文档库 最新最全的文档下载
当前位置:文档库 › 第12讲 相似三角形(1)

第12讲 相似三角形(1)

第12讲  相似三角形(1)
第12讲  相似三角形(1)

第十二讲:相似三角形(1)

考点一:相似三角形的判定

例1 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.

例2如图,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连结BF ,则图中与△ABE 一定相似的三角形是( )

A .△EF

B B .△DEF

C .△CFB

D .△EFB 和△DEF

变式:如图,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连结BF ,若使图中△BEF 与△ABE 相似,需添加条件:

练习

1.

如图所示,给出下列条件:

①B ACD ∠=∠②ADC ACB ∠=∠;③

AC AB CD BC

=;④2

AC AD AB = . 其中单独能够判定ABC ACD △∽△的个数为( )

A .1

B .2

C .3

D .4

2. 如图小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )

3.

如图,在矩形ABCD 中,AB=4,AD=10,点P 在BC 边上,若△ABP 与△DCP 相似。

△APD 一定是( )

A .直角三角形 B.等腰三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

变式: 如图,在矩形ABCD 中,AB=4,AD=10,若点P 在BC 边上,则△ABP 与△DCP 相似的点P 有 个。 4.

梯形ABCD 中, AD ∥ BC,AD

A

.

考点二:相似三角形性质

例3 图中_______x

=

例4 如图,已知

ABD

?∽

ACE

?,求证:

A B C ?∽ADE

?.

习题

1、 如图,

A B C D E G H M N ,,,,,,,,都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G H M N ,,,四点中的( ) A .H 或N B .G 或H C .M 或N D .G 或M

2、 如图,△ABC 与△AEF 中,AB =AE ,BC =EF ,∠B =∠E ,AB 交EF 于D .给出下列结论: ①∠AFC =∠C ; ②DF =CF ;③△ADE ∽△FDB ;④∠BFD =∠CAF .其中正确的结论是

3、 如图ABC △中CD

AB ⊥于D ,一定能确定ABC △为直角三角形的条件个数是( )

①1A ∠=∠, ②CD DB

AD CD =,

③290B ∠+∠=°, ④345BC AC AB =∶∶∶∶, ⑤CD AC BD AC ?=?

A .1

B .2

C .3

D .4

4、 如图,△ABC 中,∠ACB =90°,CD 是斜边AB 上的高,AD =4cm ,BD =16cm ,则

CD =________cm 。

5、 已知:点D 是等边三角形ABC BC 边上任一点,∠EDF=60°

求证:△BDE ∽△CFD

6、 如图,在平行四边形ABCD 中,E 是DC 上的一点,AE 的延长线交BC 于F ,求证:ED AF AE AB ?=?

7、 如图,在直角梯形ABCD 中,AD ‖BC , ∠B=90°,AD=3,BC=6,点P 在AB 上滑动。若△DAP 与△PBC 相似,且

AP=

9

2

求PB 的长。

D

E

A B

C

N

M

G

H

A

B

C

D

E

F

二次函数与相似三角形问题(含答案 完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式... 求得抛物线的解析式为x x 4 1y 2 +-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。 分析:1.当给出四边形的两个顶点时应以两个顶点的连线....... 为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y x E Q P C B O A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、 B 两点,交y 轴于点 C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标; (2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论; (3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式. 练习1、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式.(由一般式... 得抛物线的解析式为2253 33 y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

函数与相似三角形

函数与相似三角形 一、(2013陕西)在平面直角坐标系中,一个二次函数的图像经过A (1,0)B (3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y 轴交与点C ,它的对称轴与x 轴交与点E ,连接AC 、DE 和DB.当△AOC 与△DEB 相似时,求这个二次函数的表达式. [提示:如果一个二次函数的图像与x 轴的交点为A 1(,0)x B 2(,0)x ,那么它的表达式可表示为 12()()y a x x x x =-- .] 二、(2013上海)如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2 (0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0 120AOB ∠=. (1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小; (3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. M A B O x y 图9

三、(2013凉山州)如图,抛物线22y ax ax c =-+(0a ≠)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G 。 (1)求抛物线的解析式; (2)抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长。 (3)在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、 F 为顶点的三角形和AEM △相似?若存在,求出此时m 的值,并直接判断PCM △的形状;若不存在, 请说明理由。 A B C l P M F G D O E x y (第28题图)

相似三角形的性质(经典全面)

一、相似的有关概念 1.相似形 具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性 两个相似图形的对应边成比例,对应角相等. 3.相似比 两个相似图形的对应角相等,对应边成比例. 二、相似三角形的概念 1.相似三角形的定义 对应角相等,对应边成比例的三角形叫做相似三角形. 如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”. A ' B ' C ' C B A 2.相似比 相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”. 三、相似三角形的性质 1.相似三角形的对应角相等 如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,. A ' B ' C ' C B A 2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有 AB BC AC k A B B C A C ==='''''' (k 为相似比) . 相似三角形的性质及判定

A ' B ' C ' C B A 3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比. 如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的 中线,则有AB BC AC AM k A B B C A C A M ==== '''''''' (k 为相似比). M ' M A ' B ' C 'C B A 图1 如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ==== ''''''''(k 为相似比). H 'H A B C C 'B 'A ' 图2 如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的 角平分线,则有AB BC AC AD k A B B C A C A D ==== '''''''' (k 为相似比). D ' D A ' B C 'C B A 图3 4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有 AB BC AC k A B B C A C ==='''''' (k 为相似比) .应用比例的等比性质有AB BC AC AB BC AC k A B B C A C A B B C A C ++===='''''''''''' ++.

最新相似三角形测试题及答案

第27章 相似三角形测试题 一、选择题:(每小题3分共30分) 1、下列命题中正确的是 ( ) ①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④ 2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) A AC AE AB AD = B FB EA CF CE = C BD AD BC DE = D CB CF AB EF = 3、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中 不能使ΔABE 和ΔACD 相似的是 ( ) A. ∠B=∠C B. ∠ADC=∠AEB C. BE=CD ,AB=AC D. AD ∶AC=AE ∶AB 4、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点, 连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对 5、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点, 若∠AEF=90°,则一定有 ( ) A ΔADE ∽ΔAEF B ΔECF ∽ΔAEF C ΔADE ∽ΔECF D ΔAEF ∽ΔABF 6、如图1,ADE ?∽ABC ?,若4,2==BD AD , 则ADE ?与ABC ?的相似比是( ) A .1:2 B .1:3 C .2:3 D .3:2 7、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( ) A .19 B .17 C .24 D .21 8、在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 9、在相同时刻,物高与影长成正比。如果高为1.5米的标杆影长为2.5米,那么影长为30

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

三角函数和相似三角形综合题

三角函数和相似三角形综合题 1、(2017?哈尔滨)在Rt △ABC 中,∠C=90°,AB=4,AC=1,则cosB 的值为( ) A .14 D 2、(2017?金华)在Rt △ABC 中,∠C=90°,AB=5,BC=3,则tanA 的值是( ) A .34 B.43 C.35 D.45 3、(2017?聊城)在Rt △ABC 中,cosA=12 ,那么sinA 的值是( ) A .2 B .2 C .3 D .12 4、(2017?安顺)如图,⊙O 的直径AB=4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC=5,则AD 的长为( ) A .65 B .85 C .5 D .5 5、(2017?滨州)如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( ) A . B . C . D . 6、(2017?白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之 一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

7、(2017?淮安)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km, ,) 8、(2017?常德)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参 考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414) 9(2017?张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

相似三角形的性质提高题及答案.docx

相似三角形的性质 知识精要 相似三角形对应边的比称为这两个三角形的相似比,形似比用字母k表示。 AR RC CA 如厶ABa△ A'R'C',贝U =C=C =k,注意:相似比具有方向性,若写 A' B' B'C' C'A' 1 作厶ABC' ABC则相似比为丄。 k 根据合比容易得到“相似三角形的周长比等于相似比”,记厶ABC^n△ A'B'C' 的周长分别为C ABC 和 C A'B'C',则C ABC : CA B C ' ^k. 类型一相似比与周长比 在有关相似三角形的计算问题中,通过对应边的比例式建立方程式常用的方 法。 例题精解 例1如图,已知等边三角形ABC的边长为6,过重心G作DE//BC,分别交AB,AC 于点D,E.点P在BC上,若△ BDP与厶CEP相似,求BP的长。 解T f;的丑心,BE // ↑?t?Λ n M L An r T . AH - 61Λ HD2.同理CE= 2# T ZB = ZC.A翌便ZXBDP 似,杠曲种情况主 (i) 设BP =工,则?= 9Jr i一6工+ 4 =广;* BP CE X 2 工=:3 ±岳* — = V BD K CE.A BP = PC = 3. IiP PC ΛBp = 3 +√5或3—岳或3时,△月DF与ACEP相亂 点评:这是一类常见的有关三角形相似的分类讨论的问题。图中只能确定一组相等的角(∠ B=∠ C)为对应角,但“这个角的两组夹边对应成比例”的比例式排列顺序还不能完全确定,因此要分为两种情况进行讨论。 【举一反三】

1、如图,△ ABC中,CD是角平分线,E在AC上,CD=CB- CE. (1)求证:△ ADE^△ ACD (2)如果AD=6 AE=4 DE=5 求BC的长。 点评:先根据判定定理2得到△ BCD^△ DCE再根据判定定理1得到△ ADE^△ ACD这种类似于“二次全等”的“二次相似”是证明相似三角形常用的方法。 2、如图,△ ABC中,DE//BE,分别交AB于D,交AC于E O 已知AB=7 BC=8 AC=5 且厶ADE与四边形BCED勺周长相等,求DE的长。 CE ?Ci) …Cl) △MD S ^DC E. -BI)C = ZDECr J dADC= ZAED. T = ZA, Λ ZXADEsZVtCD A ∏ ? F ':ΔΛ∕JEG□ΔACD tΛ —=— AC AD /A I)= 6*AE K 44DE= 5t Λ(' == 9, CE = 9 - 4 = 5, DC = M : DE ΛE AD DE DC 1 5 ~ CD Z =---------- - ≡? 7 CDJ-Cβ?cEtABC-?-≡(τ) 1 45 x I = T Ii

相似三角形试卷及答案

相似三角形单元测试卷 一、选择题(每题3分,共24分) 1. 如图,在△ABC 中,DE ∥BC ,若 1 3 AD AB =,DE =4,则BC =( ) A .9 B .10 C . 11 D .12 2.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( ) A .一根火柴的长度 B .一支钢笔的长度 C .一支铅笔的长度 D .一根筷子的长度 4. 如图,用放大镜将图形放大,应该属于( ) A.相似变换 B.平移变换 C.对称变换 D.旋转变换 6. 如图,已知21∠=∠,那么添加下列一个条件后,仍无法.. 判定ABC △∽ADE △的是( ) A .AE AC AD AB = B .DE BC AD AB = C . D B ∠=∠ D .AED C ∠=∠ 7. 如图,已知 ABCD Y 中,45 DBC =o ∠,DE BC ⊥于E ,BF CD ⊥于F , DE BF ,相交于H ,BF AD ,的延长线相交于G ,下面结论: ①2DB BE = ②A BHE =∠∠③AB BH =④BHD BDG △∽△ 其中正确的结论是( ) A .①②③④ B .①②③ C .①②④ D .②③④ 8. 如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD =12 m ,塔影长DE =18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平 地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20 m D .18 m 二、填空题(每题4分,共40分) 11.如图所示,在四边形ABCD 中,AD BC ∥,如果要使ABC DCA △∽△,那么还要补充的一个条件是 (只要求写出一个条件即可). 12. 如图,已知DE BC ∥,5AD =,3DB =,9.9BC =,则ADE ABC S S =△△ . 14.如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F . 在不添加辅助线的情况下,请写出图中一对相似三角形: . 15. 如图是一盏圆锥形灯罩AOB ,两母线的夹角90AOB ∠=?, 若灯炮O 离地面的高OO 1是2米时,则光束照射到地面的面积是 米2. C B A E 1 2 D M C A N A B C D E F H G A D C B A B C D E A B O O

相似三角形证明技巧_专题

相似三角形解题方法、技巧、步骤、辅助线解析 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件: ①;②;③. 三、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角两角对应相等,两三角形相似 找夹边对应成比例两边对应成比例且夹角相等,两三角形相似 找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似 找另一角两角对应相等,两三角形相似 找两边对应成比例判定定理1或判定定理4 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3 e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3 五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不 同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC中,CE⊥AB,BF⊥AC. b)己知两边对应成比 c)己知一个直 角 d)有等腰关 a)已知一对等

相似三角形的性质与判定练习题 含答案

相似三角形的性质与判定 副标题 题号一二总分 得分 一、选择题(本大题共7小题,共分) 1.如图,在中,点P在边AB上,则在下列四个条件中::; ;;,能满足与相似的条件是 A. B. C. D. 【答案】D 【解析】【分析】 本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对 进行判断. 【解答】 解:当,, 所以∽; 当,, 所以∽; 当, 即AC::AC, 所以∽; 当,即PC::AB, 而, 所以不能判断和相似. 故选D. 2.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到 折痕AE,那么BE的长度为 A. B. C. D. 【答案】C 【解析】【分析】 根据对称性可知:,,又,所以 ∽,根据相似的性质可得出:,,在 中,由勾股定理可求得AC的值,,,将这些值代入该式求出BE的值.【解答】

解:设BE的长为x,则、 在中, , ∽两对对应角相等的两三角形相似 ,, , 故选:C. 3.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测 得一根长为1m的竹竿的影长是,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上如图,他先测得留在墙壁上的影高为,又测得地面的影长为,请你帮她算一下,树高是 A. B. C. D. 【答案】C 【解析】 解:如图,设BD是BC在地面的影子,树高为x, 根据竹竿的高与其影子的比值和树高与其影子的比值相同得而, , 树在地面的实际影子长是, 再竹竿的高与其影子的比值和树高与其影子的比值相同得, , 树高是. 故选C. 此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高. 解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同. 4.如图,是在以点O为位似中心经过位似变换得到的,若 的面积与的面积比是16:9,则OA:为( ) A. 4:3 B. 3:4 C. 9:16 D. 16:9 【答案】A 【解析】【分析】 本题考查了位似变换、位似图形和相似三角形的性质的知识点,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可 【解答】

初中数学相似三角形练习题附参考答案

经典练习题相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD 的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC.

求证:△ABC∽△FDE. 4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=_________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论.

8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的 (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似若存在,求t的值;若不存在,请说明理由. 9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 模型一:反A 型: 如图,已知△ABC ,∠ADE =∠C ,若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) 试一试写出具体证明过程 模型二:反X 型: 如图,已知角∠BAO =∠CDO ,若连AD ,BC ,进而能证明△AOD ∽△BOC . 试一试写出具体证明过程 应用练习: 1. 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB 相似三角形6大证明技巧 相似三角形证明方法之反A 型与反X 型 O F E C B A E D C B A O D C B A

2.已知在 △ABC 中 ,∠ABC =90°,AB =3,BC =4. 点 Q 是线段 AC 上的一个动点 , 过点 Q 作 AC 的垂线交线段 AB ( 如图 1) 或线段 AB 的延长线 ( 如图 2) 于点 P . (1)当点 P 在线段 AB 上时 , 求证: △APQ ∽ △ABC ; (2)当 △PQB 为等腰三角形时,求 AP 的长。 模型三:射影定理 如图已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,,2 H C H AH B =?,试一试写出具体证明过程 模型四:类射影 如图,已知2AB AC AD =?,求证:BD AB BC AC =,试一试写出具体证明过程 相似三角形证明方法之射影定理与类射影 C A B H A B C D

相似三角形和三角函数

1. 相似三角形的判定定理: 推论一一直角三角形相似: (1) 直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 2. 性质定理: (1) 对应角相等。 (2) 对应边成比例。 (3) 对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4) 周长比等于相似比。 (5) 面积比等于相似比的平方。 3. 相似三角形的传递性 如果△ABC S ^I B I C I ,M I B I C I s 公2B 2C 2,那么△ ABC "A 2B 2C 2 精选文档 相似三角形考点 4、 比例的性质 a c (1) 比例的基本性质: =— b d a c a b (2) 合比性质: =- b d b (3) 等比性质:a =- = L =m b d n ad 二be (bd H 0) e d d a e L m a 八 b d L (b d L n u) n b

精选文档 如果两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形 叫做位似图形,这个点叫做位似中心。对应边的比叫做位似比,位似比等于相似比。 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边 c 的平方。 a 2 b 2 c 2 2、如下图,在 Rt △ AB (中,/ C 为直角,则/ A 的锐角三角函数为(ZA 可换成/B ): 3、特殊角的三角函数值(重要) 三角函数 30 ° 45 ° 60 ° \ 疋 义 表达式 正 弦 sin A - A 的对边 斜边 a sin A — c 余 弦 cosA - A 的邻边 斜边 .b cos A - c 正 切 tan A - A 的对边 A 的邻边 tan A — b

北师大版数学九上3.7《相似三角形的性质》word教案2

4.7 相似三角形的性质(二) ●教学目标 (一)教学知识点 1.相似三角形的周长比,面积比与相似比的关系. 2.相似三角形的周长比,面积比在实际中的应用. (二)能力训练要求 1.经历探索相似三角形的性质的过程,培养学生的探索能力. 2.利用相似三角形的性质解决实际问题训练学生的运用能力. (三)情感与价值观要求 1.学生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处. 2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识. ●教学重点 1.相似三角形的周长比、面积比与相似比关系的推导. 2.运用相似三角形的比例关系解决实际问题. ●教学难点 相似三角形周长比、面积比与相似比的关系的推导及运用. ●教学方法 引导启发式 通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的. ●教具准备 投影片两张 第一张:(记作§4.7.2 A) 第二张:(记作§4.7.2 B) ●教学过程 Ⅰ.创设问题情境,引入新课 [师](拿大小不同的两个等腰直角三角形三角板).我手中拿着两名同学的两个大小不同的三角板.请同学们观察其形状,并请两位同学来量一量它们的边长分别是多少.然后告诉大家数据. (让学生把数据写在黑板上) [师]同学们通过观察和计算来回答下列问题. 1.两三角形是否相似. 2.两三角形的周长比和面积比分别是多少?它们与相似比的关系如何?与同伴交流. [生]因为两三角形都是等腰直角三角形,其对应角分别相等,所以它们是相似三角形. 周长比与相似比相等,而面积比与相似比却不相等. [师]能不能找到面积比与相似比的量化关系呢? [生]面积比与相似比的平方相等. [师]老师为你的重大发现感到骄傲.但这是特殊三角形,对一般三角形、多边形,我们发现的结论成立吗?这正是我们本节课要解决的问题. Ⅱ.新课讲解 1.做一做

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

相似三角形典型模型及例题 (1)

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (平行)(不平行)(二)8字型、反8字型 B C B C(蝴蝶型) (平行)(不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: (五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: 二:相似三角形判定的变化模型 一线三等角的变形

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。求证:(1)△AME ∽△NMD; (2)ND 2 =NC·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB·DF=AE·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. (2)双垂型 D E A C D E B

相关文档
相关文档 最新文档