文档库 最新最全的文档下载
当前位置:文档库 › 计算方法2006-2007试卷

计算方法2006-2007试卷

计算方法2006-2007试卷
计算方法2006-2007试卷

计算方法2006-2007第一学期

1 填空

1). 近似数253.1*=x 关于真值249.1=x 有几位有效数字 ; 2). 设有插值公式)()(1

1

1

k n k k x f A dx x f ?∑-=≈,则∑=n

k k A 1

=______

3) 设近似数0235.0*1=x ,5160.2*2

=x 都是有效数,则相对误差≤)(*2

*1

x x e r ____

4) 求方程x x cos =的根的牛顿迭代格式为

5) 矛盾方程组?????-=+=-=+1211212121x x x x x x 与???

??-=+=-=+1

2122221

2121x x x x x x 得最小二乘解是否相同。

2 用迭代法(方法不限)求方程1=x xe 在区间(0,1)内根的近似值,要求先论证收敛性,误差小于210-时迭代结束。

3 用最小二乘法x be ax y +=2中的常数a 和b ,使该函数曲线拟合与下面四个点 (1,-0.72)(1.5, 0.02),(2.0, 0.61),(2.5, 0.32)

(结果保留到小数点后第四位)

4.(10分)用矩阵的直接三角分解法求解线性方程组

????

?

?

?

??=??????? ????????? ??717353010342110100201

4321x x x x 5.(10分)设要给出()x x f cos =的如下函数表

用二次插值多项式求)(x f 得近似值,问

步长不超过多少时,误差小于3

10- 6. 设有微分方程初值问题

??

?=≤<-='2

)0(2

.00,42y x x y y -

)

(1) 写出欧拉预估-校正法的计算格式;

(2) 取步长h =0.1,用欧拉预估-校正法求该初值问题的数值解(计算结果保留4位小数)。

7. 设有积分?+=101x

dx

I

(1) 取11个等距节点(包括端点0和1),列出被积函数在这些节点上的函数值

(小数点侯保留4位);

(2) 用复化Simpson 公式求该积分的近似值,并由截断误差公式估计误差大小

(小数点侯保留4位)。 8. 对方程组

????

? ??=????? ??????? ??314122*********x x x - (1) 用雅可比迭代法求解是否对任意初始向量都收敛?为什么? (2) 取初始向量T )0,0,0(=x ,用雅可比迭代法求近似解)1(+k x ,使

)3,2,1(103

)()1(=<--+i x x k i k i

9. 设f (x )在区间[a ,b ]上有二阶连续导数,且f (a )=f (b )=0,试证明

)()(81

)(max max

2x f a b x f b

x a b

x a ''-≤≤≤≤≤

计算方法2006-2007第二学期

1 填空

1). 近似数0142.0*=x 关于真值0139.0=x 有__为有效数字。

2) 适当选择求积节点和系数,则求积公式)()(1

1

1

k n

k k x f A dx x f ?∑-=≈的代数精确

度最高可以达到______次.

3) 设近似数0235.0*1=x ,5160.2*

2=x 都是四舍五入得到的,则相对误差

)(*

2*1x x e r 的相对误差限______

4) 近似值5**x y =的相对误差为)(*x e r 的____ 倍。

5) 拟合三点A(0,1), B(1,3),C(2,2)的平行于y 轴的直线方程为_____.

2. 用迭代法求方程0222=++x x e xe x 在(-1,0)内的重根的近似值1+n x 。要求1)说明所用的方法为什么收敛;2)误差小于410-时迭代结束。

3.用最小二乘法确定x b ax y ln 2+=中的a 和b ,使得该函数曲线拟合于下面四个点 (1.0,1.01), (1.5,2.45), (2.0,4.35), (2.5,6.71) (计算结果保留到小数点后4位)

写出中心差分表示的二阶三点微分公式,并由此计算)1.1(''f 。

5 已知五阶连续可导函数)(x f y =的如下数据

试求满足插值条件的四次多项式).(x p

6 设有如下的常微分方程初值问题

??

???=≤<=1)1(4

.11,y x y

x

dx dy 1)写出每步用欧拉法预估,用梯形法进行一次校正的计算格式。

2)取步长0.2用上述格式求解。

7 设有积分dx e I x ?=6

.002

1)取7个等距节点(包括端点),列出被积函数在这些点出的值(保留到小数点后4位)

2)用复化simpson 公式求该积分的近似值。

8 用LU 分解法求解线性代数方程组

????

??

?

??=??????? ?????????

?

?-731395222211212032114321x x x x 9 当常数c 取合适的值时,两条抛物线c x x y ++=2 与x y 2=就在某点相切,试取出试点3.00=x ,用牛顿迭代法求切点横坐标。误差小于410-时迭代结束。

参考答案; 1: (1)2, (2) 2n-1 (3) 2.1457*10E-3 (4)1/5 (5) x=1 2 解:将方程变形为 0)(2=+x e x

即求0=+x e x 在(-1,0)内的根的近似值1+n x 牛顿迭代格式为 n

n

x x n n n e e x x x ++-=+11

收敛性证明; 非局部收敛定理 结果 56714.04-=x 。

3 用最小二乘法 正则方程组为

??

?=+=+1586.1048446.141165

.986.6541165

.9125.61a b a 解得 a=1.0072; b=0.4563

4.解:中心差分格式

))(2)(((1

)(12021''x f x f x f h

x f -+=

得到3)1.1(''=f 5 解

3432).(x x x p +-=

截断误差 23

)5()1(!

5)()(-=

x x f x R ξ 6 4.1)4.1(;2.1)2.1(==y y 7 0.6805

8 (0 1 0 1) 9 解 两条曲线求导 12'+=x y 和2

1'-

=x y

切点横坐标一定满足12+x =2

1-x

将等式变形为 144)(23-++=x x x x f 牛顿迭代法 结果为 0.34781

河北工业大学_计算方法_期末考试试卷_C卷

2012 年(秋)季学期 课程名称:计算方法 C卷(闭卷)

2012 年(秋)季学期

2012 年(秋)季学期

2012 年(秋)季学期

2012 年 秋 季 (计算方法) (C) 卷标准答案及评分细则 一、 填空题 (每题2分,共20分) 1、 截断 舍入 ; 2、则 ()0n k k l x =∑= 1 ,()0 n k j k k x l x =∑= j x , 4、 12 。 4、 2.5 。 5、10 次。 6、A 的各阶顺序主子式均不为零。 7 、1A ρ=+() ,则6 A ∞ =。 二、综合题(共80分) 1. (本题10分)已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解: )12)(12() 1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+? --+-+?+------? =x x x x x x x L (6分) )1)(1(34 )2)(1(23)2)(1(32-+--+---= x x x x x x (2分) 04167.024 1 )5.1()5.1(2≈= ≈L f (2分) 2. (本题10分)用复化Simpson 公式计算积分()?=1 0sin dx x x I 的近似值,要求误差限为5105.0-?。 ()()0.9461458812140611=???? ??+??? ??+= f f f S (3分) ()()0.94608693143421241401212=???? ??+??? ??+??? ??+??? ??+= f f f f f S (4分) 5-12210933.0151 ?=-≈ -S S S I 94608693.02=≈S I (3分) 或利用余项:()() -+-+-==!9!7!5!31sin 8 642x x x x x x x f () -?+?-=!49!275142) 4(x x x f ()51 )4(≤ x f

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

地方时计算方法及试题精选(DOC)

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B 点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A 点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。 所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时+8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

数值计算方法三套试题及答案

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l )(( ),∑== n k k j k x l x 0 )(( ),当2≥n 时= ++∑=)()3(20 4x l x x k k n k k ( )。 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族, 其中1)(0=x ?,则?=1 04)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时, SOR 迭代法收敛。 9、解初值问题00(,)()y f x y y x y '=??=?的改进欧拉法?????++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设 ?? ????????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯 一的。 二、 二、选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ? ∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

计算方法 试题A 答案

计算方法试题A 答案

大连理工大学应用数学系 数学与应用数学专业2005级试A 卷答案 课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页 一 二 三 四 五 六 七 八 九 十 总分 标准分 42 8 15 15 15 5 / / / / 100 得 分 一、填空(每一空2分,共42分) 1.为了减少运算次数,应将表达式.543242 16171814131 1681 x x x x x x x x -+---++- 改写为 ()()()()()()()1 816011314181716-+++---+-x x x x x x x x x ; 2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ?-1 02 求得的近似值为 () 15.0214 1 --++e e , 用Simpson 公式求得的近似值为 () 15.0416 1 --++e e 。 1. 设函数()1,0,1)(3-∈S x s ,若当1-

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

计算方法2006-2007试卷

计算方法2006-2007第一学期 1 填空 1). 近似数253.1*=x 关于真值249.1=x 有几位有效数字 ; 2). 设有插值公式)()(1 1 1 k n k k x f A dx x f ?∑-=≈,则∑=n k k A 1 =______ 3) 设近似数0235.0*1=x ,5160.2*2 =x 都是有效数,则相对误差≤)(*2 *1 x x e r ____ 4) 求方程x x cos =的根的牛顿迭代格式为 5) 矛盾方程组?????-=+=-=+1211212121x x x x x x 与??? ??-=+=-=+1 2122221 2121x x x x x x 得最小二乘解是否相同。 2 用迭代法(方法不限)求方程1=x xe 在区间(0,1)内根的近似值,要求先论证收敛性,误差小于210-时迭代结束。 3 用最小二乘法x be ax y +=2中的常数a 和b ,使该函数曲线拟合与下面四个点 (1,-0.72)(1.5, 0.02),(2.0, 0.61),(2.5, 0.32) (结果保留到小数点后第四位) 4.(10分)用矩阵的直接三角分解法求解线性方程组 ???? ? ? ? ??=??????? ????????? ??717353010342110100201 4321x x x x 5.(10分)设要给出()x x f cos =的如下函数表 用二次插值多项式求)(x f 得近似值,问 步长不超过多少时,误差小于3 10- 6. 设有微分方程初值问题 ?? ?=≤<-='2 )0(2 .00,42y x x y y - )

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

计算方法试题

计算方法试题 1.有效数字位数越多,相对误差越小。() 2.若A是n×n阶非奇异阵,则必存在单位下三角阵L和上三角阵U,使A=LU唯一成立。() 3.当时,型求积公式会产生数值不稳定性。() 4.不适合用牛顿-莱布尼兹公式求定积分的情况有的原函数不能用有限形式表示。() 5.中矩形公式和左矩形公式具有1次代数精度。() 1.数的六位有效数字的近似数的绝对误差限是() 2.用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为()。 3.求解线性代数方程组的高斯-赛德尔迭代格式为( ) 4.已知函数在点=2和=5处的函数值分别是12和18,已知,则()。 5.5个节点的牛顿-柯特斯求积公式的代数精度为()。 1.不是判断算法优劣的标准是()。 A、算法结构简单,易于实现 B、运算量小,占用内存少 C、稳定性好 D、计算误差大 2.计算(),取,采用下列算式计算,哪一个得到的结果最好? ()。 A、 ()B、99-70C、D、 () 3.计算的Newton迭代格式为()。 A、B、C、D、4.雅可比迭代法解方程组的必要条件是()。 A、A的各阶顺序主子式不为零 B、 C、,,,, D、

5.设求方程的根的切线法收敛,则它具有()敛速度。 A、线性 B、超越性 C、平方 D、三次 6.解线性方程组的主元素消元法中选择主元的目的是()。 A、控制舍入误差 B、减小方法误差 C、防止计算时溢出 D、简化计算 7.设和分别是满足同一插值条件的n次拉格朗日和牛顿插值多项式,它们的插值余项分别为和,则()。 A、, B、, C、, D、, 8.求积公式至少具有0次代数精度的充要条件是:() A、B、 C、D、 9.数值求积公式中Simpson公式的代数精度为()。 A、0B、1 C、2D、3 10.在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 A、B、C、D、 1.简述误差的四个来源。(10分) 2.简述分析法对的根进行隔离的一般步骤。 1.已知方程有一个正根及一个负根。 a)估计出有根区间; b)分别讨论用迭代公式求这两个根时的收敛性; c)如果上述格式不迭代,请写出一个收敛的迭代格式。(不需要证明)

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f(4)=5.9,则二次Ne wton 插值多项式中x 2系数为 ( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

-计算方法试卷

《计算方法》2012年试题 一、填空题 1、设f(x)x=f(x)的牛顿迭代公式为 2、设矩阵A有如下分解: 则a=,b= 3、已知函数 是以-1,0,1为样条节点的三次样条函数,则a=,b= 4、A1=,A2= 5、下列数据取自一个次数不超过5次的多项式P(x) 则P(x)是次多项式。 6、设A=x(n)表示用幂法求A的按模最大特征值所对应的特征向量的第n 次近似值,若取x(0)=(0,1)T,则x(2011)= 二、选择题 1、设A为n阶实对称矩阵,P为n阶可逆矩阵,B=PAP-1,||A||r表示矩阵A的 r-A的谱半径,以下结论不正确的是 (A) (B) (C) (D)

2、可以用Jacobi迭代法解线性方程组Ax=b的必要条件是 (A) 举证A的各阶顺序主子式全不为零(B) A (C) 举证A的对角元素全不为零(D) 矩阵A 3、设A=(1,2,2)T,若存在Household矩阵H,使得Hx=σ(1,0,0)T,则 4、对于具有四个求积点(n=3)牛顿科特斯(Newton-Cotes)公式 如果已知Cotes系数,则其余三个系数为 (A) (B) (C) (D) 5、用二阶Runge-Kutta方法 求解常微分方程初值问题,其中:h>0为步长,x n=x0+nh 为保证格式稳定,则步长h的取值范围是 (A) (B) (C) (D)

三、计算解答题 1、设f(x)=e2x。 (1) 写出或导出最高幂次系数为1的且次数不超过2的Legendre多项式L0(x),L1(x),L2(x); (2) 求出在P2(x)。 2、,给如下的数值积分公式: 其中:表示在x=1处的到数值。 (1) 求常数A1、A2、A3使上述求积公式的代数精度最高; (2) 导出上述求积公式的余项(或截断误差)R[f]=I-I n 3、 (1) 找出参数的最大范围,使得求解以A为系数矩阵的线性代数方程的Gauss-Sidle迭代法收敛; (2) 取何值时,Gauss-Sidle迭代法经有限次迭代后得到方程的精确解 4、[0.5,0.6]内有唯一的实根 (1) 试判断一下两种求上述方程的迭代格式的局部收敛性,并说明理由。 格式1x0>0;格式2x0>0 (2) 方程f(x)=0的根就是y=f(x)的反函数x=g(y)在y=0时x的值。已知下列数据是

(完整版)数学05级计算方法试题A

大连理工大学应用数学系 数学与应用数学专业2005级试卷 课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页 一、填空(每一空2分,共42分) 1.为了减少运算次数,应将表达式.543242 16171814131 1681 x x x x x x x x -+---++- 改写为_______; 2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ?-1 02 求得的近似值为 , 用Simpson 公式求得的近似值为 。 1.设函数()1,0,1)(3-∈S x s ,若当1-