文档库 最新最全的文档下载
当前位置:文档库 › 离心压缩机叶片材料FV520b-Ⅰ的超高周疲劳寿命研究

离心压缩机叶片材料FV520b-Ⅰ的超高周疲劳寿命研究

材料疲劳裂纹扩展设计研究综述

材料疲劳裂纹扩展研究综述 摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。 关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展 1 前言 19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。 经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模

型(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。 2 疲劳裂纹扩展研究现存问题 如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。 根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。 而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

涡旋式汽车空调压缩机简介讲解

涡旋式汽车空调压缩机简介 涡旋式压缩机是自上世纪八十年代发展起来的一种高效率、低噪音、高可靠性压缩机。凭借着这些优点,涡旋式压缩机在制冷行业得到了迅猛的发展。目前已经广泛的应用于家用空调,中央空调、汽车空调,空气压缩等各个领域。在汽车空调领域中,涡旋式压缩机被称为第三代压缩机,正在以其独特的性能优势逐渐代替传统的斜盘式压缩机和旋转式压缩机。 涡旋式压缩机在制冷系统中的卓越性能表现,使得时隔20年的今天,它依然是专家学者研究的热点。 从家用空调认识涡旋式压缩机 1、认识涡旋式压缩机 国内大部分用户对涡旋式压缩机的认识,可能首先是从家用空调开始的。家用空调压缩机经历了活塞式、旋转式、涡旋式等几个发展阶段。活塞式、旋转式压缩机目前多用于窗机、分体机等匹数较低的机型。而柜机由于其系数较高,活塞式、旋转式压缩机已不能充分满足其整机匹配的需要,只有采用涡旋式压缩机才能保持较高的热效率和能效比。 2、涡旋式压缩机的优点 涡旋式压缩机的能效比高(高效率),意味着与其他压缩机相比,在提供相同制冷量的情况下,涡旋式压缩机耗功要小得多,也就是节能,对于家用空调而言就是省电。 涡旋式压缩机的另一个优点就是噪音低,一般比活塞式压缩机低3~5dB (A),是家用静音空调的基础。 涡旋式压缩机的再一个优点就是可靠性高。设计原理和较少的零部件为其高可靠性提供了充分的保证。 功耗、噪音、可靠性是用户对家用空调选择的重要依据。由于涡旋式压缩机具有的高能效比、低噪音和高可靠性等诸多优点,涡旋式压缩机已经越来越多的被用于家用空调系统和中央空调系统。

在中、大型中央空调机组上,一个明显的趋势就是应用螺杆和涡旋技术。活塞机在3年前还处于主导地位,现在的市场份额却急剧下降到10%左右。 世界上第一台涡旋式压缩机于1983年由日立发明制造,在世界上被公认为涡旋式压缩机的“鼻祖”。其专利变频涡旋式压缩机及其一直领先的制造技术在日本被公认为该领域的标志。 家用空调的节能技术主要有变频系统和数码涡旋系统。例如日立采用的变频涡旋系统和美国谷轮公司拥有的数码涡旋系统。如果将我国的空调全部换成变频空调,则空调的平均年效率至少提高30%,每年可为国家节约480亿元。而数码涡旋技术每年又可比变频系统节能40%,其节能的效果可想而知。 3、发展和趋势 通过以上介绍可以知道,涡旋式压缩机及其控制技术已经被越来越多的使用在家用或中央空调系统中。 正是由于市场的这种发展趋势,美国谷轮公司已在苏州投资兴建年产100万台的柔性涡旋压缩机厂,已正式投产。该厂与谷轮在美国本土上的几家工厂规模相当,同属于全世界最大的涡旋压缩机制造厂。其产品将供应中国和亚太地区几乎所有的主要家用空调制造商。 汽车空调压缩机的发展 汽车空调压缩机的几个发展阶段: ①.活塞式压缩机 在汽车空调上使用的主要是斜盘式(活塞)压缩机,主要分为5缸机、7缸机和10缸机。 代表产品有: 日本电装的10(S)P系列(10缸机),如10P20C(南京IVECO)、10S11C(原夏利威乐轿车)。 上海三电贝洱的5H14(5缸机)、7H15(7缸机)、BX11(10缸机)、7V16(变排量7缸机)、6V12(变排量6缸机)。

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

塑料齿轮疲劳寿命分析

1 的疲劳破坏 疲劳是一种十分有趣的现象,当材料或结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比屈服极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料或结构的破坏现象就叫做疲劳破坏。 如图1所示,F表示齿轮啮合时作用于齿轮上的力。齿轮每旋转一周,轮齿啮合一次。啮合时,F由零迅速增加到最大值,然后又减小为零。因此,齿根处的弯曲应力or也由零迅速增加到某一最大值再减小为零。此过程随着齿轮的转动也不停的重复。应力or随时间t的变化曲线如图2所示。 图1 齿轮啮合时受力情况 图2 齿根应力随时间变化曲线 在现代工业中,很多零件和构件都是承受着交变载荷作用,工程塑料齿轮就是其中的典型零件。工程塑料齿轮因其质量小、自润滑、吸振好、噪声低等优点在纺织、印染、造纸和食品等传动载荷适中的轻工机械中应用很广。

疲劳破坏与传统的静力破坏有着许多明显的本质差别: 1)静力破坏是一次最大载荷作用下的破坏;疲劳被坏是多次反复载荷作用下产生的破坏,它不是短期内发生的,而是要经历一定的时间。 2)当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。 3)静力破坏通常有明显的塑性变形产生;疲劳破坏通常没有外在宏观的显着塑性变形迹象,事先不易觉察出来,这就表明疲劳破坏具有更大的危险性。 工程塑料齿轮的疲劳寿命,是设计人员十分关注的课题,也是与实际生产紧密相关的问题。然而,在疲劳载荷作用下的疲劳寿命计算十分复杂。因为要计算疲劳寿命,必须有精确的载荷谱,材料特性或构件的S-N曲线,合适的累积损伤理论,合适的裂纹扩展理论等。本文对工程塑料齿轮疲劳分析的最终目的,就是要确定其在各种质量情况下的疲劳寿命。通过利用有限元方法和CAE软件对工程塑料齿轮的疲劳寿命进行分析研究有一定工程价值。 2 工程塑料齿轮材料的确定 超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1~4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 UHMWPE耐磨性居工程塑料之首,比尼龙66(PA66)高4倍,是碳钢、不锈钢的7—8倍。摩擦因数仅为~,具有自润滑性,不粘附性。因此,本文选用UHMWPE 作为工程塑料齿轮材料进行研究。UHMWPE性能见表1。 由于UHMWPE导热性能较差,所以与其啮合的齿轮选用钢材料。这样导热性好、摩损小,并能弥补工程塑料齿轮精度不高的缺点。2啮合齿轮均为标准直齿圆柱齿轮,参数为:UHMWPE齿轮齿数30,钢齿轮齿数20,模数4mm,齿宽20mm,压力角取为20°。

汽车空调压缩机故障与维修

汽车空调压缩机故障与维修 组员、刘志坚张勇蔡文钊梁景財梁文峰何梓杰 论文负责人:刘志坚张勇蔡文钊 刘志坚:(七八)张勇:(四、五、六)蔡文钊:(一、二、三) PPT负责人:梁景財何梓杰梁文峰 演讲:何梓杰 图片负责人:梁文峰 一、汽车空调压缩机的功能与分类 二、按照按工作排量能否自动调节分(定排量、变排量) 三、按运动形式分 1. 往复活塞式(曲轴连杆式、轴向活塞式、………) 2. 旋转式(旋叶式、转子式………) 一、1. 汽车空调功能与分类 汽车空调功能的分类只有两种,一是制冷,压缩机经发动机带动使冷媒(雪种)经蒸发器产生冷源,通过

风机不断的吹出冷风,使车厢内达到降温的效果。二是制暖,能过转换开关,利用冷却水的热源,通过风机不断的吹出暖风,使车厢内达到升温的效果。 一、2. 汽车空调压缩机的功能 压缩机的作用只是将制冷剂压缩,使其温度升高、压力升高,此时制冷剂温度高于环境温度,利用风冷的方式,对制冷剂进行冷却,之后,通过减温减压装置,制冷剂的温度降低、压力下降,此时制冷剂的温度低于环境温度,空气通过换热器与制冷剂进行热交换,空气温度降低,吹到车里。 一、3.汽车空调压缩机的分类 1.独立式空调:有专门的动力源(如第二台内燃机)驱动整个空调系统的运行。一般用于长途货运、高地板大中巴等车上。独立式空调由于需要两台发动机,燃油消耗高,同时造成较高的成本,并且其维修及维护十分困难,需要十分熟练的发动机维修人员,而且发动机配件不易获得,尤其是进口发动机;另外设计和安装更容易导致系统质量问题的发生,而额外的驱动发动机更增加了发生故障的概率。 2.非独立式空调:直接利用汽车的行驶动力(发

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

汽车空调压缩机行业现状分析 汽车市场为压缩机带来发展机遇

汽车空调压缩机行业现状分析汽车市场为压缩机带来发展 机遇 空调压缩机是汽车空调系统的重要组成部分 汽车空调系统主要由压缩机、冷凝器、节流器(膨胀装置)、蒸发器四个部分组成。汽车空调压缩机是汽车空调制冷系统的心脏,是制冷剂能够在系统内循环的动力源。冷凝器和蒸发器结构相似,都是一排弯绕的管道布满散热用的金属薄片,与外界进行热交换,其原理于发动机的散热水箱相近。膨胀阀主要作用为节流和调节制冷剂流量,高温高压液态制冷剂通过膨胀阀节流后体积变大,制冷剂压力和温度会急剧下降。 空调压缩机是制冷系统的心脏,是制冷剂能够在系统内循环的动力源。制冷系统基本工作原理主要包括压缩、冷凝、节流、蒸发这四个过程。压缩机将低温低压制冷剂压缩成高温高压气态制冷剂,经过冷凝器将制冷剂变成中温高压液态制冷剂,然后通过节流膨胀装置变成低温低压液态制冷剂,最后通过蒸发器变成低温低压气体制冷剂。蒸发吸收周围大量热量,之后低温低压制冷剂被吸入空调压缩机进行下一个制冷循环,周而复始,达到降温效果。 图表1:制冷系统工作原理 资料来源:前瞻产业研究院整理

根据工作方式的不同,压缩机一般可以分为往复式和旋转式,常见的往复式压缩机有曲轴连杆式和轴向活塞式,常见的旋转式压缩机有旋转叶片式和涡旋式。斜盘式汽车空调压缩机目前占比49%,涡旋式汽车空调压缩机占比为9%左右。 图表2:压缩机按工作方式分类 资料来源:前瞻产业研究院整理 我国汽车空调压缩机产量逐年增加 近年来,随着国内经济的发展,制造业逐渐占据国内的主要地位。我国是世界上主要的汽车空调压缩机生产基地,随着汽车需求的不断增加及汽车整车制造能力的提升,汽车空调压缩机行业也取得了较大发展。2011-2016年,我国汽车空调压缩机的产量逐年增加,增速继2013年以后波动下降。2016年,汽车空调压缩机产量继续上升,为3123万台,同比增长9.1%。 图表3:2011-2017年中国汽车空调压缩机产量及增长情况(单位:万台,%)

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

疲劳强度计算.

疲劳强度计算 一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂)——机械零件的断裂事故中,有80%为疲劳断裂。 2、疲劳破坏特征: 1)断裂过程:①产生初始裂反(应力较大处);②裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。 2)断裂面:①光滑区(疲劳发展区);②粗糙区(脆性断裂区)(图2-5) 3)无明显塑性变形的脆性突然断裂 4)破坏时的应力(疲劳极限)远小于材料的屈服极限。 3、疲劳破坏的机理:是损伤的累笱 4、影响因素:除与材料性能有关外,还与γ,应力循环次数N ,应力幅a σ主要影响 当平均应力m σ、γ一定时,a σ越小,N 越少,疲劳强度越高 二、材料的疲劳曲线和极限应力图 疲劳极限)(N N γλτσ—循环变应力下应力循环N 次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限 疲劳寿命(N )——材料疲劳失效前所经历的应力循环次数N 称为疲劳寿命 1、疲劳曲线(N γσ-N 曲线):γ一定时,材料的疲劳极限N γσ与应力循环次数N 之间关系的曲线 0N —循环基数 γσ—持久极限 1)有限寿命区 当N <103(104)——低周循环疲劳——疲劳极限接近于屈服极限,可接静强度计算 )10(1043≥N ——高周循环疲劳,当043)10(10N N ≤≤时,N γσ随N ↑→N σσ↓ 2)无限寿命区,0N N ≥ γγσσ=N 不随N 增加而变化 γσ——持久极限,对称循环为1-σ、1-τ,脉动循环时为0σ、0τ 注意:有色金属和高强度合金钢无无限寿命区,如图所示。 3)疲劳曲线方程))10(10(04 3N N ≤≤ C N N m m N =?=?0γγσσ——常数

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

中国电动汽车空调压缩机行业研究报告

中国电动汽车空调压缩机市场投资及分析 预测报告

内容简介 本研究报告在大量周密的市场调研基础上,主要依据了国家统计局、国家商务部、国务院发展研究中心、工商局、发改委、国家海关总署、以及各行业协会、国际调研机构、国内外媒体报刊等提供的大量资料,对电动汽车空调压缩机行业进行了全面的分析。报告分别研究了电动汽车空调压缩机的基本情况、我国电动汽车空调压缩机行业现状、电动汽车空调压缩机市场动态、国内外电动汽车空调压缩机优势企业的经营状况、电动汽车空调压缩机的发展趋势等。本报告是电动汽车空调压缩机制造企业、科研部门、投资机构等相关单位准确、全面、迅速了解目前行业发展动向,把握企业战略发展定位不可或缺的重要决策依据。 国外涡旋式汽车空调压缩机发展很快,主要生产涡旋式压缩机的有日本电装、三电、三菱重工、美国的韦斯通等企业,年产量都在百万台以上,林肯、克莱斯勒、本田、道奇、皇冠等车都在选用涡旋式压缩机。 近年来,国内中高档车在选用涡旋式压缩机上开始有所改观,日系车中尤其是三菱体系的,如欧蓝得、蓝瑟、本田,还有象福特蒙迪欧等用的都是涡旋式的。国内汽车空调的发展起步晚,公众对涡旋式汽车空调压缩机的认知度还不够。首先用于微型车上,在体现出了其非凡的性能优势后,才被人们逐步认可。由于微型车本身发动机功率小,在启动力矩、功耗、降温速度、平均温度等方面实现理想化的要求更为迫切,在制冷量不变的条件下,压缩机的功耗小到极致。 本报告的研究框架全面、严谨,分析内容客观、公正、系统,是相关单位进行市场研究工作时不可或缺的重要参考资料,同时也可作为金融机构进行信贷分析、证券分析、投资分析等研究工作时的参考依据。

离心式压缩机操作法

精细化工事业部甲醇制芳烃离心式压缩机操作方法 (试用) 编制: 校对: 审核: 批准:

一、岗位任务: Ⅰ、再生系统空气压缩机、再生气循环机: 合成油反应器催化剂GSK 一10再生时,空气经过MW—46.7/11型空气压缩机【J40202】三级压缩后,提压至1.2Mpa。与来自界区压力1.2Mpa 的氮气按比例混合温度不高于38℃,进入SV6-M压缩机【J40203】提压至2.0 Mpa,送往合成油反应器内进行循环烧炭反应。 Ⅱ、循环气压缩机:将气液分离后的合成气,经MCL-452离心式压缩机升压后送往合成油反应器,循环带走反应热。 二、职责范围: Ⅰ、管理本压缩机组及其附属设备,阀门,管线与本机组有关的电气,仪表,信号,安全防护联锁装置等。 Ⅱ、负责压缩机的正常操作,开车、停车、事故处理。 Ⅲ、保证压缩机正常运行,将各工艺条件稳定在操作指标内。 Ⅳ、负责设备的维护保养,消除跑、冒、滴、漏,做到岗位清洁,文明生产。 Ⅴ、运行期间每小时排污一次,并注意循环油箱液位。 Ⅵ、按时进行巡回检查,发现隐患或超工艺指标情况及时处理或汇报,确保安全稳定运行。 Ⅶ、经常检查各段进、出口气体压力和温度的变化情况;及压缩机振动、位移的变化;加减负荷时应加强与相关岗位的联系。

Ⅷ、压缩机开车正常运行后,向外工序送气时,必须待出口压力略高于系统压力时,才能开启出口阀门。 巡回检查 Ⅰ、根据操作要求,每小时做一次岗位记录,做到认真、准时、无误。Ⅱ、每十五分钟检查一次系统各点压力、温度和振动、位移。 Ⅲ、每半小时检查一次压缩机的运转情况及活门、气缸、活塞环、填料函,干气密封等有无异常情况; Ⅳ、每小时检查一次系统放空阀,近路阀、各排污阀的关闭情况。Ⅴ、各段分离器排污,每两小时排放一次。 Ⅵ、每一小时检查一次各冷却器溢流情况、气缸夹套冷却水溢流情况及循环油箱油位。 Ⅶ、每班检查一次系统设备、管道等泄漏和振动情况。 三、生产原理及操作原理: Ⅰ、SV6-M压缩机; HM-46.7/11空气压缩机为四列三级对称平衡型往复活塞式压缩机。由同步电机直接驱动,每分钟吸入46.7m3空气,最终排气压力1.1Mpa。活塞式压缩机的工作原理: 依靠活塞在气缸内的往复运动来压缩气体的。压缩气体的过程可分为四个过程:吸气、压缩、排气、膨胀过程。

材料的疲劳性能汇总

一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

离心式压缩机工作原理

离心式压缩机的工作原理是什么,为什么离心式压缩机要有那么高的转速? 答:离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2--叶轮外缘直径,m; n--叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为: 1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大; 2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小; 3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

中国汽车空调压缩机发展历史

汽车空调压缩机 1、长春第一汽车集团公司,在1969年成功研制了第一台汽车空调装置,安装在红旗保险 车上,不仅结束了中国不能生产保险车的历史,同时也开创了中国自行设计、独立制造汽车空调装置的先河。 2、1981年上海内燃机油泵厂为上海轿车研制了轿车空调装置,压缩机也是六缸双向斜盘式 结构。 3、1988年12月,上海内燃机油泵厂与泰国正大集团合资成立上海易初通用机器有限公司, 引进日本三电公司五缸摇盘SD系列压缩机产品,并率先为上海桑塔纳轿车配套。 4、2001年,上海易初通用机器有限公司由于日本三电公司在上海浦东合资成立上海三电汽 车空调有限公司,生产日本三电公司七缸摇盘无极可变排量压缩机SD7V16和六缸摇盘无极可变排量压缩机SD6V12。 5、1992年,湖南华达机械总厂引进日本杰克赛尔公司六缸斜盘DKS系列压缩机产品。1994 年双方又合资组建湖南华达-杰克赛尔汽车空调有限公司。 6、1994年,牡丹江汽车空调厂引进韩国德尔公司五缸摇盘V5系列无极可变排量压缩机产 品,而后又引进韩国德尔公司十缸斜盘SP系列压缩机产品。 7、1995年,烟台首钢空调器厂与日本电装公司合资组建盐田首钢电装有限公司,生产日本 电装公司十缸斜盘10PA系列压缩机产品和贯穿叶片式TV系列压缩机产品。 8、1995年,重庆建设集团引进日本精工精机公司旋转叶片式JSS-96和JSS-120压缩机产 品。 9、1988年,广州豪华汽车空调工业公司引进日本三电公司五缸摇盘SD-510压缩机产品。 由于重复引进,缺乏市场支持,加之广州标致汽车厂的解体而被迫停产。 10、1994年,广东粤海集团公司引进美国克莱斯勒公司淘汰的压缩机产品和设备,由 于该压缩机产品技术落后,基本处于瘫痪状态。 11、1999年开始,无锡市双鸟动力机械有限公司生产五缸和七缸摇盘式压缩机,十缸 斜盘式压缩机,该厂的压缩机产量可达8万台。 12、2000年,上海奉天空调压缩机有限公司在合肥工业大学的技术支持下,自行研制 开发了涡旋式AP系列压缩机,产量可达10万台。 13、2001年,南京奥特佳冷机有限公司在美国普渡大学技术支持下,研制开发了WXH 系列涡旋式压缩机,其排量从60ml/转到250ml/转,适用于微型车到大客车空调装置中,产量12万台。国内如南京埃迪压缩机有限公司、广州万宝压缩机有限公司也成功研制出涡旋压缩机。 14、大客车用压缩机生产企业,国内产量较大的工厂主要是岳阳恒立制冷设备股份有限 公司生产传统曲柄连杆式压缩机;宁波欣晖制冷设备有限公司生产的是十缸斜盘式结构的压缩机。 汽车空调冷凝器和蒸发器及其空调系统的生产方面 1、上海新新机器厂与美国德尔福公司合资组建上海德尔福汽车空调系统有限公司; 2、上海新江机器厂与澳大利亚国际空调公司合资组建国际(上海)有限公司; 3、一汽散热器公司与日本杰克赛尔公司合资组建一汽杰克赛尔汽车空调有限公司; 4、大连冷冻机厂与香港大洋公司合资组建大洋(大连)汽车空调有限公司; 5、烟台首钢空调器厂与日本电装公司合资组建烟台首钢电装有限公司; 6、日本电装公司还分别天津和广州与当地企业合资组建天津电装空调有限公司和广州电装空调有限公司。 7、日本三电公司在天津合资组建天津三电汽车空调有限公司 8、法国法雷奥公司在湖北沙市合资组建法雷奥汽车空调湖北有限公司

2019-2019年中国汽车空调压缩机市场投资12页word文档

2012-2015年中国汽车空调压缩机市场投资分析预测报告内容简介: 本研究报告在大量周密的市场调研基础上,主要依据了国家统计局、国家商务部、国务院发展研究中心、工商局、发改委、国家海关总署、以及各行业协会、国际调研机构、国内外媒体报刊等提供的大量资料,对汽车空调压缩机行业进行了全面的分析。报告分别研究了汽车空调压缩机的基本情况、我国汽车空调压缩机行业现状、汽车空调压缩机市场动态、国内外汽车空调压缩机优势企业的经营状况、汽车空调压缩机的发展趋势等。本报告是汽车空调压缩机制造企业、科研部门、投资机构等相关单位准确、全面、迅速了解目前行业发展动向,把握企业战略发展定位不可或缺的重要决策依据。 本报告的研究框架全面、严谨,分析内容客观、公正、系统,是相关单位进行市场研究工作时不可或缺的重要参考资料,同时也可作为金融机构进行信贷分析、证券分析、投资分析等研究工作时的参考依据。以下是报告的详细目录: 目录 第一章汽车空调压缩机行业概述 第一节汽车空调压缩机简述 一、定义及分类 二、产品特性 三、主要应用领域 第二节汽车空调压缩机的生产工艺

第三节汽车空调压缩机的型号及用途 第四节汽车空调压缩机行业发展现状 第二章世界汽车空调压缩机行业运行概况分析 第一节 2010-2011年世界汽车空调压缩机工业发展现状分析 一、全球汽车空调压缩机市场需求分析 二、世界汽车空调压缩机应用情况分析 三、国外汽车空调压缩机产品结构分析 第二节 2010-2011年世界汽车空调压缩机行业主要国家发展分析 一、美国 二、日本 三、德国 第三节 2012-2015年世界汽车空调压缩机市场前景预测分析 第三章汽车空调压缩机行业基本情况分析 第一节汽车空调压缩机行业发展环境分析 一、2010-2011年我国宏观经济运行情况 二、我国宏观经济发展运行趋势 三、汽车空调压缩机行业相关政策及影响分析 第二节汽车空调压缩机行业基本特征 一、行业界定及主要产品 二、行业在国民经济中的地位 三、汽车空调压缩机行业特性分析 四、汽车空调压缩机行业发展历程

离心式压缩机的两个特殊工况(2015.4.5培训)

离心式压缩机的两个特殊工况离心式压缩机流道的几何尺寸及结构是根据设计工况确定的。当压缩机在设计工况下运行时,气体在流道中流动顺畅,与几何尺寸配合良好,气流方向和叶片的几何安装角相一致。这时压缩机各级工作协调、整机效率高。当压缩机偏离设计工况运行时,效率、压缩比都有变化。当向大流量工况偏离时,效率、压缩比下降;当向小流量工况偏离时,效率下降在一定范围内压缩比生高。若偏离程度不严重,仍能维持稳定工作。一但工况变化较大,这时由于流道中气体流动情况恶化,将导致压缩机性能大大降低甚至不能正常工作。喘振工况和阻塞工况就是在偏离达到极限时的两个特殊工况。 一、喘振工况 当离心式压缩机工作在设计点时,气流的进气角基本上等于叶轮叶片的进口几何安装角,气流顺利进入流道,不会出现附面层脱离。当流量减小时,气流轴向速度减小,冲角增大,气流射向叶片的工作面,使非工作上出现脱离。由于气气流在非工作面上是扩压流动,出现的脱离很容易扩张。所以流量减少时,脱离发展明显。当流量减小到某临界值时,脱离严重扩张,以至冲满流道的相当大部分区域,使损失大大增加,破坏了正常流动。在叶片扩压器中的流动情况与叶轮中的类似。 流量下降,冲角增大。由于进口气流本身的不均性和加工上

的问题而造成各叶片间几何结构的微小差异等原因,总会在某一个或几个叶片上最先发生气流脱离现象,形成一个或几个脱离区,我们称之为“脱离团”。该叶片附近的流动情况恶化,出现了明显的流量减小区,这个受阻滞的气流使它附近的气流方向有所改变,引起流向转向后面叶片的气流冲角增大,转向前面叶片上的冲角减小。于是后面叶片叶背上出现脱离,同时解除了前面叶片上的脱离。如此,在相对坐标系上看,引起了脱离团沿转速的反方向传递。由试验得知,叶轮中脱离团的传递速度小于转速,所以从绝对坐标系来观察,脱离团是以某一转速沿转向传递。这种现象即称之为“旋转脱离”。这种压缩机在非设计工况下,由于工况变化导致叶片通道中产生严重的气流脱离,并形成旋转脱离现象,而使级性能明显恶化的情况,被称为“旋转失速”。旋转失速可以沿气流流动方向向后扩展。 由于工况改变,流量明显减少,而出现严重的旋转脱离,流动情况大大恶化。这是叶轮虽在旋转、对气体做功,但却不能提高气体压力,压缩机出口压力明显下降。如国压缩机后管网容量较大,其背压的反应不敏感,于是出现管网中的压力大于压缩机出口处压力的情况,就出现倒流现象。气流由压缩机出口向进口倒灌,一直到管网中的压力下降至低于压缩机出口压力为止。倒流停止,气流又在叶片作用下正向流动,压缩机又开始向管网供气,经过压缩机的流量又增大压缩机恢复正常工作。但管网中压力不断回升,又恢复到原有水平时,压缩机正常排气又受到阻碍,

相关文档