文档库 最新最全的文档下载
当前位置:文档库 › 《缺氧》全材料作用及属性介绍

《缺氧》全材料作用及属性介绍

《缺氧》全材料作用及属性介绍
《缺氧》全材料作用及属性介绍

《缺氧》全材料作?及属性介绍

《缺氧》游戏中玩家开采出的固体材料种类繁多,其?途是什么,相信很多新?玩家还不了解,今天?编带来“为??加油?励”分享的《缺氧》全材料作?及属性介绍,希望能帮到?家。

逗游?——中国2亿游戏?户?致选择的”?站式“游戏服务平台

轴的常用的材料的及性能

轴常用材料及主要力学性能 转轴:支承传动机件又传递转矩,既同时承受弯矩和扭矩的作用。 心轴:只支承旋转机件而不传递转矩,既承受弯矩作用。 (转动心轴:工作时转动;固定心轴:工作时轴不转动); 传动轴:主要传递转矩,既主要承受扭矩,不承受或承受较小的弯矩。 花键轴、空心轴:为保持尺寸稳定性和减少热处理变形可选用铬钢; 轴常用材料是优质碳素结构钢,如35、45和50,其中45号钢最为常用。不太重要及受载较小的轴可用Q235、Q275等普通碳素结构钢;受力较大,轴尺寸受限制,可用合金结构钢。受载荷大的轴一般用调质钢。 调质钢调质处理后得到的是索氏体组织,它比正火或退火所得到的铁素体混合组织,具有更好的综合力学性能,有更高的强度,较高的冲击韧度,较低的脆性转变温度和较高的疲劳强度。 调质钢:35、45、40Cr、45Mn2、40MnB、35CrMo、30CrMnSi、40CrNiMo; 大截面非常重要的轴可选用铬镍钢;高温或腐蚀条件下工作的轴可选用耐热钢或不锈钢;在一般工作温度下,合金结构钢的弹性模量与碳素结构钢相近,为了提高轴的刚度而选用合金结构钢是不合适的。 轴的强度计算 轴的强度计算一般可分为三种: 1:按扭转强度或刚度计算; 2:按弯扭合成强度计算; 3:精确强度校核计算 1:按扭转强度或刚度计算

注:当截面上有键槽时,应将求得的轴径增大,其增大值见表6-1-22。 注:1.表中¢ P 值为每米轴长允许的扭转角; 2.许用扭转角的选用,应按实际而定。参考的范围如下:要求精密,稳定的传动, 取¢ P =~ (°)/m 一般传动,取¢ P =0. 5~1 (°)/m;要求不高的传动,可取¢ P 大于1 (°)/m; 起重机传动轴¢ P =15′~20′/m; 注:1. 表中τP值是考虑了弯曲影响而降低了的许用扭转剪应力。 2. 在下列情况下τP取较大值、A取较小值:弯矩较小或只受扭矩作用、载荷 较平稳、无轴向载荷或只有较小的轴向载荷、减速器的低速轴、轴单向旋转。反之,τP取较小值,A取较大值。

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

常用塑胶材料特性大全

常用塑胶材料的特性及使用范围 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本 ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子模具设计 1.排气

为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。 圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 二、聚乙烯(PE) 优点: 1、柔软、无毒、透明易染色. 2、耐冲击、耐药品,绝缘性佳。 缺点: 1、不易押出、不易贴合 2、热膨胀系数高 4、耐温性差 用途: HDPE主要用于具有一定硬度和韧性的场合,如水管、燃气管,工业用化学容器、重包装袋和购物袋、洗发水瓶等。 LDP E绝缘体、胶管、胶布、胶膜、农用薄膜 最小壁厚0.5mm(LDPE),0.9mm(HDPE)(0.5-7.6mm一般1.6mm) 收缩率:HDPE 1.5%-3.5%取2% LDPE 1.5%-3%取1.5% 三、聚丙烯(PP) 优点: 1.半透明、刚硬有韧性.抗弯强度高,抗疲劳、抗应力开裂 2.质轻,无毒、无味,耐高温、绝缘性佳。(0.9G/cm3) 缺点 1、在0℃以下易变脆,不易接合;

滚动轴承材料

随着科技的发展,滚动轴承在日常生活中被广泛的使用,应用于像小型汽车前轮后轮、耕耘机、拖拉机等机械,但大多人对它并不是很了解。不论它用于哪方面,其制作材料都是非常重要的,可以说,材料是其质量和工作性能的保证。接下来,我想大家介绍下滚动轴承的一些材料。 根据国家标准及轴承使用要求,目前用于轴承套圈和滚动体的材料有高碳铬轴承钢、渗碳轴承钢等,这些材料按各自不同的特点而被用于不同的场合。并不是说用价值高的渗碳钢材料做出的轴承一定比轴承钢轴承更加适合。 一、高碳铬轴承钢也叫全淬透性钢内外硬度一致,应用于普通的场合,其用量最大,约占材料总用量的80%以上。

1.GCr15 特点及用途:用于普通场合,用量最大,适用于马氏体和贝氏体淬火。 技术特性:有效壁厚在26mm以下,特轻窄系列在16mm以下,淬回火硬度HRC57~62。 2.GCr15SiMn 特点及用途:普通场合使用、用于大型轴承,仅适于马氏体淬火。 技术特性:有效壁厚在26mm以上,特轻窄系列在16mm以上,淬回火硬度HRC57~62。 3.GCr18Mo 特点及用途:贝氏体专用钢、耐磨场合使用,仅适于贝氏体淬火。

技术特性:有效壁厚在26~48mm之间,特轻窄系列在16mm 以下,淬回火硬度HRC57~62。下贝氏体耐磨性比马氏体更好因此适用耐磨场合。 二、渗碳轴承钢也叫半淬透性钢内软外硬,材料性能上有一定“弹性”用于耐冲击场合,需经渗碳淬火,工艺较复杂。 G20Cr2Ni4A 特点及用途:用于耐冲击场合、中大型轴承,可深层渗碳。 技术特性:有效渗碳层深可大于2.5mm,表面淬回火硬度HRC58~63。 上海一佳机械有限公司是一家代理世界知名品牌轴承和高性能联轴器的有限责任公司,拥有旺盛的人气和需求量。公司创业至今已近二十年。在这二十年中,公司本着”信凿第一、客户至上”的经营原则,始终将服务质量为前提,把客户需求放在第一位,建立了完善的质量管理体系,2001年正式通过ISO9000(2000版)的国际质量体系认证。在全体员工的共同努力下,我们的客户遍及全国各省、市、自治区,涉及石化、冶金、机械、电子等多个行业,销售业绩逐年递增,获得所在地区的年度纳税责献奖。并自2001年起我司相维加入了中国中石化,中海油,中石油资源市场,成为其合格的优秀供应商为其提供优质的产品,以及提供成熟完善的KOP-FLEX高性能联抽器及扭矩仪的售后检测维修保养服务。

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

《暴君》人物属性介绍

《暴君》人物属性介绍 《暴君》人物属性有什么?有什么影响?这里给大家带来了《暴君》人物属性介绍,一起了解下吧。 人物属性 1. 力量(Strength):决定你角色的物理强度。让你的物理攻击和物理技能的强度更高。同时增加角色的耐力抗性(Endurance)。 基础为10点的时候:+0% Attack and Ability Strength, +0 Endurance Defense 2. 灵巧(Finesse): 同时提升角色的物理和魔法命中率,并且可以让你身上穿的盔甲有更高的几率可以使敌人的命中降级, 这种机制叫做盔甲偏转(Armor Defection) 这里需要解释下:游戏中,命中对方的时候会出现4种情况: 暴击,命中,擦过,失误。 那么,灵巧在这里的作用就是:增加灵巧后,你身上穿的盔甲可以有更高几率使敌人的这4种命中结果分别降低一个等级。比如,你穿着盔甲的时候,可以让敌人本来对你造成的暴击变为 命中,命中变为擦过,擦过变为失误。这些都可以让你受到更少的伤害。变相提高了生存率。 - 暴击的时候攻击多50%,擦过的时候攻击少50%,失误就是没打中,浪费了这次攻击。 - 暴击和擦过除了增加和减少伤害,还会影响增益和减益法术的时间,还有治疗法术的治疗量也会受到影响。 基础为10点的时候: +0 Accuracy, +0% Armor Deflection 1. 迅速(Quickness): 它决定了你的角色在战斗中使用战斗技能和魔法时的CD。所以更高的迅速可以让你在战斗中更频繁的使用魔法和战斗技能。 基础为10点的时候: +0% Ability and Spell Cooldown 2. 体力:(Vitality): 它决定了你角色生命值的多少,同时提升你角色的意志(will)防御力。 基础为10点的时候: +0% Bonus Health, +0 Will Defense. 3. 智慧(Wits):决定一个角色观察周围环境和发现线索的能力。同时,增加智慧可以用来增加法术的强度和魔法防御(Magic) 注:魔法防御(Magic)和耐力防御和意志防御这些一样,都是防御属性。比如某个法术是对抗魔法的,你要想防御它,魔法防御(Magic)数值就必须要高才行。 基础为10点的时候: +0% Spell Strength,+0 Magic Defense 4. 决断(Resolve): 决断是你角色获得耐力防御(Endurance)魔法防御(Magic)意志防御(will)的重要途径。同时会影响Affliction(这个不知道咋翻译。。)的持续时间。

常用塑胶材料特性大全世界通用版

常用塑胶材料特性 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子

器材零组件、汽车头灯框、尾灯外罩、食物餐盘 ABS/SMA 增加耐热性、流动性、涂装性佳 主要用于电子零组件、罩子、家电器材零组件 模具设计 1.排气 为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 具体公司和型号: 日本油墨化学工业公司 ABS\MBS TI-500A 透明级价格较高,主要用于要求流动性好、小而透明、性能和ABS一样的零件台达化学工业股份有限公司 ABS 8540T 阻燃级,耐冲击强度、射出成型用、高流动性、难燃性可达UL94 1/16“V-0 主要用于商用机器、信息产品、肉薄或形状复杂产品。 余姚四塑阻燃塑料厂

常用光学塑料性能

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5%

常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响

日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定

轴承分类和用途

轴承 1.轴承的分类 深沟球轴承 最具代表性的滚动轴承,用途广泛 可承受径向负荷与双向轴向负荷 适用于高速旋转及要求低噪声、低振动的场合 带钢板防尘盖或橡胶密封圈的密封型轴承内预先充填了适量的润滑脂 外圈带止动环或凸缘的轴承,即容易轴向定位,又便于外壳内的安装 最大负荷型轴承的尺寸与标准轴承相同,但内、外圈有一处装填槽,增加了装球数,提高了额定负荷 主要适用的保持架:钢板冲压保持架(波形、冠形…单列;S形…双列) 铜合金或酚醛树脂切制保持架、合成树脂成形保持架 主要用途:汽车:后轮、变速器、电气装置部件 电气:通用电动机、家用电器 其他:仪表、内燃机、建筑机械、铁路车辆、装卸搬运机械、农业机械、各种产业机械 角接触球轴承 套圈与球之间有接触角,标准的接触角为15°、30°和40° 接触角越大轴向负荷能力也越大 接触角越小则越有利于高速旋转 单列轴承可承受径向负荷与单向轴向负荷 DB组合、DF组合及双列轴承可承受径向负荷与双向轴向负荷 DT组合适用单向轴向负荷较大,单个轴承的额定负荷不足的场合 高速用ACH型轴承球径小、球数多,大多用于机床主轴 角接触球轴承适用于高速及高精度旋转 结构上为背面组合的两个单列角接触球轴承共用内圈与外圈,可承受径向负荷与双向轴向负荷 无装填槽轴承也有密封型 主要适用的保持架:钢板冲压保持架(碗形…单列;S形、冠形…双列) 铜合金或酚醛树脂切制保持架、合成树脂成形保持架

主要用途:单列:机床主轴、高频马达、燃汽轮机、离心分离机、小型汽车前轮、差速器小齿轮轴 双列:油泵、罗茨鼓风机、空气压缩机、各类变速器、燃料喷射泵、印刷机械 四点接触球轴承 可承受径向负荷与双向轴向负荷 单个轴承可代替正面组合或背面组合的角接触球轴承 适用于承受纯轴向负荷或轴向负荷成份较大的合成负荷 该类轴承承受任何方向的轴向负荷时都能形成其中的一个接触角(α),因此套圈与球总在任一接触线上的两面三刀点接触 主要适用的保持架:铜合金切制保持架 主要用途:飞机喷气式发动机、燃汽轮机 调心球轴承 由于外圈滚道面呈球面,具有调心性能,因此可自动调整因轴或外壳的挠曲或不同心引起的轴心不正 圆锥孔轴承通过使用紧固件可方便地安装在轴上 钢板冲压保持架:菊形…12、13、22…2RS、23…2RS 葵形…22、23 木工机械、纺织机械传动轴、立式带座调心轴承 圆柱滚子轴承 圆柱滚子与滚道呈线接触,径向负荷能力大,即适用于承受重负荷与冲击负荷,也适用于高速旋转 N型及NU型可轴向移动,能适应因热膨胀或安装误差引起的轴与外壳相对位置的变化,最适应用作自由端轴承NJ 型及NF型可承受一定程度的单向轴向负荷,NH型及NUP型可承受一定程度的双向轴向负荷内圈或外圈可分离,便于装拆NNU型及NN型抗径向负荷的刚性强,大多用于机床主轴 主要适用的保持架:钢板冲压保持架(Z形)、铜合金切制保持架、销式保持架、合成树脂成形保持架 主要用途:中型及大型电动机、发电机、内燃机、燃汽轮机、机床主轴、减速装置、装卸搬运机械、各类产业机械 实体型滚针轴承

《无主之地》给新手的基本属性说明

《无主之地》给新手的基本属性说明都说是给新手了XD 老手别嫌弃 以下普通属性说明原摘自newboss 1 +xx% Melee Damage +xx% 近战伤害 2 +xx% Damage +xx% 伤害 3 +xx% Burse Fire Count +xx% 扣一次扳机会连续快速射出相应次数的子弹比如500%就是5次 4 +xx% Accuracy +xx% 精准度 5 +xx% Fire Rate +xx% 射速 6 +xxX Weapon Zoom +xxX 放大倍数 7 +xx% Recoil Reduction +xx% 减少后座力 8 +xx% Reload Speed +xx% 换弹速度 9 +xx Ammo Regeneration +xx 恢复弹药 10 +xx Magazine Size +xx 弹夹容量 11 +xx% Critical Hit Damage +xx% 临界攻击伤害 12 +xx% Lethal Strikes Damage +xx% 致命打击伤害 13 +xx% Killer Shot Damage +xx% 杀手射击伤害 14 +xx% Elemental Damage +xx% 元素伤害

15 +xx% Fire Damage +xx% 燃烧伤害 16 +xx% Shock Damage +xx% 电击伤害 17 +xx% Corrosive Damage +xx% 腐蚀伤害 18 +xx% Explosive Damage +xx% 爆炸伤害 19 +xx ?? Skill +xx ??技能等级(??代表角色技能名) 20 +xx Projectiles Fired +xx 一次多射出XX颗子弹

复合材料高性能聚氨酯

高性能聚氨酯/玻纤复合材料 (GRPU) 刘锦春 青岛科技大学高分子科学与工程学院 Liujinchun2001@https://www.wendangku.net/doc/0a3297291.html,

1、聚氨酯/玻纤复合材料简介 近年来,聚氨酯树脂以其韧性好、固化快、无苯乙烯烟雾等优点使其复合材料脱颖而出。随着人们对聚氨酯成型技术的掌握和在控制其反应性以延长其适用期方面的进步,聚氨酯已进入长期由不饱和聚酯和乙烯基酯树脂主宰的复合材料领域。在过去,聚氨酯复合材料主要是用结构反应注射法(SRIM)成型的汽车内饰件和外部件,如皮卡车箱、车底板、行李架、内门板等(聚氨酯经过发泡)。然而在近几年中,聚氨酯复合材料发展了拉挤、缠绕、真空灌注和长纤维喷射等技术,主要用不发泡的聚氨酯复合材料来制造窗框、浴缸、电灯杆和卡车、越野车的大型部件等。聚氨酯拉挤聚氨酯拉挤一般具有低粘度、中度至高度反应性、良好的冲击强度和韧性以及短梁剪切性能。与其他材料相比,用聚氨酯拉挤可产生多种效益。它可以提高制品中玻璃纤维含量而使制品强度大大提高。例如,用玻璃纤维与聚氨酯树脂拉挤窗框,所得窗框的强度比PVC窗框高8倍,其导电性比铝低40倍,因而绝缘性能好得多。同时,因为聚氨酯拉挤窗框的脆性更小,它们不会开裂而经久耐用。 高性能聚氨酯/玻璃纤维复合材料是一种以高硬度聚氨酯弹性体为基体材料,玻璃行为为增强材料,采用连续拉挤工艺生产的一种具有高强度、高模量、轻质高分子复合材料。 聚氨酯拉挤技术的产品不仅比传统材料具有更高的强度、更好的隔热保温效果,而且更轻质环保。其应用领域十分宽广,从最初的华丽浴缸,到冲浪和滑雪板,再到今天的窗框、集装箱地板等创新应用,聚氨酯复合材料已融入了我们日常生活的方方面面。 据报道,在过去的几年中,中国对于复合材料的需求已呈现逐步增长的态势。复合材料是一种高科技材料,是将几种材料的特性整合成为一种具有卓越新性能的全方位解决方案。正是因为材料的独特性能,比如轻质、高强度和刚性、以及能够帮助实现更高的成本效率和生态责任,所以聚氨酯复合材料已备受各行业的关注。尤其是在建筑和运输行业,创新的技术与应用,更是备受瞩目。 2、聚氨酯/玻纤复合材料性能特点 经过数年开发,国外聚氨酯拉挤成型已实现商业化。在聚氨酯拉挤过程中,可以使用更多的增强纤维,使制品强度大大增高。同时,由于聚氨酯本身优异的

金属材料的力学性能

第1章工程材料 1.1 金属材料的力学性能 金属材料的性能包括使用性能和工艺性能。使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。 金属材料的力学性能是指金属材料在载荷作用时所表现的性能。 1.1.1 强度 金属材料的强度、塑性一般可以通过金属拉伸试验来测定。 1.拉伸试样 图1.1.1拉伸试样与拉伸曲线 2.拉伸曲线 拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力 F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。当载荷不超过 p 成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。 3.强度 强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。

(1) 弹性极限 金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示: (2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度 在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料 承受的应力称为“条件屈服强度”,并以符号 σ0.2 表示。 1.1.2 塑性 金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。常用的塑性指标有伸长率δ 和断面收缩率ψ。 1.伸长率 试样拉断后,标距长度的增加量与原标距长度的百分比称为伸长率,用δ表示: 2.断面收缩率 试样拉断后,标距横截面积的缩减量与原横截面积的百分比称为断面收缩率,,用ψ表示: 1.1.3 硬度

《凤舞天骄》各项属性说明

《凤舞天骄》各项属性说明 属性说明技能攻击+X 使用该技能时,会附加额外的攻击力伤害+X% 使用该技 能时,会把最终伤害额外增加X%生命恢复+X 每一秒钟,恢复X点生命精气恢 复+X 每一秒钟,恢复X点精气每秒造成伤害-X 每秒钟减少生命X,这个属性 不受伤害减少,防御,以精气抵消伤害等属性的影响移动速度-X% 移动速度减 少的百分比移动速度+X% 移动速度增加的百分比攻击+X 同技能攻击+X解除异 常状态解除所有可以驱散的减益状态,大部分技能和装备附加的减益状态都可以被驱散忽视敌人闪避这一招一定会打中耗费生命X% 每次使用带有该属性的 招式,都会扣除自己生命上限的6%吸取生命+X 每次使用带有该属性的招式并 命中对手,自己的当前生命都会+X冰冻攻击几率+X% 附带该状态时,每一次冰 冻攻击都有X%的几率使敌人冰冻战斗中闪避+X 附带该状态时,自己的闪避 (不是闪避率)增加X攻击-X 附带该状态时,攻击力减少X攻击速度-X% 玩家的攻击速度减少X%命中-X% 附带该状态时,命中率减少X%攻击速度+X% 玩家的攻击速度增加X%闪避-X% 附带该状态时,闪避率减少X%防御+X 附带该状态时,防御力增加X战斗中命中+X 附带该状态时,自己的命中(不是命中率)增加X 反弹伤害+X 附带该状态时,每次被命中都会对攻击者反弹X点伤害,会被金系防御减少生命+X 当前生命直接增加X,但不会大于生命值上限精气+X 当前精 气直接增加X,但不会大于精气值上限精气+X% 当前精气增加精气上限的X%, 但不会大于精气上限精气吸收伤害+X% 当前伤害的X%由精气按1:1的比例抵 消无视防御率+X% 每次攻击有X%的几率不计算对方的防御防御-X 附带该状态时,防御力减少X金系状态反弹几率+X% 每次被击中时都有X%的几率反弹金系 状态生命恢复速度+X% 生命恢复速度增加X%,这个百分比是基于生命恢复速度的,也就是说原来生命恢复速度为1点/秒,X=100时生命恢复速度变为2点/ 秒持续增加精气+4% 附带该状态时每秒钟增加精气值上限的4%命中时加生命+X 附带该状态时,每次被命中攻击者生命都会增加X水系状态反弹几率+X% 附带 该状态时,每次被命中时都有X%的几率反弹水系状态目标承受伤害+X% 附带该 状态时,每次被命中所承受的伤害都会额外增加X%火系攻击反弹几率+X% 附带 该状态时,每次被命中时都有X%的几率反弹火系状态抵抗冲击+X% 抵抗击飞、 浮空、击倒等特殊状态的几率增加X%精气值消耗X 使用该技能时需要消耗X的精气,如果消耗精气固定数值为0,则显示不消耗精气消耗精气X% 使用该技能时需要消耗精气值上限的X%生命+X% 当前生命直接增加上限的X%,但不会大于生命值上限攻击摄取生命+X% 自己当前生命增加造成伤害的X%攻击摄取精气+X% 自己当前精气增加造成伤害的X%反弹伤害效果+X% 将敌人对自己造成伤害的25%反弹回去会心一击率+X% 每次攻击出现会心一击的几率增加X%中毒状态抗性+X% 降低所有木系状态附加几率X%金/木/水/火/土防御+X 增加金/木/水/火/土系 的五行防御,可以减少受到该系五行属性攻击时的伤害对金/木/水/火/土系敌 人攻击+X% 当攻击对象的五行属性为金/木/水/火/土时,伤害增加X%生命上限 +X% 生命上限增加X%沼化状态抗性+X% 降低所有土系状态附加几率X%使用剩余精气X% 使用带有该属性的技能会消耗掉当前精气的X%使用剩余生命X% 使用 带有该属性的技能会消耗掉当前生命的X%金系状态抗性+X% 降低所有金系状态 附加几率X%伤害减少+X% 受到的伤害减少X%失明状态抗性+X% 降低所有火系状态附加几率X%冰冻状态抗性+X% 降低所有水系状态附加几率X%

金属材料力学性能

金属材料力学性能文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σu n , σu ={σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

金属材料力学性能代 含义

金属材料力学性能代号含义 名称代号单位含义 抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力. 抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力 屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 屈服时的最小应力称为屈服点和屈服极限. 屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度. 弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示. 比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限. σp与σc两数值很接近,一般常互相通用. 弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. E=σ/ε ε——试样纵向线应变. 切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. G=τ/γ γ——试样切应变. 泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值. μ=|ε/ε'| ε'= -με, ε'——试样横向线应变.

金属材料力学性能

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 1.1 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般σ,单位为MPa用单位面积所承受的作用力表示,符号为。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形σs表示。抗拉强度是指金属材料在拉力作用时的最低应力值,用σb表示。下,被拉断前所承受的最大应力值,用对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 1.2 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 1.3 硬度

硬度是指材料表面抵抗比它更硬的物体压入的能力。 . . . . 几种常用金属材料力学性能一览表 材料牌b/MPa 抗拉强屈服强s/MPa 550-70045350-550 685-985490-685SKD61 650-970Cr12MoV 450-650 550-860350-5502S45C/S50C560-750350-560 Unimax 580-885 350-580 SKH51 680-960 485-680 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因

常用塑料材料的特性简介

常用塑料材料的特性简介 一、聚乙烯类塑料 聚乙烯是指由乙烯单体自由基聚合而成的聚合物,英文名简称PE。PE的合成原料来自石油,自1965年以来一直高居世界塑料树脂产量第一位。目前,聚乙烯的主要品种有: 低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线性低密度聚乙烯(LLDPE),(超)高分子量聚乙烯(UHMWPE),茂金属聚乙烯(m-PE) 还有其改性品种: 乙烯—乙酸乙烯酯(EVA)氯化聚乙烯(CPE)。 1、聚乙烯类塑料的结构性能 PE为线性聚合物,属于高分子长链脂肪烃;分子对称无极性,分子间作用力小,力学性能不高、电绝缘性好、熔点低、印刷性缓谩 E的结构规整,线性度高,因而易于结晶。结晶度从高到低排序:HDPE,LLDPE,LDPE。随结晶度的提高,PE制品的密度、刚性、硬度和强度等性能提高,但冲击性能下降。 (1)一般性能 PE树脂为无味、无毒的白色粉末或颗粒,外观呈乳白色,有似腊的手感;吸水率低,小于0.01%。PE膜透明,透明度随结晶度提高而下降。PE 膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。PE易燃,氧指数仅为17?4,燃烧时低烟,有少量熔融滴落,火焰上黄下蓝,有石蜡气味。PE的耐水性较好。制品表面无极性,难以粘合和印刷,须经表面处理才可改善。 (2)力学性能 PE的力学性能一般,其拉伸强度较低,抗蠕变性不好,耐冲击性能较好。PE的耐环境应力开裂性不好,但随分子量增大而改善。PE的耐穿刺性好,并以LLDPE最好。 (3)热学性能 PE的耐热性不高,随分子量和结晶度的提高而改善。PE的耐低温性好,脆化温度一般可达-50℃以下;随分子量的增大,最低可达-140℃。PE 的线膨胀系数大,在塑料中属较大者。PE的热导率属塑料中较高者。 (4)电学性能 PE无极性,因此电性能十分优异。介电损耗很低,且随温度和频率变化极小。PE是少数耐电晕性好的塑料品种,介电强度又高,因而可用做高压绝缘材料。 (5)环境性能 PE具有良好的化学稳定性。在常温下可耐酸、碱、盐类水溶液的腐蚀,具体有稀硫酸、稀硝酸、任何浓度的盐酸、氢氟酸、磷酸、甲酸及乙酸等,但不耐强氧化剂如发烟硫酸、、浓硫酸和铬酸等。PE在60℃以下不溶于一般溶剂,但与脂肪烃、芳香烃、卤代烃等长期接触会溶胀或龟裂。温度超过60℃后,可少量溶于甲苯、乙酸戊酯、三氯乙烯、松节油、矿物油及石蜡中;温度超过100℃后,可溶于四氢化萘。 PE耐候性不好,日晒、雨淋都会引起老化,需加入抗氧剂和光稳定剂改善。2、聚乙烯类塑料的应用范围 (1)薄膜类制品 薄膜类制品是PE的最主要用途。LDPE树脂用于膜类制品可占50%以上,可用于食品、日用品、蔬菜、收缩、自粘、垃圾袋等轻质包装膜及农业用地膜、棚膜等。HDPE树脂用于膜类制品可占10%以上。因其薄膜强度高,主要用于重包装膜、撕裂膜及背心

相关文档