文档库 最新最全的文档下载
当前位置:文档库 › (完整版)钢结构发展历程

(完整版)钢结构发展历程

(完整版)钢结构发展历程
(完整版)钢结构发展历程

钢结构发展历程

从铁被人们发现开始,铁就与建筑有着紧密的关系,在人类建筑史上铁发挥着重要的作用。但是,大规模的运用钢铁作为建筑材料还是从近200年开始的。

我国古代有许多运用铁构件建造的建筑,如公元694年在洛阳建成的“天枢”和公元1061年在湖北荆州玉泉寺建成的13层铁塔等。欧美等国在1840年之前多采用铸铁建造拱桥。在1840年后,随着铆钉连接和锻铁技术的发展,铸铁结构逐渐被锻铁结构取代,1846年到1850年英国人在威尔士修建的布里塔尼亚桥就是这方面的代表。该桥共有4跨,每跨均为箱型梁式结构,由锻铁型板和角铁经铆钉连接而成。直到1870年成功轧制出工字钢后,形成了工业化大批量生产钢材的能力,强度高韧性好的钢材才逐渐在建筑领域代替锻铁材料。20世纪初焊接技术和高强度螺栓的接连出现,极大的促进了钢结构的发展,除了欧洲和北美外,钢结构在前苏联和日本也获得了广泛应用,逐渐成为全世界所接受的重要的结构体系。

中国虽然早期在铁结构方面有卓越的成就,但由于2000 多年的封建制度的束缚,科学不发达,因此,长期停留于铁制建筑物的水平。直到19 世纪末,我国才开始采用现代化钢结构。新中国成立后,钢结构的应用有了很大的发展,不论在数量上或质量上都远远超过了过去。在设计、制造和安装等技术方面都达到了较高的水平,掌握了各种复杂建筑物的设计和施工技术,在全国各地已经建造了许多规模巨大而I 结构复杂的钢结构厂房、大跨度钢结构民用建筑及铁路桥梁等,我国的人民大会堂钢屋架,北京和1海等地的体育馆的钢网架,陕西秦始皇兵马佣陈列馆的三铰钢拱架和北京的鸟巢等。轻钢结构的楼面由冷弯薄壁型钢架或组合梁、楼面OSB 结构板,支撑、连接件等组成。所用的材料是定向刨花板,水泥纤维板,以及胶合板。在这些轻质楼迈特建筑轻钢结构住宅面上每平方米可承受316~365 公斤的荷载。的楼面结构体系重量仅为国内传统的混凝土楼板体系的四分之一到六分之一,但其楼面的结构高度将比普通混凝土板高100~120 毫米。

钢结构建筑的多少,标志着一个国家或一个地区的经济实力和经济发达程度。进入2000 年以后,我国国民经济显著增长,因力明显增强,钢产量成为世界大因,在建筑中提出了要“积极、合理地用钢”,从此甩掉了“限制用钢”的束缚,

钢结构建筑在经济发达地区逐渐增多。

特别是2008 年前后,在奥运会的推动下,出现了钢结构建筑热潮,强劲的市场需求,推动钢结构建筑迅猛发展,建成了大批钢结构场馆、机场、车站和高层建筑,其中,有的钢结构建筑在制作安装技术方面具有世界流水平,如奥运会国家体育场等建筑奥运会后,钢结构建筑得到普及和持续发展,钢结构广泛应用到建筑、铁路、桥梁和住宅等方面,各种规模的钢结构企业数以万计,世界先进的钢结构加工设备基本齐全,如多头多维钻床、钢管多维相贯线切割机、波纹板自动焊接机床等。还有我们自行研制开发的弯构件加工设备和方法,数百家钢结构企业的加工制作水平具有世界先进水平,如钢结构制作特级和一级企业。

近几年,钢产量每年多达6亿多吨,钢材品种完全能满足建筑需要。钢结构设计规范、钢结构材料标准、钢结构工程施工质量验收规范、以及各种专业规范和企业工法基本齐全。

可以看出钢结构的发展从过去的桥梁、铁塔到各类厂房,再到现在的多高层,大跨度建筑,高耸建筑,同时也正在发展轻钢结构,这都是由于钢结构具有轻质高强,抗准性能好,建造过度快,工期短,综合经济效益好有直接关系,我国钢结构在国际已近领先状态,世界目前前十大高钢建筑有五个都在中国,可以看出目前钢结构在我国发展很好。可以预计,随言我国经并建设的不断发展,邻结构的应用将继纹日益广泛,并将进人新的更高的发展阶段,如钢结构住宅产业化。但是,尽管我国目前钢产量居世界领先,因我国人口众多,按钢材的人均年产量计算,钢产量还很不够,因此在建筑工业中采用钢结构时,节约钢材仍然是我们长期努力的目标,这就要求不断提高钢结构领域的科学技术水平,重视新型钢结构的应用和推广。根据近年钢结构发展的状况,现提出以下几个方面的发展方向:

(1) 逐渐发展和应用高效能钢材高效能钢材的含义包括两个方面。其一是研制山强度较高而性能又好的钢材,目前我国采用的钢材主要是是0235和0345 钢,0390 和0420 钢材在钢结构中的应用还较少。北二是采用各种有效措施,提高钢材的有效水载力,更好地发挥钢材的使用效果、从而节约钢材。

(2) 钢结构设计方法的攻进口前。钢结构的设计方达还属于近似死率设计法,这种概率极限状态设计方法还有待发展,而且因为现在计算的可靠度还只是构件或某截面的可靠度,而不是结构体系的可靠度,同时现在的设计方法也不适用于疲劳计算的反复荷载或动力荷载作用下的结构,有待进一步研究。

(3) 结构形式的革新目前的结构形式主要有框架结构、框架-支撑、框剪结构、简体结构、网架结构、悬索结构,索网和素膜结构近年来得到很大的发展和应用,钢和混凝土组合结构的应用也日益推广,但随着结构高度的增高、跨度的增大,结构的革新仍有待进一步发展。

(4) 钢结构的加工制造随着结构的发展,钢结构的制造工业机械化水平还需要进一步提高。从设计岩手,结合制造T艺,促进产品的定型化、标准化、系列化产品,以达到批最生产,降低造价。经过对钢结构的发展历史和现状的总结分析可以看出,钢结构在我国的应用历史悠久,目前钢结构在国内发展较好,但随岩我国社会发展的需求及我国在国际上地位的发展,钢结构在未来会有很好的发展前景,为此,在钢结构的材料、设计方法、结构形式和加T.制造方面还有很多研究的课题值得我们去研究。

钢纤维混凝土配合比

l—2 钢纤维混凝土的配合比设计 钢纤维混凝土虽已在各种工程领域得到较广泛的应用,但对钢纤维混凝土拌合料的配合比设计,尚未建立起合理而成热的设计方法。国外有关学者,曾介绍过关于钢纤维混凝土配合比方面的资料,提出一些参考用表和经验配合比。国内有关单位”,曾提出要以抗折强度为指标进行钢纤维混凝土配合比设计,并通过试验,建立抗折强度与各主要影响因素之间量的关系,有利于配合比的设计。但多数仍按普通水泥混凝土的配合比设计方法,以混凝土的抗压强度确定拌合料的配合比,只是适当调整砂率、用水量和水泥用量。按此确定配合比时,为了获得较高的抗折强度,势必使抗压强度也相应提高,这是不必要的。钢纤维混凝土配合比的设计,应根据对钢纤维混凝土的使用要求和钢纤维混凝土配合比的特点进行合理的设计。 1-2-11-2-1钢纤维混凝土配合比设计的要求和特点 一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将其组成的材料,即钢纤维、水泥、水、粗细骨料及外掺剂等合理的配合,使所配制的钢纤维混凝土应满足下列要求: 1. 满足工程所需要的强度和耐久性。对建筑工程一般应满足抗压强度和抗拉强度的要求对路(道)面工程一般应满足抗压强度和抗折强度的要求。 2.配制成的钢纤维混凝土拌合料的和易性应满足施工要求。 3.经济合理。在满足工程要求的条件下,充分发挥钢纤维的增强作用,合理确定钢纤 维和水泥用量,降低钢纤维混凝土的成本。 二、钢纤维混凝土配合比设计的特点 钢纤维混凝土的配合比设计与普通水泥混凝土相比,其主要特点是: 1.在水泥混凝土的配合拌合料中掺入钢纤维,主要是为了提高混凝土的抗弯、抗拉、抗疲劳的能力和韧性,因此配合比设计的强度控制,当有抗压强度要求时,除按抗压强度控制外,还应根据工程性质和要求,分别按抗折强度或抗拉强度控制,确定拌合料的配合比,以充分发挥钢纤维混凝土的增强作用,而普通水泥混凝土一般以抗压强度控制(道路混凝土以抗折强度控制)来确定拌合料的配合比。 2.配合比设计时,应考虑掺人拌合料中的钢纤维能分散均匀,并使钢纤维的表面包满砂浆,以保证钢纤维混凝土的质量。 3.在拌合料中加入钢纤维后,其和易性有所降低。为了获得适宜的和易性,有必要适当增加单位用水量和单位水泥用量。 1-2-2钢纤维混凝土配合比设计原理与方法。 钢纤维混凝土配合比设计的基本方法是建立在钢纤维混疑土拌合料的特性及其硬化后的强度基础上的。其主要目的是根据使用要求,合理确定拌合料的水灰比,钢纤维体积率、单位用水量和砂率等四个基本参数,由此,即可计算出各组成材料的用量。 在确定基本参数时,既要满足抗压强度要求,又要符合抗折强度或抗拉强度要求,以及和易性、经济性要求。 试验表明,钢纤维混凝土的抗压强度、抗折强度和抗拉强度与水泥标号;水灰比、钢纤维体积率和长径比、砂率、用水量等因素有关,其中水灰比和水泥标号对抗压强度影响最大,其他因素影响较小。即钢纤维体积率和长径比、水泥标号却对抗折强度和抗拉强度影响最大,砂率和用水量对和易性影响较大。因此,采用以抗压强度与水灰比,水泥标号的关系来确定水灰比,然后用抗折强度或抗拉强度确定

钢纤维及钢纤维混凝土的技术及规定

钢纤维及钢纤维混凝土知识 混凝土用纤维的分类: 所用纤维按其材料性质可分为:①金属纤维。如钢纤维(钢纤维混凝土)、不锈钢纤维(适用于耐热混凝土)。②无机纤维。主要有天然矿物纤维(温石棉、青石棉、铁石棉等)和人造矿物纤维(抗碱玻璃纤维及抗碱矿棉等碳纤维)。③有机纤维。主要有合成纤维(聚乙烯、聚丙烯、聚乙烯醇、尼龙、芳族聚酰亚胺等)和植物纤维(西沙尔麻、龙舌兰等),合成纤维混凝土不宜使用于高于60℃的热环境中。 钢纤维的性能和规格: 钢纤维是以切断细钢丝法、冷轧带钢剪切、钢锭铣削或钢水快速冷凝法制成长径比(纤维长度与其直径的比值,当纤维截面为非圆形时,采用换算等效截面圆面积的直径)为40~80的纤维。 因制取方法的不同钢纤维的性能有很大不同,如冷拔钢丝拉伸强度为800-2000MPa、冷轧带钢剪切法拉伸强度为600-900MPa、钢锭铣削法为700MPa;钢水冷凝法虽为380MPa,但是适合生产耐热纤维。 为增强砂浆或混凝土而加入的、长度和直径在一定范围内的细钢丝。常用截面为圆形的长直钢纤维,其长度为10~60毫米,直径为0.2~0.6毫米,长径比为50~100。为增加纤维和砂浆或混凝土的界面粘结,可选用各种异形的钢纤维,其截面有矩形、锯齿形、弯月形的;截面尺寸沿长度而交替变化的;波形的;圆圈状的;端部放大的或带弯钩的等。 钢纤维的规格:

钢纤维是当今世界各国普遍采用的混凝土增强材料。钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。 纤维混凝土的作用: 制造纤维混凝土主要使用具有一定长径比(即纤维的长度与直径的比值)的短纤维。但有时也使用长纤维(如玻璃纤维无捻粗纱、聚丙烯纤化薄膜)或纤维制品(如玻璃纤维网格布、玻璃纤维毡)。其抗拉极限强度可提高30~50%。 纤维在纤维混凝土中的主要作用,在于限制在外力作用下水泥基料中裂缝的扩展。在受荷(拉、弯)初期,当配料合适并掺有适宜的高效减水剂时,水泥基料与纤维共同承受外力,而前者是外力的主要承受者;当基料发生开裂后,横跨裂缝的纤维成为外力的主要承受者。 若纤维的体积掺量大于某一临界值,整个复合材料可继续承受较高的荷载并产生较大的变形,直到纤维被拉断或纤维从基料中被拨出,以致复合材料破坏。与普通混凝土相比,纤维混凝土具有较高的抗拉与抗弯极限强度,尤以韧性提高的幅度为大。 钢纤维主要用于制造钢纤维混凝土,任何方法生产的钢纤维都能起到强化混凝土的作用。 纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即I/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。 钢纤维混凝土的力学性能: 加入钢纤维的混凝土其抗压强度、拉伸强度、抗弯强度、冲击强度、韧性、冲击韧性等性能均得到较大提高。 1、具有较高的抗拉、抗弯、抗剪和抗扭强度 在混凝土中掺入适量钢纤维,其抗压强度提高10%~80%(C50以上混凝土提高幅度显著),抗拉强度提高50%~100%,抗弯强度提高50%~80%,抗剪强度提高50%~100%。试验表明,长度为5~15mm,长径比为10~30的超短钢纤维抗压强度提高幅度较短纤维大得多,但抗拉强度、抗折强度较短纤维低得多。 2、具有卓越的抗冲击性能 材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。 3、收缩性能明显改善 在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低

钢纤维混凝土配合比设计及质量控制

钢纤维混凝土配合比设计及质量控制 [摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。 [关健词]钢纤维配合比设计质量控制 钢纤维混凝土是以水泥净浆、砂浆或混凝土为基体,以金属纤维增强材料组成的水泥基复合材料。它是将短而细的,具有高抗拉强度、高极限延伸率、高抗碱性等良好性能的金属纤维均匀分散在混凝土基体中形成的一种新型建筑材料。 桥面铺装层作为桥梁的非主体结构,通常被设计和施工所忽视,长期车辆荷载的作用,是造成桥面开裂、损坏的主要原因,从而影响桥梁的使用质量,降低使用寿命,在桥面铺装层使用钢纤维混凝土将会有效地解决桥面使用过程中容易出现的质量问题。

一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将组成材料,即钢纤维、水泥、水、粗细集料及外掺剂合理配合,使配制的钢纤维混凝土能够最大限度的满足施工和工程使用要求。 (1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能; (2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求; (3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。 二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜ 2,掺加量不超过70㎏/M 3。 水泥:采用32.5级或42.5级普通硅酸盐水泥。 碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。 细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。 水:无污染的自然水或自来水。 外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。 三、钢纤维混凝土配合比设计步骤

钢纤维混凝土在道路面层施工中的应用

钢纤维混凝土在道路面层施工中的应用 发表时间:2016-11-15T16:53:32.417Z 来源:《低碳地产》2016年8月第16期作者:常春燕[导读] 钢纤维混凝土是一种将钢纤维掺入普通水泥混凝土中的新型复合材料。 身份证号:13070519740217XXXX 河北省张家口市宣化区 075100 【摘要】钢纤维混凝土是一种将钢纤维掺入普通水泥混凝土中的新型复合材料。普通混凝土路面具有抗冲击性能力差、易产生裂缝并不断发展等缺陷。钢纤维混凝土是在混凝土中掺入钢纤维以改善混凝土性能,有效提高了混凝土的耐久性、抗拉强度、抗弯强度以及抗裂性能等。鉴于此,文章结合钢纤维混凝土的基本力学性能分析,主要针对钢纤维混凝土在道路面层施工中的应用要点进行了分析,以供 参考。 【关键词】钢纤维混凝土;道路面层施工;应用要点 1 导言 近年来,伴随着经济的快速发展,人们的生活水平有了很大的提高,汽车作为一种便利的交通工具,开始进入普通百姓的生活,也使得公路所要承担的交通压力越来越大,人们对于路面的施工质量和使用寿命提出了更加严格的要求。考虑到传统路面采用的是水泥混凝土或者沥青混凝土,使用年限相对较短,甚至实际使用寿命可能仅仅达到设计寿命的一半,影响了公路行业的可持续发展。在这种情况下,钢纤维混凝土路面施工技术得到了普及和应用,在提升路面整体性能方面发挥着积极的作用,得到了公路施工企业的重视。 2 钢纤维混凝土的基本力学性能 2.1抗压强度 在抗压强度方面,钢纤维并不能很好的增加混凝土基体的抗压强度。钢纤维的加入只是略微提高了混凝土的抗压强度,提高幅度并不是很大,在10%左右。石料的最大粒径对钢纤维的长度在一定程度上起着决定性的作用,石料粒径过大或者钢纤维较短会造成钢纤维在混凝土中分布不均,使钢纤维在混凝土中局部结团,间接形成薄弱截面,影响了钢纤维与混凝土基体的粘结性能,反而使钢纤维混凝土的抗压强度有所下降。 2.2耐腐蚀性强 混合杂乱分布在钢纤维混凝土内部的钢纤维只要不让其与空气接触,一般不会发生锈蚀。实验表明,钢纤维在空气、污水、海水中都不容易被锈蚀。当把钢纤维放在海水和污水中5年后,其表面锈蚀程度小于5mm,在钢纤维混凝土表面或者是裂缝处的钢纤维受腐蚀的可能性较大。所以,建筑物会因钢纤维混凝土的耐腐蚀性而延长使用寿命,从而节省资源、能源。钢纤维的耐冻融性、耐热性和抗气蚀性都比较好,物理性能也得到了很大的提高。当在混凝土中掺入1.5%的钢纤维时,即使是对其进行高达150次的冻融操作,抗折和抗压强度也才下降20%。掺有钢纤维的耐火混凝土的抗热性也是极佳的,在极度高温下不会太过膨胀而断裂。所以,钢纤维混凝土的耐腐蚀性要比普通混凝土的抗腐蚀性更为优越。 2.3抗拉强度 在抗拉强度方面,钢纤维的加入对混凝土劈拉强度还是有很明显的加强的。试验表明,钢纤维混凝土的劈裂抗拉强度比普通混凝土要高,且钢纤维掺量提高,劈拉强度也会相应提高,当混凝土中钢纤维掺量在1%~2%时,相应混凝土的28d劈拉强度增加40%~80%,但混凝土的早期劈拉强度与是否加入钢纤维的关系并不大。 2.4抗冲击性能 钢纤维的加入在很大程度上提高了混凝土的抗冲击性能,且在一定掺量范围内,抗冲击性能和钢纤维掺量是成正相关的。钢纤维混凝土具有良好的塑性变形能力,大大改善了普通混凝土性脆的缺陷,即使在冲击裂缝形成以后,钢纤维也能够延缓裂缝的延伸和扩大。在动荷载作用下,抗松散破碎的能力使钢纤维混凝土的耐久性大幅提升,这种情况下的混凝土虽然开裂,但不会立即破碎,基于这种能力钢纤维混凝土特别适用于一些铺面工程中,如:公路路面、桥面铺装、机场跑道等。 3 钢纤维混凝土在道路面层施工中的应用要点 3.1混凝土和钢纤维配合比的科学选择 在钢纤维和混凝土配合比方面,主要的参考依据是路面的厚度、抗弯强度的设计以及钢纤维混凝土的抗折强度设计,在实践使用中主要采用以下公式进行计算:钢纤维和混凝土的配合比=素混凝土的抗折强度值×(1+钢纤维的强度系数×钢纤维的体积率×钢纤维的长度比)。从上述公式可以看出,钢纤维混凝土配合比和素混凝土的水灰配合比以及钢纤维的使用率、相关的浇筑范围以及钢纤维的强度紧密相连,其比例应该通过相关的强度和性能进行确定。 3.2模板的选择 模板应具有一定的强度、稳定性和刚度,允许振动梁在其上面行走振动而不发生变形、倾覆现象。我们选取了钢模板,外侧支护采用圆钢三脚架,模板隔离层采用聚乙烯薄膜,这样既可以方便拆模,又防止混凝土混合料从纵向传力杆孔洞处流出。 3.3钢纤维的投放和搅拌环节 在钢纤维的投放和生产过程中,采用先湿后干的分散式投放方式,防止出现搅拌过程中出现结团现象。在投放过程中,钢纤维应该采用细骨料定量的方式进行搅拌工作,通过分散式振捣的方式将钢纤维混入到混凝土之中。在钢纤维混凝土搅拌的过程中,一般按照先投放砂石再投放钢纤维,在搅拌均匀之后,再进行碎石和水泥的投放工作,通过这样的分级投放工作实现每一个环节的均匀搅拌,防止出现搅拌不均匀的情况。此外,对于搅拌机的选择也具有一定的要求,为了实现最佳的搅拌效果,需要采用双锥反转的方式进行搅拌,以确保最终的搅拌效果。 3.4路面铺筑 钢纤维混凝土路面的铺筑,应符合设计图纸的要求,满足JTGD40-2011《公路水泥混凝土路面设计规范》的要求。对拌和钢纤维混凝土路面进行摊铺时,不仅需要满足相关设备在普通混凝土路面施工中的各类规范,还必须充分考虑一些其他因素:在施工中,使用的机械布料以及摊铺方式必须能够确保钢纤维的均匀分布,保证结构的连续性,在对一块面板进行浇筑与摊铺时,应该避免出现中断的情况;应该通过试铺对布料松铺高度进行确定,而当拌和物的塌落度相同时,相比于普通混凝土路面,松铺高度应该高出10mm左右;拌和物与摊铺方式应该相适应,同时其工作性可以满足相应摊铺工艺下的振捣要求。

1.改革开放对宁波发展的重要意义

1.改革开放对宁波发展的重要意义 2007-5-27 20:15 提问者:chiukaymao|浏览次数:17655次 大家告诉要考试的 2007-5-28 09:43 最佳答案 改革开放对宁波发展的重要意义 国家的强盛离不开改革开放,中华民族的伟大复兴离不开发展,人民生活水平的提高离不开社会主义现代化建设,这已成为社会共识。而改革、发展和现代化建设,必须有一个好的社会环境。由于我国是在相当复杂的条件下进行改革开放和现代化建设的,因而会不可避免地出现一些以往不曾遇到的影响社会稳定的新问题。这些影响社会稳定的问题是在改革发展过程中出现的,也只能在改革发展中予以解决。 中国一定要坚持改革开放,这是解决中国问题的希望。但是改革开放一定要有稳定的社会环境。保持社会稳定,是我国实行改革开放,实现社会主义现代化的重要保证。正是从我国经济社会发展的全局着眼,邓小平同志早就指出,中国的问题,压倒一切的是需要稳定。没有稳定的环境,什么都搞不成,已经取得的成果也会失掉。江泽民同志也一再指出:"没有政治稳定,社会动荡不安,什么改革开放,什么经济建设,统统搞不成。 宁波位于我国改革开放最具活力、经济最发达的长江三角洲地区作为我国首批沿海开放城市,改革开放以来,经济飞速发展,并初步形成较为完备的工业体系,成为浙江省的经济"发动机。建设杭州湾跨海大桥,对于整个地区的经济、社会发展都具有深远的、重大的战略意义。直接促进宁波、嘉兴经济社会的发展,带动周边地区杭州、绍兴、台州、舟山、温州等地的发展,并对全省、乃至长江三角洲南翼地区的整体发展产生积极影响宁波市改革开放和现代化建设的巨大成就,正是在邓小平理论伟大旗帜的指引下,广大干部群众解放思想,实事求是,开拓进取,艰苦创业的结果 加快我国经济发展,必须进一步解放思想,加快改革开放的步伐,不要被一些姓"社"姓"资"的抽象争论束缚自己的思想和手脚。 当前宁波经济正处于高速发展期,随着我国产业竞争力的不断提升和WTO 过渡期的基本结束,我国对外开放进入新阶段,呈现明晰的新趋势。准确把握发展趋势及其对我市影响,适时采取应对策略,对我市深入贯彻落实科学发展观,进一步发挥开放新优势,促进经济结构优化,建设长江三角洲南翼经济中心都具有极其重要的意义。 一般来说,促使经济增长的长期性因素主要是:物力资本的高积累率;人力资本的改善;技术进步;对外开放;更有效的资源配置和结构调整等等。改革开放以来宁波经济社会发展的丰硕成果已为宁波走可持续发展之路打下了良好的基础。宁波经济处于投资驱动型阶段向技术驱动性阶段转换。当前经济高速增长是

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

C50钢纤维混凝土配合比设计说明

C50钢纤维砼配合比设计说明书 一、 设计目的: 该配合比适用于k75+500-k94+900段桥梁伸缩缝等的施工。 二、 设计说明: 1、 设计依据 ① 《公路工程国内招标文件范本》 ② 《普通混凝土配合比设计规程》 ③ 《普通混凝土拌合物性能试验方法标准》 ④ 《普通混凝土力学性能试验方法标准》 ⑤ 《普通混凝土长期性能和耐久性能试验方法标准》 GB/T 50082 ⑥ 《公路工程水泥及混凝土试验规程》 ⑦ 《公路工程岩石试验规程》 ⑧ 《公路工程集料试验规程》 ⑨ 《通用硅酸盐水泥》 ⑩ 《公路桥涵施工技术规范》 (11) 《建设用卵石、碎石》 (12) 《混凝土外加剂》 (13) 《钢纤维混凝土》 2、 配合比设计公式选用 根据《公路桥涵施工技术规范》 砼试配强度R 下式确定: JGJ 55-2011 GB/T 50080 GB/T 50081 JTGE30-2005 JTGE41-2005 JTGE42-2005 GB175-2007 JTG/T F50----2011 GB/T 14685-2011 GB8076-2008 JG/T 472-2015 JTG/T F50— 2011

Feu, o二f eu, k+1.645 a 其中值按下表选用: 三、C50砼配合比计算 1、原材料: ①水泥:柳州鱼峰水泥厂P .0 52.5普通硅酸盐水泥。 ②砂:贝江砂场河砂,细度模数2.72,表观相对密度2.654g/cm3。 ③碎石:神龙石场5?20mm,表观相对密度2.678g/cm3。采用 4.75-9.5mm碎石和9.5-19mm碎石按照30:70的比例进行掺配。 ④钢纤维:河北衡水鑫归机械加工厂,按照设计图纸每方掺量为60Kg ⑤水:饮用水 ⑥外加剂:郑州市邦基建材有限公司BJ聚羧酸高效减水剂,减水率为28%,掺量为1.0%。 ⑦设计坍落度:130?170mm 2、试配强度: f eu, o=f cu,k+1.645 (T =50+1.645 8=59.9 Mpa 3、水泥强度:(富余系数取1.0) f ee=52. 5Mpa 4、确定水灰比:

钢纤维混凝土配合比设计方法

以抗压强度为主控的钢纤维混凝土配合比设计方法 一、基本要求: 1、钢纤维直径为0.35~0.70mm,长径比50~80,适宜体积掺量为1.0%~2.0%,掺量低于0.5%时增韧效果不明显,掺量过高时纤维难分散、混凝土流动度变差、成本高。钢纤维参数选择参照表5-19、表5-20; 2、每立方米混凝土中胶凝材料用量400~500kg,水泥用量宜在300~400kg之间,水泥强度等级不宜低于42.5级,砂率一般为45%~60%,配合比参数参照表1; 3、粗骨料粒径不宜大于20mm; 表5-19 钢纤维类型[2] 表5-20 钢纤维几何参数采用范围[2]

二、钢纤维增强混凝土配合比设计方法[1,2] 4 混凝土配制强度的确定 4.0.1混凝土配制强度应按下列规定确定: 1.当混凝土的设计强度等级小于C60时,配制强度应按下式计算: cu,0cu,k 1.645f f σ≥+ (4.0.1-1) 式中,f cu,o —钢纤维混凝土配制强度,MPa ; f cu,k —钢纤维混凝土立方体抗压强度标准值,这里取设计混凝土强度等级值,MPa ; σ—混凝土强度标准差,MPa 。 2.当设计强度等级大于或等于C60时,配制强度应按下式计算: cu,0cu,k 1.15f f ≥ (4.0.1-2) 4.0.2混凝土强度标准差应按照下列规定确定: 1.当具有近1个月~3个月的同一品种、同一强度等级混凝土的强度资料时,其混凝土强度标准差σ应按下式计算: σ= (4.0.2) 式中,f cu ,i —第i 组的试件强度,MPa ; m f cu —n 组试件的强度平均值,MPa ; n —试件组数,n 值应大于或者等于30。 对于强度等级不大于C30的混凝土:当σ计算值不小于3.0MPa 时,应按照计算结果取值;当σ计算值小于3.0MPa 时,σ应取3.0MPa 。对于强度等级大于C30且不大于C60的混凝土:当σ计算值不小于4.0MPa 时,应按照计算结果取值;当σ计算值小于4.0MPa 时,σ应取4.0MPa 。 2.当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差σ可按表4.0.2取值。

钢纤维混凝土及其在桥面铺装中的应用

钢纤维混凝土及其在桥面铺装中的应用 钢纤维混凝土(Steel Fiber REinforced Concrent. 简称SFRC)是一种由水泥、粗细集料和随机分布的短钢纤维组合而成的复合材料。钢纤维混凝土中的钢纤维呈三维乱向分布,沿每个方向都有增强和增韧的作用,尤其对复杂应力区增强非常有效,可使混凝土物理力学性能产生质的变化,大大提高混凝土抗裂性能和抗冲击性能,使原本脆性的混凝土材料呈现很高的延性和韧性,以及优良的抗冻、耐磨性能,特别适用于要求连续、快速浇注混凝土的较大工程 桥梁的混凝土桥面铺装层由于重型车辆的使用、交通量的增加,损坏非常严重,维修周期越来越短,这不仅妨碍了交通安全,也给维修工作带来不便。若改用SFRC 铺装桥面层,则可使面层厚度减薄,伸缩缝间距加大,从而改善桥面的使用性能,降低维修费用,延长使用寿命 SFRC 应用于桥面铺装层,一般有两种:一种为部分粘结式的铺装层;一种为SFRC 增强钢筋网或钢丝网混凝土铺装层,亦称为复合式铺装层 钢纤维的品种及性能是影响钢纤维混凝土质量的主要因素,钢纤维主要有以下几种:切断钢纤维。剪切钢纤维。熔抽钢纤维 钢纤维对混凝土的增强表现在当混凝土基体刚刚出现微裂缝时,钢纤维混凝土并未立即破坏,而是随着裂缝的稳定扩展,承载力继续上升,直到裂缝宽度增大到一个临界值时,钢纤维逐渐拔动或拔出,钢纤维混凝土才由于发生突然性的裂缝失稳扩展而破坏。为防止钢纤维混凝土因钢纤维被拉断而失去强度,钢纤维的抗拉强度不低于380kPa,钢纤维表面不得有油污和其他妨碍钢纤维与水泥浆粘结的杂质。钢纤维内含有的铁屑及杂质总量不得超过.钢纤维混凝土的水泥用量较一般混凝土高出10左右。细集料砂的粒径为 0.15~5mm,粗集料碎石最大粒径不宜大于20mm 或钢纤维长度的2/ 3.为保证钢纤维拌和物的和易性,混凝土的砂率一般不低于50,必要时掺入减水剂或超塑化剂以降低水灰比

宁波港发展史略

宁波港发展史略 宁波文史资料第九辑·宁波港史资料专辑 宋静之 宁波港是中国最古老的港口之一,春秋时期称句章港,唐朝称明州港,元朝称庆元港,明朝开始称为宁波港。宁波简称甬。 宁波港位于东海之滨,中国海岸线的中段,扼南北水路之要冲,前方有舟山群岛为天然屏障,后方为四明山和天台山所环抱,四明山向东延伸到镇海区的澥浦附近伸入东海,形成了宁波市与舟山毗连海域的岛屿,天台山余脉的太白山,在北仑区柴桥附近伸入东海,形成了舟山群岛。这里的海岸带基本格局,早在7000前已经形成。镇海口以北至横塘的海岸,具有利于发展浅海养殖、海水晒盐事业的泥质沙岸。镇海口以南至北仑区郭巨镇峙头角的海岸,岸线曲折,岸滩稳定,水深湾阔的岩岸,是建设深水良港的理想之地。镇海口内的甬江,江面开阔,水深流稳,可通3000吨级船舶,是一个优良的河港口岸。 从宁波港出发的船只,有二股天然动力可利用:其—,北赤道暖流从南方流来,经过宁波港口外的东海流向日本,北冰洋寒流由北而来,绕过日本经过宁波港口外的东海南下,两流背向回流;其二,宁波港的气候是属于亚热带季风气候。冬季多刮西北风,夏季多吹东南风,风向随季节不同进行有规律的转变。唐朝大中元年(847年)明州商船利用上述的季风和洋流,从明州港(宁波港)出发,顺风顺水地航行,三昼夜到达日本值嘉岛,创造了帆船时代最快航速的记录。 以上所述的宁波港得天独厚的天时与地理优势,早在6000年前,河姆渡原始居民就开始开发利用,进行航海活动。宁波人的祖先,为了不辜负这样优越的地理环境,几千年来,化尽心血,历尽艰难,开发港口,发展航运事业,在港口发展史上留下了不可磨灭的一页。其中,有光荣的功绩,也有屈辱的记录;有成功的经验,也有失败的教训;有顺利发展的实况,也有曲折停滞的记载。了解一下宁波港的历史,必将有助于进一步了解宁波的历史和今后发展的趋势。为此,我把所阅所见所闻的有关资料,整理成文,简述如下,供大家参考。 创建于春秋后期 宁波的造船和航海事业发源地是河姆渡。河姆渡在余姚江北岸,距宁波市区约有25公里,今属余姚市罗江乡。1973年在那里发现新石器遗址,考古学上把这个遗址定命为河姆渡文化①。在河姆渡遗址出土的大量文物中,有六支木桨和许多淡水动植物以及鲨鱼、鲸鱼等海生动物的遗骸,还有陶制的船模等。经过考证,大约在六七千年前,住在河姆渡一带的原始居民,已经能制造船桨,使用舟楫,航行于河湖港湾和近海进行生产活动。也证明了河姆渡是宁波造船和航海事业发源地,河姆渡原始居民的航海活动是中国最早的航海活动。 随着社会、技术的进步,浙东地区经济的开发,越王勾践于周元王三年(公元前473年)灭掉吴国后,“以南(东)疆句余之地,旷而称为句章,以章封伯之功以示子孙”②并开拓建城,成为港口。句章港址在城山渡(今宁波市江北区乍山乡城山渡村)。东距三江口(今宁波市区)22公里,西距河姆渡约三公里。溯姚江而上可达余姚县城,顺流可入甬江经镇海大浃口入海,是越国重要的通海门户。越王勾践开辟句章港是为了发展水师和加强与内越和外越联系。自建成后一直以军事活动为主,在经济上只进行一些简单的交换活动,没有发挥过重要作用。从战国到隋朝近千年中,从句章港出发,进行海上军事活动,在史册上是屡见的,但进行海上贸易的记载,

钢纤维混凝土

钢纤维混凝土 随着国民经济建设和公路交通事业的飞速发展,城市道路和国道干线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的损坏也日趋严重起来。特别是对损坏的水泥混凝土路面而言,它不仅翻修投资大,且施工周期较长,严重影响交通畅通及行车安全。如用普通水泥混凝土修复路面虽有强度高,板块性好,有一定的抗磨性及承受气象作用的耐久性好等特点,但它的最大缺陷是脆性大、易开裂、抗温性差,路面板块容易受弯折而产生断裂,所以就要求路面面板应有足够的抗弯、抗拉强度和厚度。用钢纤维混凝土修筑路面,就是意将钢纤维均匀地分散于基体混凝土中(与混凝土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的细裂缝端部的应力集中,从而控制混凝土裂缝的扩展,提高整个复合材料的抗裂性。同时由于混凝土与钢纤维接触界面之间有很大的界面粘结力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混凝土作为一个均匀的整体抵抗外力的作用,显着提高了混凝土原有的抗拉、抗弯强度和断裂延伸率。特别是提高了混凝土的韧性和抗冲击性。 实践证明,采用钢纤维混凝土这一新型高强复合材料对路面修理,既可提高路面的抗裂性、抗弯曲、耐冲击和耐疲劳性,而且可改善路面的使用性能,延长使用寿命从而减少老路开挖,对节省工程造价等具有重要的经济效益和社会效益;为提高道路补强与改造提供了良好的途径。 1、基本要求 1.1钢纤维混凝土材料 钢纤维混凝土就是在一般普通混凝土中掺配一定数量的短而细的钢纤维所组成的一种新型高强复合材料。由于钢纤维阻滞基体混凝土裂缝的产生,不但具有普通混凝土的优良性能,而且具有良好的抗折、抗冲击、抗疲劳以及收缩率小、韧性好、耐磨耗能力强等特性。可使路面厚度减薄50%以上,缩缝间距可增至15m~30m,不用设胀缝和纵缝。钢纤维混凝土用钢纤维类型有圆直型、熔抽型和剪切型钢纤维。其长度分为各种不同规格,最佳长径比为40~70,截面直径在0.4mm~0.7mm范围内,抗拉强度不低于380mpa.在施工时钢纤维在混凝土中的掺入量为1.0%~2.0%(体积比),但最大掺量不宜超过2.0%。水泥采用425#~525#普通硅酸盐水泥,以保证混合料具有较高的强度和耐磨性能。钢纤维混凝土用的粗骨料最大粒径为钢纤维长度的23.不宜大于20mm.细集料采用中粗砂,平均粒径0.35mm~ 0.45mm,松装密度1.37g/cm3.砂率采用45%~50%。 1.2钢纤维混凝土配合比 钢纤维混凝土混合料配合比的要求首先应使路面厚度减薄,其次是保证钢纤维混凝土有较高的抗弯强度,以满足结构设计对强度等级的要求即抗压强度与抗折强度,以及施工的和易性。钢纤维混凝土配合比设计基本按以下步骤进行。 (1)根据强度设计值以及施工配制强度提高系数,确定试配抗压强度与抗折强度;钢纤维混凝土抗折强度设计值的确定:fftm=ftm(1+atmpflf/df) 式中fftm――钢纤维混凝土抗折强度设计值;ftm――与钢纤维混凝土具有相同的配合材料、水灰比和相近稠度的素混凝土的抗折强度设计值;atm――钢纤维对抗折强度的影响系数(试验确定);pf――钢纤维体积率,%;lf/df――钢纤维长径比,当ftm<6.0n/mm2时,可按表1采用。 (2)根据试配抗压强度计算水灰比;

钢纤维混凝土

1.原材料配比方面的质量控制 1.1 单位水泥用量 在保持水灰比不变的情况下,单位体积混凝土拌合料中,如水泥浆用量愈多,拌合料的流动性愈好,反之,较差。在钢纤维混凝土拌合料中,除必须有足够的水泥浆填充的空隙外,还需要有一部分水泥浆包裹骨料和钢纤维的表面形成润滑层,以减少骨料和钢纤维彼此间的摩擦阻力,使拌合料有更好的流动性。 1.2 水泥 水泥品种对混凝土的可泵性也有一定影响。一般宜采用硅酸盐水泥、普通硅酸盐水泥以及矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,但均应符合相应标准的规定。 1.3 钢纤维 在一定范围内,钢纤维增强作用随长径比增大而提高。钢纤维长度太短起不到增强作用,太长则施工较困难,影响拌合物的质量,直径过细易在拌合过程中被弯折,过粗则在同样体积率时,其增强效果较差。 1.4 粗集料 粗集料的级配、粒径和形状对于混凝上拌合物的可泵性影响很大。级配良好的粗骨料,空隙率小,对节约砂浆和增加混凝土的密实度起很大作用。因而泵送混凝土应用较多的国家,对粗集料的级配都有规定。 1.5 细集料 又称细骨料,用于填充碎石或砾石等粗骨料的空隙并共同组成钢纤维混凝土的骨架。在保证钢纤维混凝土强度相同时,粗砂需要的水泥用量较细砂为少。显然,当水泥用量相同时,用粗砂配制的混凝上强度要比用细砂配制的混凝土强度为高。 1.6 减水剂 减水剂可分为普通减水剂和高效减水剂。普通减水剂是一种对规定和易性混凝土可减少拌和用水量的外加剂,这种减水剂一般为可溶于水的有机物质。它可以改变新拌和硬化混凝土的性能,特别是提高混凝土的强度和耐久性。 1.7 其它掺合料 除去水、水泥、粗细集料、粉煤灰等材料外,在搅拌时还可加入其它掺合料,如矿渣、超细粉等。 2.钢纤维混凝土施工方面控制 2.1 泵送混凝土的质量控制 泵送混凝土的连续不间断地、均衡地供应,能保证混凝土泵送施工顺利进行。泵送混凝土要按照配合比要求、拌制得好,混凝土泵送时则不会产生堵塞。因此,泵送施工前周密地组织泵送混凝土的供应,对混凝土泵送施工是重要的。 泵送混凝土的供应,包括泵送混凝土的拌制和泵送混凝土的运送。泵送混凝土宜采用预拌混凝土,在商品混凝土工厂制备,用混凝土搅拌运输车运送至施工现场,这样制备的泵送混凝土容易保证质量。泵送混凝土由商品混凝土工厂制备时,应按国家现行标准,《预拌混凝土》的有关规定,在交货地点进行泵送混凝土的交货检验。 拌制泵送混凝土时,应严格按混凝土配合比的规定对原材料进行计量,也应符合《预拌混凝土》中有关的规定。 混凝土搅拌时的投料顺序,应严格按规定投料。如配合比规定掺加粉煤灰时,则粉煤灰宜与水泥同步投料。外加剂的添加时间应符合配合比设计的要求,且宜

C50钢纤维混凝土配合比

1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg; 8,初步配合比:

C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥 : 砂 : 碎石 : 钢纤维: 水 : 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3

钢纤维混凝土施工方案

一、依据标准: 1、EN 14889-1:2006 - 纤维混凝土 - 第一部分:钢纤维—定义,规范以及规则; 2、UNI EN 14845-2:2007 - 纤维混凝土的试验方法 - 第二部分:混凝土的有效性; 3、EN 14651-2005 - 金属纤维混凝土试验方法 - 弯曲抗拉强度测试(比例限制(LOP),残余) 4、UNI–EN 10016 “用于拉伸或冷盘的非合金盘条—第一部分:一般要求” 5、UNI - EN 10218-1: 1995 - 钢丝和钢丝产品 - 常规 - 第一部分:测试方法 6、UNI 11037:2003 - Fibre d’acciaio da impiegare nel confezionamen –to di conglomerate cementizio rinforzato; 7、UNI 11039:2003 钢纤维混凝土-第一部分:定义、分类、规范和规则;第二部分:确定早期开裂强度和韧性指数的方法; 8、ASTM A820-01:纤维混凝土中钢纤维标准; 9、CNR - DT 204/2006 - Istruzoni per la pro gettazione, I’Esecuzione ed il Controllo di strutture di Calcestruzzo Fibroriforzato; 10、RILEM, 2001 - “钢纤维混凝土的测试和设计方法:钢纤维混凝土的单轴拉伸测试”,RILEM TC 162-TDF 推荐,材料和结构。

二、工程概况: 根据中华人民共和国行业标准,《公路水泥混凝土路面设计规范》,钢纤维混凝土整体地坪应铺设在均匀密实的地基土上,对淤泥,淤泥质土,回填土及杂填土的软弱地基,应根据地面使用要求,活荷载大小,地基地质情况按现行国家标准“建筑地基基础设计规范”(GB50007-2002)的有关规定利用与处理,并应严格按照设计及施工验收规范对地基处理的要求进行施工,即本项目首钢冷轧厂罩式退火工程Ⅱ标段,采用钢纤维混凝土施工。 1、首钢冷轧地坪Ⅱ约2835m2 混凝土等级:C25 混凝土厚度:300mm 钢纤维:Wirand FF3 掺量:20kg/m32 2、首钢冷轧地坪Ⅲ约2513m2 混凝土等级:C25 混凝土厚度:250mm 钢纤维:Wirand FF3 掺量:20kg/m3 三、钢纤维混凝土简介 (1)钢纤维混凝土配合比: Wirand FF3钢纤维掺量:每立方混凝土20公斤,混凝土标号: C25,

钢纤维混凝土

钢纤维混凝土(SFRC)的设计施工与应用 摘要本文结合钢纤维混凝土性能特点,通过介绍钢纤维混凝土配合比设计、运输,浇筑、养护和质量控制,以工程实例说明钢纤维混凝土在土木工程中有广阔的应用前景。 关键词钢纤维混凝土设计与施工应用 1 引言 用均匀分散的短钢纤维增强的普通混凝土即钢纤维混凝土(Steel Fiber R einforced Concrent. 简称SFRC),是一种由水泥、粗细集料和随机分布的短钢纤维组合而成的复合材料。它通过在混凝土中乱向分布的钢纤维,使混凝土物理力学性能产生质的变化,从而大大提高混凝土抗裂性能和抗冲击性能,使原本脆性的混凝土材料呈现很高的延性和韧性,以及优良的抗冻、耐磨性能。SFRC 最早出现于20世纪初期,在美、英、德、日、俄、意、西、比等发达国家的军事设施、桥梁等领域得以推广并应用。我国于20世纪70 年代后期开始研制钢纤维,先后在黑龙江大庆、浙江金华、北京、重庆、四川、上海、广东等地的公路路面、机场跑道、旧桥加固中进行试验性的应用,后推广至土木工程各领域。 2 钢纤维混凝土的性能特点 钢纤维混凝土中乱向分布的短纤维主要作用是阻碍混凝土内部微裂缝的扩展和阻滞宏观裂缝的发生和发展。在受荷(拉、弯)初期,水泥基料与纤维共同承受外力,当混凝土开裂后,横跨裂缝的纤维成为外力的主要承受者。因此钢纤维混凝土与普通混凝土相比具有一系列优越的物理和力学性能。 (1)有优越的经济性。 强度和重量比值增大是钢纤维混凝土具有优越经济性的重要标志。 (2)具有较高的抗拉、抗弯、抗剪和抗扭强度。 在混凝土中掺入适量钢纤维,其抗拉强度提高25%~50%,抗弯强度提高4 0%~80%,抗剪强度提高50%~100%。 (3)具有卓越的抗冲击性。 材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。 (4)具有明显收缩性。 在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低7%~9%。 (5)具有显著抗疲劳性。

相关文档
相关文档 最新文档