文档库 最新最全的文档下载
当前位置:文档库 › STM32 SysTick 系统时钟 超简易定时器SysTick

STM32 SysTick 系统时钟 超简易定时器SysTick

STM32 SysTick 系统时钟 超简易定时器SysTick
STM32 SysTick 系统时钟 超简易定时器SysTick

STM32 SysTick 系统时钟超简易定时器SysTick

2010年11月22日星期一14:24

转载自282280072

最终编辑chinleo

/**

* @brief Configures the SysTick. 系统时钟配置函数 main.c

* @param None

* @retval None

*/

void SysTick_Configuration(void)

{

/* Setup SysTick Timer for 100 msec interrupts */

if (SysTick_Config((SystemCoreClock) / 10)) // 1/10s=100ms

{

/* Capture error */

while (1);

}

NVIC_SetPriority(SysTick_IRQn, 0x0);

}

/**

* @brief This function handles SysTick Handler. 系统时钟中断函数 stm32f10x_it.c * @param None

* @retval None

*/

void SysTick_Handler(void)

{

/* Generate TIM1 COM event by software */

TIM_GenerateEvent(TIM1, TIM_EventSource_COM);

}

SysTick_Config(SystemFrequency / 10) 函数的形参就是systick重装定时器的值。systck计数频率为每秒72000000次,所以72000次就是1/10秒,也就是100ms。

SysTick是1个24bit递减计数器,通过对SysTick控制与状态寄存器的设置,可选择HCLK时钟(72M)或HCLK的8分频(9M,缺省是这个)作为SysTick的时钟源。

SysTick的重装寄存器决定了定时器频率。

若SysTick的时钟源是72M, SystemFrequency = 72000000Hz

所以 SysTick_Config(SystemFrequency / 1000);就是1ms时基。

// 1/1000 s=1ms

关于SysTick校准寄存器的介绍(大多数情况下,我们可以不必理会它)

校准值寄存器提供了这样一个解决方案:它使系统即使在不同的CM3产品上运行,也能产生恒定的SysTick中断频率。最简单的作法就是:直接把TENMS的值写入重装载寄存器,这样一来,只要没突破系统极限,就能做到每10ms来一次 SysTick异常。如果需要其它的SysTick 异常周期,则可以根据TENMS的值加以比例计算。只不过,在少数情况下,CM3芯片可能无法

准确地提供TENMS的值(如,CM3的校准输入信号被拉低),所以为保险起见,最好在使用TENMS 前检查器件的参考手册。

SysTick定时器除了能服务于操作系统之外,还能用于其它目的:如作为一个闹铃,用于测量时间等。要注意的是,当处理器在调试期间被喊停(halt)时,则SysTick定时器亦将暂停运作。

下面利用 SysTick 产生的硬件延时函数延时 dly_ms 毫秒

/******************************************************************************* * Function Name : SysTickHandler

* Description :系统时钟,一般调教到1MS中断一次

*******************************************************************************/ void SysTick_Handler(void)

{

if(Timer1)

Timer1--;

}

/********************************************

**函数名:SysTickDelay

**功能:使用系统时钟的硬延迟

**注意事项:一般地,不要在中断中调用本函数,否则会存在重入问题.另外如果屏蔽了全局中断,则不要使用此函数

********************************************/

volatile u16 Timer1;

void SysTickDelay(u16 dly_ms)

{

Timer1=dly_ms;

while(Timer1);

}

15.6、 SysTick系统滴答实验

SysTick系统滴答实验 SysTick实际就是系统滴答定时器,主要是为了操作系统提供一个专用的硬件上的定时中断。神舟系列的本例程通过SysTick定时器,产生的中断进行点灯控制。我们按照以下的几个部分对SysTick实验进行学习。 z意义与作用 SysTick定时器:系统滴答定时器是一个非常基本的倒计时定时器,用于在每隔一定的时间产生一个中断,即使是系统在睡眠模式下也能工作。它使得OS 在各CM3器件之间的移植中不必修改系统定时器的代码,移植工作一下子容易多了。如下图两个任务间通过SysTick 轮转调度的简单模式所示。 图表 1 两个任务间通过SysTick 轮转调度的简单模式 SysTick定时器被捆绑在NVIC中,用于产生SYSTICK异常(异常号:15)。在以前,大多操作系统需要一个硬件定时器来产生操作系统需要的滴答中断,作为整个系统的时基。例如,为多个任务许以不同数目的时间片,确保没有一个任务能霸占系统;或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。 Cortex‐M3处理器内部包含了一个简单的定时器。因为所有的CM3芯片都带有这个定时器,软件在不同CM3器件间的移植工作得以化简。该定时器的时钟源可以是内部时钟(FCLK,CM3上的自由运行时钟),或者是外部时钟( CM3处理器上的STCLK信号)。不过,STCLK的具体来源则由芯片设计者决定,因此不同产品之间的时钟频率可能会大不相同,你需要检视芯片的器件手册来决定选择什么作为时钟源。 SysTick定时器能产生中断,CM3为它专门开出一个异常类型,并且在向量表中有它的一席之地。它使操作系统和其它系统软件在CM3器件间的移植变得简单多了,因为在所有CM3产品间对其处理都是相同的。 SysTick定时器是作为NVIC(嵌套向量中断控制器)的一部分实现的。前面提到的,可以为系统提供一个“时基”(用于切换任务),同时,Systick的精准计时,也可以用来作为延迟。对于时间要求严格的场合,SysTick的意义是相当重大的。

stm32:系统时钟

实验4 系统时钟实验 上一章,我们介绍了STM32 内部系统滴答定时器,该滴答定时器产生的延时非常精确。在本章中,我们将自定义RCC系统时钟,通过改变其倍频与分频实现延时时间变化,实现LED灯闪烁效果。通过本章的学习,你将了解 RCC系统时钟的使用。本章分为以下学习目标: 1、了解 STM32 的系统构架。 2、了解 STM32 的时钟构架。 3、了解 RCC 时钟的操作步骤。 1.1 STM32 的系统构架 STM32 的时钟比较复杂,它可以选择多种时钟源,也可以选择不一样的时钟频率,而且在系统总线上面,每条系统的时钟选择都是有差异的。所以想要清楚的了解 STM32 的时钟分配,我们先来了解一下 STM32 的系统构架是什么样的。 从上图我们知道,RCC 时钟输出时钟出来,然后经过 AHB 系统总线,分别

分配给其他外设时钟,而不一样的外设,是先挂在不一样的桥上的。比如: ADC1、ADC2、 SPI1、GPIO 等都是挂在 APB2 上面,而有些是挂在 APB1上面,所以,虽然它们都是从 RCC 获取的时钟,但是它们的频率有时候是不一样的。 1.2 STM32 的时钟树 STM32 单片机上电之后,系统默认是用的时钟是单片机内部的高速晶振时钟,而这个晶振容易受到温度的影响,所以晶振跳动的时候不是有一定的影响,所以一般开发使用的时候都是使用外部晶振,而且单片机刚启动的时候,它的时钟频率是 8MHZ,而 STM32 时钟的最高频率是 72MHZ,所以单片机一般开机之后运行的程序是切换时钟来源,并设置时钟频率。大家可能有点疑惑,在第一章到第三章之中,我们并没有看到单片机开机之后设置时钟来源和时钟频率的。其实在使用库函数的时候,其实在库函数启动文件里面,是帮助我们把时钟频率设置到 72MHZ 了。大家可以打开一个库函数工程,在 system_stm32f10x.c 的第 106行,它定义了一个 SYSCLK_FREQ_72MHz: #if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */ #define SYSCLK_FREQ_24MHz 24000000 #else #define SYSCLK_FREQ_72MHz 72000000 然后在下面的程序中,根据这个 SYSCLK_FREQ_72MHz 定义,它默认设置成 72MHZ。接下来我们来看一下具体的 RCC 时钟树:

STM32CubeMX+FreeRTOS学习[3]-计数信号量(Lu)

FreeRTOS学习之三:计数信号量 前提:默认已经装好MDK V5和STM32CubeMX,并安装了STM32F1xx系列的支持包。 硬件平台:STM32F1xx系列。 目的:学习计数信号量的使用。 计数信号量的使用场景:一个二值信号量最多只可以锁存一个中断事件。在锁存的事件还未被处理之前,如果还有中断事件发生,那么后续发生的中断事件将会丢失。如果用计数信号量代替二值信号量,那么,这种丢中断的情形将可以避免。 本文例子使用STM32CubeMX配置创建两个任务,一个任务每秒钟发送多次信号量,另一个等待信号量并控制LED的闪烁。 Step1.打开STM32CubeMX,点击“New Project”,选择芯片型号,STM32F103RBTx。 Step2.配置时钟引脚。 Step3.配置PA8和PD2为Output,并把用户标签分别改为LED0,LED1。

Step4.将系统时基源改为TIM4。 Step5.使能FreeRTOS。 Step6.配置时钟树。8M输入时,通过PLL得到72M内部时钟。

Step7.配置FreeRTOS。 在Tasks and Queues选项卡,默认配置了一个名为defaultTask的任务,其优先级为普通,任务堆栈大小为128字,任务函数名为StartDefaultTask。 双击蓝色的地方,弹出对话框,将任务名修改为SemGen,将任务函数名修改为SemGenTask。 点击Add按钮,增加一个任务Handle,优先级设置为Normal,函数名为HandleTask。

在Config parameters选项卡,使能计数信号量。 在Timers and Semaphores选项卡,点击Counting Semaphores项右边的“Add”按钮,添加一个信号量,名称改为cSem01,并把最大计数值改为10。 注:其他的都使用默认参数。 Step8.生成代码。

STM32学习笔记(3):系统时钟和SysTick定时器

STM32学习笔记(3):系统时钟和SysTick定时器 1.STM32的时钟系统 在STM32中,一共有5个时钟源,分别是HSI、HSE、LSI、LSE、PLL (1)HSI是高速内部时钟,RC振荡器,频率为8MHz; (2)HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz; (3)LSI是低速内部时钟,RC振荡器,频率为40KHz; (4)LSE是低速外部时钟,接频率为32.768KHz的石英晶体; (5)PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL 的输入可以接HSI/2、HSE或者HSE/2。倍频可选择为2 – 16倍,但 是其输出频率最大不得超过72MHz。 其中,40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。 STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为 48MHz的时钟源。该时钟源只能从PLL端获取,可以选择为1.5分频或者1分频,也就是,当需使用到USB模块时,PLL必须使能,并且时钟配置为48MHz 或72MHz。 另外STM32还可以选择一个时钟信号输出到MCO脚(PA.8)上,可以选择为PLL输出的2分频、HSI、HSE或者系统时钟。 系统时钟SYSCLK,它是提供STM32中绝大部分部件工作的时钟源。系统时钟可以选择为PLL输出、HSI、HSE。系系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各个模块使用,AHB分频器可以选择1、2、4、8、16、64、128、256、512分频,其分频器输出的时钟送给5大模块使用: (1)送给AHB总线、内核、内存和DMA使用的HCLK时钟; (2)通过8分频后送给Cortex的系统定时器时钟; (3)直接送给Cortex的空闲运行时钟FCLK; (4)送给APB1分频器。APB1分频器可以选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一

设置stm32系统各部分时钟

设置stm32系统各部分时钟 函数如下: /******************************************************************** ****** * 函数名: RccInitialisation* 函数描述: 设置系统各部分时钟* 输入参数: 无* 输出结果: 无* 返回值: 无 ******************************************************************** ******/void RccInitialisation(void){/* 定义枚举类型变量HSEStartUpStatus */ErrorStatus HSEStartUpStatus;/* 复位系统时钟设置*/RCC_DeInit();/* 开启HSE*/RCC_HSEConfig(RCC_HSE_ON);/* 等待HSE 起振并稳定*/HSEStartUpStatus = RCC_WaitForHSEStartUp();/* 判断HSE 起是否振成功,是则进入if()内部*/if(HSEStartUpStatus == SUCCESS){/* 选择HCLK(AHB)时钟源为SYSCLK 1 分频*/RCC_HCLKConfig(RCC_SYSCLK_Div1);/* 选择PCLK2 时钟源为HCLK(AHB) 1 分频 */RCC_PCLK2Config(RCC_HCLK_Div1);/* 选择PCLK1 时钟源为HCLK(AHB) 2 分频*/RCC_PCLK1Config(RCC_HCLK_Div2);/* 设置FLASH 延时周期数为2 */FLASH_SetLatency(FLASH_Latency_2);/* 使能FLASH 预取缓存*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); /* 选择锁相环(PLL)时钟源为HSE 1 分频,倍频数为9,则PLL 输出频率为 8MHz * 9 = 72MHz*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);/* 使能PLL */RCC_PLLCmd(ENABLE);/* 等待PLL 输出稳 定*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);/* 选择

stm32系统时钟配置问题

stm32系统时钟配置问题 系统从上电复位到72mz 配置好之前,提供时钟的是内如高速rc 振荡器提 供8MZ 的频率,这个由下面void SystemInit (void)函数的前面的一部分代码来 完成的和保证的:RCC->CR |= (uint32_t)0x00000001; #ifndef STM32F10X_CLRCC->CFGR &= (uint32_t)0xF8FF0000;#elseRCC- >CFGR &= (uint32_t)0xF0FF0000;#endif RCC->CR &= (uint32_t)0xFEF6FFFF; RCC->CR &= (uint32_t)0xFFFBFFFF; RCC->CFGR &= (uint32_t)0xFF80FFFF; #ifdef STM32F10X_CLRCC->CR &= (uint32_t)0xEBFFFFFF; RCC->CIR = 0x00FF0000; RCC->CFGR2 = 0x00000000;#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)RCC->CIR = 0x009F0000; RCC->CFGR2 = 0x00000000;#elseRCC->CIR = 0x009F0000;#endif#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)#ifdef DATA_IN_ExtSRAMSystemInit_ExtMemCtl();#endif#endif 接着void SystemInit (void)调用SetSysClock();函数,将系统时钟配置到 72m,将AHB,APB1,APB2 等外设之前的时钟都配置好,然后切换到72mz 下 运行。所以在使用哪个外设的时候,只需要使能相应的外设时钟就可以了 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

学习笔记:STM32的SysTick定时器

学习笔记:STM32的SysTick定时器SysTick定时器是一个系统定时器,该定时器是个24位的倒计数定时器,该定时器的最 大用处在于可以提供一个操作系统任务切换所需要的“时钟滴答”。该定时器是STM32中功能最简单的定时器,提供倒计数、中断两个功能,类似与8051的定时器。 SysTick是包含在Cortex-M3内核中的一个简单的定时器。因为所有的CM3芯片都带有这个定时器,软件在不同芯片生产厂商的CM3器件间的移植工作就得以简化。该定时器的时钟源可以是内部时钟(FCLK,CM3上的自由运行时钟),或者是外部时钟(CM3处理器上的STCLK信号)。不过,STCLK的具体来源则由芯片设计者决定,因此不同产品之间的时钟频率可能大不相同。因此,需要阅读芯片的使用手册来确定选择什么作为时钟源。在STM32中SysTick以外部时钟HCLK(AHB时钟)或HCLK/8作为运行时钟。 SysTick工作分析 SysTick是一个24位的定时器,即一次最多可以计数2^24个时钟脉冲,这个脉冲的计数值被保存到当前计数值寄存器STK_VAL中,只能向下计数,每接收到一个时钟脉冲STK_VAL 的值就向下减1,直到为0。当STK_VAL的值被减至0时,由硬件自动把重载寄存器STK_LOAD 中保存的数值加载到STK_VAL中,STK_VAL又重新向下计数……当使能中断时,STK_VAL的值减至0时,触发中断,就可以在中断服务函数中处理定时事件了。 当然,要使SysTick进行以上工作必须要进行SysTick配置。它的控制配置很简单,只有三个控制位和一个标志位,都位于寄存器STK_CTRL中。 STK_CTRL是一个32位的寄存器,该寄存器与SysTick有关的位分别为Bit0(ENABLE)、Bit1(TICKINT)、Bit2(CLKSOURCE)、Bit16(COUNTFLAG)。 Bit0(ENABLE):SysTick的使能位,此位为1的时候使能SysTick定时器,为0的时候关闭SysTick定时器。 Bit1(TICKINT):中断使能位,为1开启中断,为0关闭中断。 Bit2(CLKSOURCE):SysTick的时钟信号源选择位,为1时AHB为时钟源,为0时AHB/8为时钟源。 Bit16(COUNTFLAG):计数减至0时的标志位,若STK_VAL计数至0,此标志位会被置1,置1后会被自动清0。 还有个与该定时器有关的寄存器STK_CALIB,是用于校准的,不常用。 SysTick定时器用于查询法延时 寄存器操作: 寄存器操作要用到三个寄存器STK_CTRL、STK_VAL、STK_LOAD。步骤如下:①选择Systick 的时钟源,即配置寄存器STK_CTRL的Bit2。②加载计数重载值,即配置寄存器STK_LOAD。 ③清零STK_VAL寄存器。④使能定时器,即使能寄存器STK_CTRL的Bit0位。⑤程序中查询标志位是否置1,不用清零,会自动清零。

Finder自学stm32笔记之电源时钟

电源 STM32的工作电压(VDD)为2.0~3.6V。通过内置的电压调节器提供所需的1.8V电源。当主电源VDD掉电后,通过VBA T脚为实时时钟(RTC)和备份寄存器提供电源。 由上图可知VDDA.VSSA分别是独立给ADC的电源盒电源地。ADC需要准确的精度因此需要独立的电源供电。 使用电池或其他电源连接到VBAT脚上,当VDD断电时,可以保存备份寄存器的内容和维持RTC的功能。以便于RTC、后备区域、一些寄存器工作当然也需要外部振荡器提供时钟,所以也为LSE振荡器供电。 stm32中有上电复位掉电复位电路,可以设置通过设置PVDE位设置PVD阀值,当VDD 电压异常的时候就会复位,可以设置中断。 低功耗模式 三种低功耗模式 睡眠模式(Cortex?-M3内核停止,所有外设包括Cortex-M3核心的外设,如NVIC、系统时钟(SysTick)等仍在运行) 停止模式(所有的时钟都已停止而电压还在供给) :是深睡眠模式基础上结合了外设的时钟控制机制,在停止模式下电压调节器可运行在正常或低功耗模式。此时在1.8V供电区域的的所有时钟都被停止,PLL、HSI和HSE RC振荡器的功能被禁止,SRAM和寄存器内

容被保留下来。在停止模式下,所有的I/O引脚都保持它们在运行模式时的状态。 待机模式(1.8V电源关闭):待机模式可实现系统的最低功耗。该模式是在Cortex-M3深睡眠模式时关闭电压调节器。整个1.8V供电区域被断电。PLL、HSI和HSE振荡器也被断电。SRAM和寄存器内容丢失。只有备份的寄存器和待机电路维持供电。 前面是三者的详细介绍,初一看看不出有什么区别,我当时都看的晕呼呼地,做笔记时候才发现他们真正的不同。现在讲解一下。 睡眠模式只是关掉了CM3的内核,外设都在运行包过内部外部时钟、IO口、中断NVIC 等等。停止模式是进一步的睡眠模式它是关掉了所有的外设时钟,但是仍旧在供电。待机模式是最低功耗的模式,它连时钟供电全部禁止除了备份的寄存器和待机电路维持供电。(有待进一步的深入研究并修正) Stm32降低功耗的三种方法: 1.低功耗模式 2.降低系统时钟 3.关掉外设 如题降低系统时钟通过对预分频寄存器进行编程,可以降低任意一个系统时钟(SYSCLK、HCLK、PCLK1、PCLK2)的速度。从而降低功耗。 但是我有疑问就是:如何在系统运行的情况下切换系统时钟的时钟源?是否可以随时改变预分频系数? RCC_SYSCLKConfig 设置系统时钟(SYSCLK) RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI);/* Wait till HSI is used as system clock source */ while(RCC_GetSYSCLKSource() != 0x00) 这个函数只是配置好系统时钟不是随时改变系统时钟的函数。所以有待做实验研究此处 关闭外设:在运行模式下,任何时候都可以通过停止为外设和内存提供时钟(HCLK和PCLKx)来减少功耗。通过设置AHB外设时钟使能寄存器(RCC_AHBENR)、APB2外设时钟使能寄存器 (RCC_APB2ENR)和APB1外设时钟使能寄存器(RCC_APB1ENR)来开关各个外设模块的时钟。

玩转STM32之systick篇

系统嘀嗒(SysTick) Cortex-M3处理器内部包含了一个简单的定时器。因为所有的CM3芯片都带有这个定时器,软件在不同 CM3器件间的移植工作就得以化简。该定时器的时钟源可以是内部时钟(FCLK,CM3上的自由运行时钟),或者是外部时钟( CM3处理器上的STCLK信号)。不过,STCLK的具体来源则由芯片设计者决定,因此不同产品之间的时钟频率可能会大不相同。因此,需要检视芯片的器件手册来决定选择什么作为时钟源。 SysTick定时器被捆绑在NVIC中,用于产生SysTick异常(异常号:15)。在以前,操作系统还有所有使用了时基的系统,都必须一个硬件定时器来产生需要的“滴答”中断,作为整个系统的时基。滴答中断对操作系统尤其重要。例如,操作系统可以为多个任务许以不同数目的时间片,确保没有一个任务能霸占系统;或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。 Stm32系统嘀嗒校准值固定为9000,当系统嘀嗒时钟设定为9MHz(HCLK/8的最大值) ,产生1ms 时间基准。

(STM32中systick校准数值寄存器为制度读23:0位值为9000) static u8 fac_us=0;//us延时倍乘数 static u16 fac_ms=0;//ms延时倍乘数 //初始化延迟函数 //SYSTICK的时钟固定为HCLK时钟的1/8 //SYSCLK:系统时钟 void delay_init(u8 SYSCLK) { SysTick->CTRL&=0xfffffffb;//bit2清空,选择外部时钟 HCLK/8 fac_us=SYSCLK/8; fac_ms=(u16)fac_us*1000; } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD=(u32)nms*fac_ms;//时间加载(SysTick->LOAD为24bit) SysTick->VAL =0x00; //清空计数器 SysTick->CTRL|=0x01 ; //开始倒数 do { temp=SysTick->CTRL; } while(temp&0x01&&!(temp&(1<<16)));//等待时间到达 SysTick->CTRL=0x00; //关闭计数器 SysTick->VAL =0X00; //清空计数器

STM32定时时间的计算

STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由 PCLK1 得到关键是设定时钟预分频数,自动重装载寄存器周期的值/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为: ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒。定时器的基本设置如下: 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)。 2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间)累计 0xFFFF个频率后产生个更新或者中断(也是说定时时间到)。 3、TIM_TimeBaseStructure.TIM_CounterMode=TIM1_CounterMode_Up; //定时器模式向上计数。 4、 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值。 5、 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2。 6、 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断。 7、 TIM_Cmd(TIM2, ENABLE);//打开定时器或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999,72M/ (35999+1)/2=1Hz 1秒中断溢出一次。 8、 TIM_TimeBaseStructure.TIM_Period = 2000; //计数值2000 ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+35999)/72M)*(1+2000)=1秒。 9、注意使用不同定时器时,要注意对应的时钟频率。例如TIM2对应的是APB1,而TIM1对应的是APB2 通用定时器实现简单定时功能 以TIME3为例作为说明,简单定时器的配置如下: void TIM3_Config(void) { TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure; TIM_DeInit(TIM3); //复位TIM2定时器 /* TIM2 clock enable [TIM2定时器允许]*/ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); /* TIM2 configuration */ TIM_TimeBaseStructure.TIM_Period = 49; // 0.05s定时 TIM_TimeBaseStructure.TIM_Prescaler = 35999; // 分频36000 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数方向向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); /* Clear TIM2 update pending flag[清除TIM2溢出中断标志] */

STM32 系统滴答定时器(Systick) 彻底研究、完美解读并且免费,鄙视5个下载券的二货

STM32 系统滴答定时器(Systick) 彻底研究解读 stm32系统滴答定时器(Systick) 彻底研究解读 SysTick 起那些TIM 定时器可以说简单多啦~~~~~哥的心情也好了不少,嘎嘎!! arm Cortex-M3 内核的处理器内部包含了一个SysTick 定时器,它是一个24 位的倒计数定时器,注意,是倒计数!当计到0 时它就会从LOAD 寄存器中自动重装载定时初值。只要不把CTRL 寄存器中的ENABLE 为清0,它就永不停息!遗憾的是,Sy sTick 定时器在《STM32 参考手册》里一个屁都没放,只有在《ARM Cortex-M3 技术参考手册》和《ARM Cortex-M3 权威指南》才找到相关寄存器的介绍。 一、SysTick 的时钟来源 我先来看看STM32 的时钟树 The RCC feeds the Cortex Sy stemTimer (SysTick) external clock with the AHB clock(HCLK) divided by 8.The SysTick can work either with this clock or with the Cortex clock(HCLK), configurable in the Sy sTick Control and Status Register. 上面这段话的意思是,SysTick的时钟来源可以是HCLK的8分频或就是HCLK, 具体是哪种可通过配置“控制和状态寄存器(CTRL)”来选择。 二、SysTick的寄存器简介 SysTick的寄存器一共有4个。

stm32学习之系统时钟

stm32学习之系统时钟 STM32入门学习心得 — 系统时钟 STM32的时钟与单片机相比要复杂的多,它能够对每一个外设以及IO口进行时钟的设置,这是单片机是无法和它比拟的,所以正确的理解和灵活的运用stm32的时 钟是很重要的。 STM32有3个不同的时钟源可以用于驱动系统时钟(SYSCLK),分别为: HSI振荡器时钟(内部高速时钟)。 HSE振荡器时钟(外部高速时钟)。 PLL时钟。 STM32还有两个二级时钟用来驱动独立的看门狗和选择性的驱动RTC。分别为:32KHZ低速内部RC振荡器(LSI RC)用来驱动独立的开门狗和选择性的驱动用于从停止/ 待机模式自动唤醒的RTC。 32.768kHz低速外部晶体振荡器(LSE 晶体振荡器)用来选择性的驱动实时时钟。 注:每个时钟源在使用时都可以独立的打开/关掉,以节省功耗。 在这里我们可以通过框图来直观的理解STM32的系统时钟。系统时钟框图如图1所示。 图一系统框图

通过图一不妨来详细分析下系统各个部分的时钟。 HSI时钟 HSI时钟通过一个8MHz的内部RC振荡器产生,并且可以被直接用作系统时钟,或者经过2倍频后作为PLL的输出作为SYSCLKS时钟。在系统复位时,HSI振荡器被选择默认的系统SYSCLKS时钟。内部时钟的缺点是频率的精确度没有外部晶体振荡器的高。 程序实现(所有程序都是基于固件库): 直接作为SYSCLKS时钟:RCC_DeInit();系统默认 经过PLL输出作为SYSCLKS时钟: RCC_DeInit(); SystemInit (); 可以在固件库中的stm32f10x_rcc.c文件中通过开放宏定义来选择系统时 钟经过倍频后的频率,固件库默认为72MHZ。如图2所示: 如图2所示 HSE时钟 高速外部时钟信号可以通过2个可能的时钟源产生。分别为: HSE 外部晶体/陶瓷共振器。 HSE 外部时钟。 外部时钟源 在该种模式下,必须提高外部时钟源,外部时钟源可以达到25MHz,用户可以通过设置时钟控制寄存器(RCC_CR)中的HSEBYP和HSEON 位选择该模式。占空必50%的外部时钟信号(方波,正弦波,三角波)必须用来驱动OSC_IN引脚,同时OSC_OUT引脚置于高 阻态。 外部晶体振荡器/陶瓷共振器(HSE晶体) 4~16MHz的外部振荡器具有能够在主时钟上产生一个非常精确地速率的优 点。 时钟控制寄存器(RCC_CR)中的HSERDY标志指示了高速外部振荡器是否是稳定的,在启动时,时钟直到硬件设置了该标志位才释放,如果在时钟中断寄存器(RCC_CR)中打开了, 就会产生一个中断。 HSE晶体振荡器可以通过时钟控制寄存器(RCC_CR)中的HSEON位来打开或 禁止。 程序实现(所有程序都是基于固件库): 1.直接作为SYSCLKS时钟: RCC_DeInit(); /*************************外部时钟设置 *****************************/

STM32知识:什么是SYSTICK 作用是什么

STM32知识:什么是SYSTICK 作用是什么 什么是SYSTICK: 这是一个24位的系统节拍定时器system TIck TImer,SysTIck,具有自动重载和溢出中断功能,所有基于Cortex_M3处理器的微控制器都可以由这个定时器获得一定的时间间隔。 作用: 在单任务引用程序中,因为其架构就决定了它执行任务的串行性,这就引出一个问题:当某个任务出现问题时,就会牵连到后续的任务,进而导致整个系统崩溃。要解决这个问题,可以使用实时操作系统(RTOS). 因为RTOS以并行的架构处理任务,单一任务的崩溃并不会牵连到整个系统。这样用户出于可靠性的考虑可能就会基于RTOS来设计自己的应用程序。这样SYSTICK存在的意义就是提供必要的时钟节拍,为RTOS的任务调度提供一个有节奏的心跳。 微控制器的定时器资源一般比较丰富,比如STM32存在8个定时器,为啥还要再提供一个SYSTICK?原因就是所有基于ARM Cortex_M3内核的控制器都带有SysTick定时器,这样就方便了程序在不同的器件之间的移植。而使用RTOS的第一项工作往往就是将其移植到开发人员的硬件平台上,由于SYSTICK的存在无疑降低了移植的难度。 SysTick定时器除了能服务于操作系统之外,还能用于其它目的:如作为一个闹铃,用于测量时间等。 要注意的是,当处理器在调试期间被喊停(halt)时,则SysTick定时器亦将暂停运作。时钟的选择: 用户可以在位于Cortex_M3处理器系统控制单元中的系统节拍定时器控制和状态寄存器(SysTick control and status register ,SCSR)选择systick 时钟源。如将SCSR中的CLKSOURCE位置位,SysTick会在CPU频率下运行;而将CLKSOUCE位清除则SysTick 会以CPU主频的1/8频率运行。 3.5版本的库函数与以往的有所区别 不存在stm32f10x_systick.c文件,故原来的一些函数也不存在,比如SysTick_SetReload(u32

stm32时钟树分析

void RCC_Configuration(void) { /* RCC system reset(for debug purpose) */ RCC_DeInit(); /* Enable HSE */ RCC_HSEConfig(RCC_HSE_ON);

/* Wait till HSE is ready */ HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS) { /* Enable Prefetch Buffer */ FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); /* Flash 2 wait state */ FLASH_SetLatency(FLASH_Latency_2); /* HCLK = SYSCLK */ RCC_HCLKConfig(RCC_SYSCLK_Div1); /* PCLK2 = HCLK */ RCC_PCLK2Config(RCC_HCLK_Div1); /* PCLK1 = HCLK/2 */ RCC_PCLK1Config(RCC_HCLK_Div2); /* PLLCLK = 8MHz * 9 = 72 MHz */ RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* Enable PLL */ RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */ while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } /* Select PLL as system clock source */ RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */ while(RCC_GetSYSCLKSource() != 0x08) { } } }

STM32F4xx的SysTick定时器应用

STM32F4xx的SysTick定时器应用 本例程为STM32F4XX(M4内核)关于systick应用的程序。 主函数main.c文件如下: #include "stm32f4xx.h" /**************************************************************************\ ** 文件名: mian.c ***************************************************** ** 库版本:STM32F4xx_DSP_StdPeriph_Lib_V1.0.1 *********************** ** 工作环境: RealView MDK-ARM 4.23 *********************************** ** 作者: 曾有根*************************************************** ** 生成日期: 2012-08-03 ************************************************ ** 功能:SysTick的应用,精确延时,使led灯翻转******************** \************************************************************************/ extern void led_init(void); extern void TimingDelay_Decrement(void); extern void Delay(__IO uint32_t nTime); int main() { SystemInit(); led_init(); if (SysTick_Config(168000)) //时钟节拍中断时10ms一次,用于定时,168000也可以用SystemCoreClock / 1000 替代 { while (1); } while(1) { GPIO_SetBits(GPIOE,GPIO_Pin_7 | GPIO_Pin_8 ); Delay(500); //延时500ms,led灯1s闪烁一次 GPIO_ResetBits(GPIOE,GPIO_Pin_7 | GPIO_Pin_8 ); Delay(500); } }

基于STM32-RTC实时时钟

1 课程设计内容 本文将利用ALIENTEK 2.8寸TFTLCD模块来显示日期时间,实现一个简单的时钟。 2 STM32芯片简介 2006年ARM公司推出了基于ARMv7架构的Cortex系列的标准体系结构,以满足各种技术的不同性能要求,包含A、R、M三个分工明确的系列[1]。其中,A系列面向复杂的尖端应用程序,用于运行开放式的复杂操作系统;R系列适合实时系统;M系列则专门针对低成本的微控制领域。Cortex-M3是首款基于ARMv7-M体系结构的32位标准处理器,具有低功耗、少门数、短中断延迟、低调试成本等众多优点。它是专门为在微控制系统、汽车车身系统、工业控制系统和无线网络等对功耗和成本敏感的嵌入式应用领域实现高系统性能而设计的,它大大简化了编程的复杂性,集高性能、低功耗、低成本于一体[2]。半导体制造厂商意法半导体ST公司是ARM公司Cortex-M3内核开发项目一个主要合作方,2007年6月11日ST公司率先推出了基于Cortex-M3内核的STM32系列MCU。本章将简要介绍STM32系列处理器的分类、内部结构及特点,并对本设计中重点应用的通用定时器做进一步分析。 2.1 STM32 RTC时钟简介 STM32 的实时时钟(RTC)是一个独立的定时器。STM32 的 RTC 模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。 RTC 模块和时钟配置系统(RCC_BDCR 寄存器)是在后备区域,即在系统复位或从待机模式唤醒后 RTC 的设置和时间维持不变。但是在系统复位后,会自动禁止访问后备寄存器和 RTC,以防止对后备区域(BKP)的意外写操作。所以在要设置时间之前,先要取消备份区域(BKP)写保护。 RTC 的简化框图,如图 20.1.1 所示:

stm32时钟详解

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。 其实是四个时钟源,如下图所示(灰蓝色),PLL是由锁相环电路倍频得到PLL时钟。 ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。 ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。 ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。 STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。 另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。 系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用: ①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。 ②、通过8分频后送给Cortex的系统定时器时钟。 ③、直接送给Cortex的空闲运行时钟FCLK。 ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。 ⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。 在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。 需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。

相关文档
相关文档 最新文档