时,可以通过调节控制芯片的电压信号的极性,PWM波的占空比,从而实现直流电机转速和转向的调节。4.系统硬件部分设计 系统采用MyRIO整体框架,外围增设电机驱动电路、避障驱动电路、里程计电路、液晶显示电路、陀螺仪电路。通过MyRIO主控制发送控制信号驱动移动机器人运动,实时通过外围传感器获取位置信息反馈给主控制 器,然后控制器通过闭环系统调节当前位置以保证对目标位置的追踪。 图1 5.系统软件部分设计 系统软件部分采用经典控制理论的闭环控制系统,将电机、主控制器和外设传感器构成闭环系统,通过调节闭环统的参数,来使 移动机器人以较小偏差追踪按照预定轨迹。 图2 6.结束语 本文介绍了基于NI MyRIO控制器设计移动机器人控制系统,通过仿真和实物测试,能较好的完成对任务的追踪踪。 参考:From Student to Engineer:Preparing Future Innova-tors With the NI LabVIEW RIO Architecture https://www.wendangku.net/doc/0a13277629.html,.2014-04-01;王曙光,袁立行,赵勇.机器人原理与设计.人民邮电出版社,2013 。

全方位轮式移动机器人控制器设计与实现

第25卷第2期 系统工程与电子技术 Systems Engineering and E lectronics   V ol 125,N o 122003 收稿日期:2001-12-04 修订日期:2002-04-15 作者简介:杨福广(1974-),男,硕士研究生,工程师,主要研究方向为机器人控制。  文章编号:10012506X (2003)022******* 全方位轮式移动机器人控制器设计与实现 杨福广1,周风余1,侯宏光2 (1.山东科技大学机器人研究中心,山东济南250031;2.海军潜艇学院,山东青岛266071) 摘 要:全面介绍了一种全方位移动机器人的控制系统体系结构及软件的控制策略,包括采用的超声和激光传感器系统、网络化无线通讯系统、基于上下位机的计算机控制系统等方面。重点介绍了基于LM628的系统的伺服控制方法,并给出了机器人运动实验的结果,证明了系统的可行性。该系统适合在非结构化动态环境中进行分布式多Agnet (智能体)、多机器人的协作与协调、移动机器人路径规划与避碰等研究。 关键词:移动机器人;控制器;传感器中图分类号:TP24 文献标识码:A Design and R ealization of the Controller for the Mobile R obot With Full Mobility Y ANG Fu 2guang 1,ZH OU Feng 2yu 1,H OU H ong 2guang 2 (1.Shandong University o f Science &Technology ,Jinan 250031,China ; 2.Navy Submarine Academy ,Qingdao 266071,China ) Abstract :T he system con figuration of hardware and control strategy for rob ot with full m obility is introduced.T he sens or system including ultras onic and laser ,wireless communication system using netw ork and the control system based on master 2slave com puter are presented.T he serv o control meth od that based on LM628is introduced and the result which proves the feasibility is given.T his system is adapted to study distributed muti 2agent ,the cooperation and harm ony of muti 2rob ot ,path plan and obstacle av oidance of m obile rob ot in n one con figuration dynamic circumstance. K eyw ords :M obile rob ot ;C ontroller ;Sens or 1 引 言 近年来随着人工智能技术、计算机技术等相关技术的发展,对智能机器人的研究越来越多。轮式移动机器人 (W MR )可以作为各种智能控制方法(包括动态避障、群体协 作策略)的良好载体,同时又可以方便地构成网络化的分布式系统,开展多智能体的调度、规划等研究,所以对它的研究越来越受到重视。 本文全面介绍了一种全方位移动机器人的控制系统体系结构,包括传感器、通讯、伺服控制系统等,并给出了实验结果,证明了系统的可行性。 2 移动机器人的计算机控制系统的硬件 结构及工作原理 由于机器人不断移动的需要,系统采用充电电池供电。机器人硬件平台由两台工业PC 机、一块由LM628构成的伺服板、三个PW M 放大器和直流伺服电机组成。其结构框图如图1所示。系统可以分成以下四个模块:监控模块、感知 模块、路径规化和逆运动学计算模块、执行模块。 (1)监控模块 该模块的功能通过监控计算机来实现,在Win98下用 Visual C ++6.0开发,主要功能包括: ①任务描述 利用操作者规定的语言,描述对机器人的控制任务。 ②监控指令输入 在机器人完成任务的过程当中,操作者根据任务的执行情况以及环境的状况,对系统进行适当的干预,以充分发挥人的智能,构成人-机合作系统。如遇到不可避开的障碍、或者多个机器人运动过程中发生死锁等意外情况,都需要操作者适时的干预。 ③文本和图形的显示界面 以文本或者图形的方式实时地显示机器人系统的工作信息,包括当前正在执行的任务,机器人的位置、速度、障碍物等环境信息。 监控计算机是通过无线网络与每一个移动机器人取得联系的。 (2)感知模块 传感器作为机器人的感知部分,是机器人具有自主能力的重要前提条件。在W MR 系统中,共有三种传感器:超声、

激光跟踪焊接机器人系统技术方案

顺开机械手弧焊工作站 技术方案 沈阳新松机器人自动化股份有限公司 2009年7月

第一章方案概述 1.方案设计依据 甲方所提出的要求以及图片; 2.项目条件和要求 ?焊接工件名称:箱体总成最大 1000mm*1000mm*1800mm(W*L*H)(长度、宽度和 高度均有变化)。 ?材料:不锈钢;厚度:δ=3 mm; ?焊接方法:机器人MAG焊接方式; ?设备规划: 配置1套机器人及MAG焊接系统、1套机器人滑台、1台单轴变位机,1套机器人焊接夹具,激光检测和跟踪系统等。具体见设备布局参考图。 第二章焊接工艺分析 1.箱体工序划分: 工序1、人工点固工件(组焊夹具甲方设计制造,甲方自备焊接设备,箱体共4个部件); 示图:

工序2、人工将工件装在变位机夹具上,机器人焊接。焊接完成后人工卸件。 示图:机器人焊接如图所示的焊缝 2.焊接工艺(MAG): 1)焊丝直径选用Φ0.8-Φ1.0mm; 2)机器人MIG焊接的平均焊接速度取:6-8 mm/秒; 3)每条焊缝的机器人焊接辅助时间,即机器人平均移动时间取:3秒(包括机器 人变换姿态、加减速、空程运动时间,及焊接起弧、收弧时间); 第三章系统总体方案 1.方案总体介绍 本方案采用KUKA KR16L/6机器人和弗尼斯的TPS4000焊接系统,通过sevorobot 的DIGI-I激光传感器检测焊缝的位置进行焊接,并增加激光跟踪系统随时对焊接进行修正。 机器人夹具放在单轴变位机上,机器人安装在外部轴滑台上,保证焊接的姿态。 经过仿真:目前需用的机器人基本上可以满足最长1800的焊接。 关于夹具能适应多品种的问题:目前认为一套夹具可以通用,由于工件宽度及高度变动范围太大,为了适应有些型号的工件焊接,需要手工更换夹具上的部分底座。

相关文档