文档库 最新最全的文档下载
当前位置:文档库 › 高压开关液压机构可靠性保障关键问题解答

高压开关液压机构可靠性保障关键问题解答

高压开关液压机构可靠性保障关键问题解答
高压开关液压机构可靠性保障关键问题解答

题1:画出产品设计各阶段的可靠性保障工作图

题2:请列出碟簧储能油液操动的主要功能系统,并为其分配相应的可靠性指标。

题3:请尝试进行故障树分析方法用于普通产品的可靠性故障分析

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

液压系统管路设计注意事项样本

液压系统管路设计注意事项 一.液压系统普遍存在的问题 1.可靠性问题( 寿命和稳定性) (1)国产元件质量差, 不稳定; (2)设计水平低, 系统不完善。 2.振动与噪音 (1)系统中存在气体, 没有排净。 (2)吸油管密封不好, 吸进空气。 (3)系统压力高。 (4)管子管卡固定不合理。 (5)选用液压元件规格不合理, 如小流量选用大通径的阀, 产生低频振荡; 系统压力在某一段产生共振。 3.效率问题 液压系统的效率一般较低, 只有80%左右或更低。系统效率低的原因主要由于发热、漏油、回油背压大造成。 4.发热问题 系统发热的原因主要由于节流调速、溢流阀溢流、系统中存在气体、回油背压大引起。 5.漏油问题 (1)元件质量( 包括液压件、密封件、管接头) 不好, 漏油。(2)密封件形式是否合理, 如单向密封、双向密封。 (3)管路的制作是否合理, 管子憋劲。

(4)不正常振动引起管接头松动。 (5)液压元件连接螺钉的刚度不够, 如国内叠加阀漏油。 (6)油路块、管接头加工精度不够, 如密封槽尺寸不正确, 光洁度、形位公差要求不合理, 漏油。 6.维修问题 维修难, 主要原因: (1)设计考虑不周到, 维修空间小, 维修不便。 (2)要求维修工人技术水平高。 液压系统技术含量较高, 要求工人技术水平高, 出现故障, 需要判断准确, 不但减少工作量, 而且节约维修成本, 因为液压系统充满了液压油, 拆卸一次, 必定要流出一些油, 而这些油是不允许再加入系统中使用。另外, 拆卸过程有可能将脏东西带入系统, 埋下事故隐患。因此要求工人提高技术水平, 判断正确非常必要。 7.液压系统的价格问题 液压系统相对机械产品, 元件制造精度高, 因此成本高。二.如何保证液压系统正常使用 液压系统正常工作, 需要满足以下条件: 1.系统干净 系统出现故障, 70%都是由于系统中有脏东西如铁屑、焊渣、铁锈、漆皮等引起。例如, 这类污染物, 如果堵住溢流阀中的小孔( 0.2mm) 就建立不了压力; 如果卡在方向阀阀芯,

经典液压系统分析

8.5 QY20B型汽车起重机液压系统 汽车起重机是将起重机安装在汽车底盘上的一种起重运输设备。它主要由起升、回转、变幅、伸缩和支腿等工作机构组成,这些工作机构动作的完成由液压系统来实现。对于汽车起重机的液压系统,一般要求输出力大,动作要平稳,耐冲击,操作要灵活、方便、可靠、安全。 8.5.1 QY20B型汽车起重机液压系统 QY20B型汽车起重机为动臂式全回转液压汽车起重机,图8.7是它的外观结构示意图。图中1为伸缩吊臂机构,它为三节套箱式结构,伸缩吊臂由安装在其中的伸缩液压缸及钢丝绳实现同步伸缩,用以改变吊臂长度。2为变幅机构,变幅缸的伸缩可实现伸缩吊臂的俯仰。4为起升机构,由斜轴式柱塞马达驱动主、副两个卷扬卷筒,通过钢丝绳和起吊钩使重物升降;主、副卷扬机可以单独作业或同时作业,也可实现自由下放,它们由液压控制的常闭式制动器及常开式离合器来控制。7、5为前后液压支腿,四个液压支腿用于起重作业时承受整车负载,使轮胎不接触地面,而变成刚性支承。6为回转机构,由ZBD40型轴向柱塞马达驱动;回转机构可使伸缩吊臂、操作室3、起升机构4回转360°。 图8.8为QY20B型汽车起重机液压系统原理图。整个液压系统由三联齿轮泵供油,通过控制阀控制支腿收放、吊臂变幅、吊臂伸缩、起升、回转等液压执行机构动作。三联齿轮泵1中的1.1号泵向支腿、回转回路和离合器液压缸供油,1.2号泵向起升回路供油;1.3号泵向变幅回路、伸缩臂回路供油,或与1.2号泵合流,实现快速起升与下降。下面简单介绍各执行机构的工作原理。 图8.7QY20B型汽车起重机外形简图 1—伸缩吊臂;2—吊臂变幅缸;3—;4—起升机构;5—后液压支腿; 6—回转机构;7—前液压支腿;8—载重汽车 1.支腿收放回路 由于汽车轮胎的支承能力有限,在起重作业时必须放下支腿,使车轮架空,形成一个刚性的工作基础平台,汽车行驶时则必须收起支腿。前后各有两条支腿,每一条支腿配有一个水平液压缸和一个垂直液压缸,垂直液压缸配有双向液压锁,以保证支腿可靠地锁住,防止在起重作业过程中发生“软腿”现象(液压缸上腔油路泄漏引起)或行车过程中液压支腿自行下落(液压缸下腔油路泄漏引起)。 支腿控制阀块4由溢流阀4.1、选择阀4.2、水平液压缸换向阀4.3、垂直液压缸换向阀4.4组成。溢流阀4.1控制1.1号泵和支腿液压系统的最大工作压力,其调定压力为16MP a。

液压系统常见故障及排除方法

液压系统常见故障及排除方法 一液压泵常见故障分析和排除方法 故障现象故障分析排除方法 不出油1、电动机转向不对1、检查电动机转向 输油量不足2、吸油管或过滤器堵塞2、疏通管道、清洗过滤器、换新油 压力上不去3、轴向间隙或径向间隙过大3、检查更换有关零件 4、连接泄露,混入空气4、紧固各连接处螺钉,避免泄露,严防 空气混入 5、油粘度太大或油温升太高5、正确选用油液,控制温升 噪音严重1、吸油管及过滤器堵塞或过滤器容量小1、清洗过滤器使过滤器畅通、正确选用 过滤器 压力波动2、吸油管密封处泄露或油液中有气泡2、在连接处或密封处加点油,如果噪音 减小,可拧紧接头处或更换密封圈; 回油管口应在油面以下,和吸油管要 有一定距离 3、泵和联轴节不同心3、调整同心 4、油位低4、加油液 5、油温低或粘度高5、把油液加热到适当温度 6、泵轴承损坏6、检查(用手触感)泵轴承部分温升 温升过高1、液压泵磨损严重,间隙过大泄漏增加1、修磨零件,使其达到合适间隙 2、泵连续吸气,液体在泵内受绝热高压,2、检查泵内进气部位,及时处理 产生高温 3、定子曲面伤痕大3、修整抛光定子曲面 4、主轴密封过紧或轴承单边发热4、修整或更换 内泄漏1、柱塞和缸孔之间磨损1、更换柱塞重新配研 2、油液粘度过低,导致内泄2、更换粘度适当的油液 二、液压缸常见故障分析和排除方法 故障现象故障分析排除方法 爬行1、空气入侵1、增设排气装置,如无排气装置,可开动液压 系统以最大行程使工作部分快速运动,强迫排气 2、不同心2、校正二者同心度 3、缸内腐蚀,拉毛3、轻微者去除毛刺,严重者必须镗磨

冲击1、靠间隙密封的活塞和液1、安规定配活塞和液压缸的间隙,减少泄露压缸之间间隙过大节流阀 失去作用 2、端头的缓冲单向阀失灵,缓冲不起作用2、修正研配单向阀和阀座 推力不足1、液压缸或活塞配合间隙太大或O型密封1、单配活塞和液压缸的间隙或更换O 或工作速度圈损坏造成高低压腔互通型密封圈 逐渐下降2、由于工作时经常用工作行程的某一段2、镗磨修复液压缸孔径,单配活塞 甚至停止,造成液压缸孔径线性不良(局部腰鼓) 至使液压缸高低压油腔互通, 3、缸端油封压得太紧或活塞杆弯曲3、放松油封,以不漏油为限,校直活塞 使摩擦力或阻力增加杆 4、泄露过多4、寻找泄露部位,紧固各结合面 5、油温太高,粘度太小,靠间隙密封或5、分析发热原因,设法散热降温,如密 密封质量差的油缸行速变慢,若液压缸封间隙过大则单配活塞或增设密封环 两端高低压油腔互通,运行速度逐步减 慢或停止 原位移动1、换向阀泄露量大1、更换换向阀 2、差动用单向阀锥阀和阀座线接触不良2、更换单向阀或研磨阀座 3、换向阀机能选型不对3、重新选型,有蓄能器的液压系列一般 常用YX或Y型机型 三、溢流阀的故障分析和排除方法 故障现象故障分析排除方法 压力波动1、弹簧太软或弯曲1、更换弹簧 2、锥阀和阀座接触不良2、如锥阀是新的即卸下调整螺母将导杆推 几下,使其接触良好,或更换锥阀 3、钢球和阀座密配合不良3、检查钢球圆度,更换钢球,研磨阀座 4、滑阀变形或拉毛4、更换或修研滑阀 5、锥阀泄露5、检查,补装 调整无效1、弹簧断裂或漏装1、更换弹簧 2、阻尼孔堵塞2、疏通阻尼孔 3、滑阀卡住3、拆出、检查、修整 4、进出油口反装4、检查油源方向 5、锥阀泄露5、检查、修补 泄露严重1、锥阀或钢球和阀座的接触不良1、锥阀或钢球磨损时更换新的锥阀或钢球 2、滑阀和阀体配合间隙过大2、检查阀芯和阀体的间隙

浅谈工程液压系统的可靠性

浅谈工程液压系统的可靠性 液压传动及控制系统因功率密度大、动态响应快、易于实现直线运动等显著的优点而广泛应用于工程机械、冶金机械、农林机械、起运设备、武器装备等各领域。但是,液压传动系统的漏油、故障率高、维护技术水平要求高等缺点也使得其在实际应用中缺乏竞争力,越来越受到电气传动强有力的挑战,也进一步制约了其拓展更多的应用领域。随着现代化生产对设备可靠性要求的提高,可靠性问题越来越受到重视。现在,许多设备都把可靠性作为一个重要的技术指标来考虑,可靠性已与性能、成本、时间等技术指标同时作为评价系统好坏的主要指标。笔者在长期从事液压传动与控制技术的科学研究、工程实践的基础上,从工程设计和使用方面谈液压传动系统的可靠性问题。 2 可靠性的概念 可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能力。产品的可靠性一般可分为固有可靠性和使用可靠性。产品固有可靠性是产品在设计、制造中赋予的,是产品固有的一种特性,也是产品的设计者可以控制的。而产品使用可靠性则是产品在实际使用过程中表现出的一种性能能力的特性,它除了考虑固有可靠性之外,还要考虑操作使用和维修保障等方面因素的影响。 按照可靠性的相关含义理解,液压传动系统的可靠性应从以下几方面评定。 1)可靠性与使用条件密切相关 使用条件主要包括液压系统使用过程中的环境条件、油液种类、油液温度、工作压力、流量、转速、速度、连续或间断工作等。同样的液压系统在各种使用条件下,其可靠性是不相同的,使用条件愈恶劣,可靠性愈低。 2)可靠性与使用时间密切相关 使用时间是指液压系统工作的期限,用时间或相应的指标表示。例如:液压泵用小时,液压换向阀用换向次数。使用时间根据实际情况可以是长期的,如若干年,也可以是短期的,如几十或数百小时。通常工作时间越长,可靠性降低。 3)可靠性与产品的技术指标有关 产品的主要技术指标包括液压元件的额定工作压力、额定转速、适用介质、介质粘度范围、适用温度范围、运动速度等指标。 液压传动系统具有理论与实际结合、工程性、实践性强的突出特点。在工程应用中,提高液压传动系统的可靠性,主要有可靠性设计、维修可靠性和可靠性管理3方面的问题需要解决。 3 可靠性设计 液压系统进行可靠性设计,主要是为了在设计阶段充分挖掘、分析和确定系统的薄弱环节和隐患,在设计上采取措施,提高液压系统的可靠性。 1)元件选型和降额设计 液压元件的可靠性是液压传动系统可靠性的基础,元件可靠性包括固有可靠性和使用可靠性。元件的固有可靠性是由元件的设计和制造来保证,与制造厂关系较大,在选型时应充分考虑品牌、制造厂的实力和信誉。设计时元件的选型主要根据应用对象要求,充分考虑性价比来确定。元件的使用可靠性与系统使用过程中的工作参数等使用条件密切相关。为了提高元件的使用可靠性,一般采用降额设计方法,即系统设计所确定的使用工作压力比元件的额定压力低,这样能提高元件的可靠度、延长使用寿命。通常,系统工作压力为元件额定压力的80%合适,降额过多,会造成成本和重量增加。 2)冗余设计 在高可靠性的应用场合,为应对突发故障,保证系统连续正常工作,一般采用冗余设计。液压系统常见的冗余是采用硬件冗余,例如,应用于冶金轧钢机械的液压系统,一般液压泵站都有冗余液压泵作为备用液压泵,当正常工作的液压泵发生故障时,备用泵及时投入工作,保证系统正常连续工作。 3)模块化、集成化设计 根据液压系统各部分功能特点,相对集中地采用模块化、集成化设计,每个功能模块的元件采用无管连接,提高系统的可靠性。而各个功能模块之间的连接,则力求结构简单,管路和接头最少,尽量使用直管、减少弯管。 4)减振、降噪设计 液压系统的振动和噪声主要是液压泵站和管路所产生,特别是液压泵站的高压、大流量化,噪声和

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

典型液压系统.

第八章典型液压系统 近年来,液压传动技术已经广泛应用于很多工程技术领域,由于液压系统所服务的主机的工作循环、动作特点等各不相同,相应的各液压系统的组成、作用和特点也不尽相同。以下通过对几个典型液压系统的分析,进一步熟悉各液压元件在系统中的作用和各种基本回路的组成,并掌握分析液压系统的方法和步骤。 阅读一个较为复杂的液压系统图,大致可按以下步骤进行: (1)了解设备的工艺对液压系统的动作要求; (2)初步游览整个系统,了解系统中包含有哪些元件,并以各个执行元件为中心,将 系统分解为若干子系统。 (3)对每一子系统进行分析,搞清楚其中含有哪些基本回路,然后根据执行元件的动 作要求,参照动作循环表读懂这一子系统。 (4)根据液压设备中各执行元件间互锁、同步、防干涉等要求,分析各子系统之间的 联系。 (5)在全面读懂系统的基础上,归纳总结整个系统有哪些特点,以加深对系统的理解。 第一节组合机床液压系统 一、组合机床液压系统 组合机床液压系统主要由通用滑台和辅助部分(如定位、夹紧)组成。动力滑台本身不带传动装置,可根据加工需要安装不同用途的主轴箱,以完成钻、扩、铰、镗、刮端面、铣削及攻丝等工序。 图8—1液压系统工作原理 所示为带有液压夹紧的他驱式动力滑台的液压系统原理图,这个系统采用限

压式变量泵供油,并配有二位二通电磁阀卸荷,变量泵与进油路的调速阀组成容积节流调速回路,用电液换向阀控制液压系统的主油路换向,用行程阀实现快进和工进的速度换接。它可实现多种工作循环,下面以定位夹紧→快进→工进→二工进→死挡铁停留→快退→原位停止松开工件的自动工作循环为例,说明液压系统的工作原理。 1. 夹紧工件夹紧油路一般所需压力要求小于主油路,故在夹紧油路上装有减压阀6,以减低夹紧缸的压力。 按下启动按钮,泵启动并使电磁铁4DT通电,夹紧缸24松开以便安装并定位工件。当工件定好位以后,发出讯号使电磁铁4DT断电,夹紧缸活塞夹紧工作。其油路:泵1→单向阀5→减压阀6→单向阀7→换向阀11→左位夹紧缸上腔,夹紧缸下腔的回油→换向阀11左位回油箱。于是夹紧缸活塞下移夹紧工件。单向阀7用以保压。 2.进给缸快进前进当工件夹紧后,油压升高压力继电器14发出讯号使1DT通电,电磁换向阀13和液动换向阀9均处于左位。其油路为: 进油路:泵1→单向阀5→液动阀9→左位行程阀23右位→进给缸25左腔 回油路:进给缸25右腔→液动阀9左位→单向阀10→行程阀23右位→进给缸25左腔。 于是形成差动连接,液压缸25快速前进。因快速前进时负载小,压力低,故顺序阀4打不开(其调节压力应大于快进压力),变量泵以调节好的最大流量向系统供油。 3.一工进当滑台快进到达预定位置(即刀具趋近工件位置),挡铁压下行程阀23,于是调速阀12接入油路,压力油必须经调速阀12才能进入进给缸左腔,负载增大,泵的压力升高,打开液控顺序阀4,单向阀10被高压油封死,此时油路为: 进油路:泵1→单向阀5→换向阀9左位→调速阀12→换向阀20右位→进给缸25左腔 回油路:进给缸25右腔→换向阀9左位→顺序阀4→背压阀3→油箱。 一工进的速度由调速阀12调节。由于此压力升高到大于限压式变量泵的限定,泵的流量便自动减小到与调速阀的节流量相适应。 压力p B 4.二工进当第一工进到位时,滑台上的另一挡铁压下行程开关,使电磁铁3DT 通电,于是阀20左位接入油路,由泵来的压力油须经调速阀12和19才能进入25的左腔。其他各阀的状态和油路与一工进相同。二工进速度由调速阀19来调节,但阀19的调节流量必须小于阀12的调节流量,否则调速阀19将不起作用。 5.死挡铁停留当被加工工件为不通孔且轴向尺寸要求严格,或需刮端面等情况时,则要求实现死挡铁停留。当滑台二工进到位碰上预先调好的死挡铁,活塞不能再前进,停留在死挡铁处,停留时间用压力继电器21和时间继电器(装在电路上)来调节和控制。 6.快速退回滑台在死挡铁上停留后,泵的供油压力进一步升高,当压力升高到压力继电器21的预调动作压力时(这时压力继电器入口压力等于泵的出口压力,其压力增值主要决定于调速阀19的压差),压力继电器21发出信号,使1DT断电,2DT通电,换向阀13和9均处于右位。这时油路为: 进油路:泵1→单向阀5→换向阀9右位→进给缸25右腔。 回油路:进给缸25左腔→单向阀22→换向阀9右位→单向阀8→油箱。 于是液压缸25便快速左退。由于快速时负载压力小(小于泵的限定压力p ), B

采煤机液压系统常见故障分析及原因

采煤机液压系统常见故障分析及原因 摘要:阐述了采煤机液压系统的组成及工作原理,针对我公司采煤机液压系统在实际维修和运行中出现的几种异常现象,进行了故障分析与排除,故障处理方法及结果对采煤机的使用者具有一定的参考价值。 关键词:采煤机;液压系统;泄漏;磨损;系统压力 我公司主要使用的采煤机有两种:天地科技股份有限公司的MG250/300采煤机和鸡西煤矿机械有限公司的MG300/700采煤机。适用于中厚煤层开采作业。该采煤机在使用和大修过程中其液压系统出现:摇臂升降速度缓慢或不能抬起、油温过热、开机后摇臂立即上升或下降、齿轮泵压力不足、液压系统产生噪声等现象。因此对采煤机液压系统组成和工作原理有一定了解,才能在实际生产中准确判断、分析与预防各种故障。 1.采煤机液压系统组成及工作原理 1.1采煤机液压系统主要部件及功能 1.1.1采煤机液压系统主要部件 (1)MG250/300采煤机液压系统主要由调高泵组件、过滤器、集成块、液力锁、调高油缸、机外油管和液压制动器等组成。集成阀块是将手液动换向阀、电磁阀、压力继电器、高低压溢流阀、压力表等集成在一起,通过阀体内部通道实现采煤机工作。 (2)MG300/700采煤机调高液压系统主要由手液动阀组、泵组件、低压阀组、粗过滤器、精过滤器、调高油缸、液压制动器、液压锁、高压阀、隔爆电磁换向阀、压力表、管路元件等组成。 1.2工作原理 1.2.1采煤机液压系统主要包括两部分:调高回路和制动回路 (1)调高回路有两个功能:①满足采煤机卧底量要求;②适应采高的要求。调高回路的动力由调高(截割)电机提供。在调高时,调高油缸的阻力较大,为防止系统油压过高,损坏油泵及附件,在齿轮泵出口处设有一高压溢流阀作为安全阀,调定压力为MG300/700采煤机压力25MPa,MG250/300采煤机压力20MPa,可以满足调高要求。该回路由手液动换向阀、电磁换向阀、液力锁、调高油缸组成。 (2)MG250/300采煤机液压制动回路的压力油与调高控制回路是同一控制油源;由二位三通刹车电磁阀,液压制动器及其管路组成。当需要采煤机行走时,

项目四 液压基本回路和典型液压回路分析(3.3).

项目四 液压基本回路和典型液压回路分析 任务4-1液压基本回路分析 液压基本回路就是由有关的液压元件组成用来完成某种特定功能的典型回 路。一些液压设备的液压系统虽然很复杂,但它通常都由一些基本回路组成,所 以掌握一些基本回路的组成、原理和特点将有助于认识分析一个完成的液压系 统。 单元1:方向控制回路功能分析 方向控制回路是液压系统中控制液流方向的基本回路,方向控制回路也称换 向回路,主要由方向控制阀组成。其功能是通过控制进入执行元件液流的通、断 或变换方向来实现执行元件的启动、停止、换向和锁紧等。 知识点4-1-1换向回路 换向回路主要由各种换向阀来实现,三位换向阀不同的中位机能,可以满足 液压系统的不同要求,如图4-1(g )所示的换向回路由三位四通M 型换向阀实 现,在此中位泵的输出压力近似为零,泵卸荷,减少功率损失 。 图片资源链接 动画资源链接视频资源链接 网页链接文 本资源链接 知识点4-1-2锁紧回路 图4-1(g ) 采用M 型中位换向阀的换向回路 图4-2(g )采用两个液控单向阀的锁紧回路

锁紧回路是执行元件在任意停留或停止工作时,为防止因外界因素而发生位移或窜动,把液压缸活塞锁定在任意位置的回路。 锁紧回路可以由单向阀、液控单向阀、O型及M型中位机能换向阀、液压锁来实现。 如图4-2(g)所示为两个液控单向阀(也称液压锁)的锁紧回路,其锁紧精度高,此回路的锁紧精度只受液压缸泄漏和油液压缩性的影响。使用液控单向阀的锁紧回路,换向阀的中位机能应使液控单向阀的控制口油液泄压(采用H 或Y型中位机能,不宜采用O型和M型),此时单向阀立即关闭,活塞停止运动。该回路锁紧可靠,经得起负载变化的干扰。 采用如图3-18(g)所示的O型中位换向阀的锁紧回路或4-1(g)所示的M 型中位换向阀的锁紧回路,利用中位封闭液压缸的两腔,可以将液压缸锁紧。这种锁紧回路由于受到滑阀泄漏的影响,锁紧效果差,只适用于短时间的锁紧或锁紧程度要求不高的场合。 图片资源链接动画资源链接视频资源链接网页链接文本资源链接 单元3:压力控制回路功能分析 压力控制回路是利用压力控制阀来控制系统整体或某一部分的压力,以满足液压执行元件对力或转矩要求的回路,这类回路包括调压、减压、增压、保压、卸荷和平衡等多种回路。 知识点4-1-3调压回路 调压回路的功用是使液压系统整体或部分的压力保持恒定或不超过某个数值。在定量泵系统中,液压泵的供油压力可以通过溢流阀来调节。在变量泵系统中,用安全阀来限定系统的最高压力,防止系统过载。若系统中需要二种以上的压力,则可采用多级调压回路。 1.单级调压回路如图3-21(g)a所示,在液压泵出口处设置并联溢流阀2即可组成单级调压回路,从而控制了液压系统的工作压力。 2.二级调压回路如图4-3(g)a所示为二级调压回路,可实现两种不同的系统压力控制。由溢流阀2和溢流阀4各调一级,当二位二通电磁阀3处于图示

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2- 8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1 ?分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代 表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退一原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电 液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确, 能量利用充分。 3.YB32-200型压力机的液压系统属于锻压机械液压系统的代表,此系统以压力变换为主、功率比大、压力高,属于高压或超高压系统。压力机工作时要求带动上滑块的液压缸活塞能够自动实现“快速下行一慢速加压一保压延时一泄压一快速回程一原位停止”的动作循环,空程时速度大,加压时推力大;下滑块液压缸要求实现“顶出一退回”的动作循环,有时还需要实现“浮动”功能。该系统采用高压大流量恒功率变量泵供油,利用活塞自重充液的快

乳化液泵站液压系统可靠性分析

乳化液泵站液压系统可靠性分析 发表时间:2019-04-01T14:40:59.160Z 来源:《电力设备》2018年第28期作者:李强 [导读] 摘要:随着科学技术水平的提高,我国矿山生产过程中乳化液泵站液压系统的应用也逐渐受到重视。 (身份证号:61272819860910xxxx 神东设备维修中心一厂四部内蒙古鄂尔多斯 017209) 摘要:随着科学技术水平的提高,我国矿山生产过程中乳化液泵站液压系统的应用也逐渐受到重视。文章主要对乳化液泵站液压系统可靠性分析的重要性进行分析,并探讨可靠性优化策略。 关键词:乳化液泵站;液压系统;可靠性 引言 矿用乳化液泵站是综采工作面的关键设备,它一方面为机械化综采面单体液压支柱提供基础保障,另一方面将机械能转化为液压能为掘进设备提供转矩。在液压系统中,液压源的稳定性是液压系统稳定性的决定性因素。当系统液压源出现压力波动时,会引起整个系统的压力震荡,加快系统密封元件、管道和压力元件的损坏,严重时会引发系统故障,造成重大事故。 1常规乳化液泵站工作原理 乳化液泵站工作原理为:磁力启动器(6)闭合,给乳化液泵电机(4)供电,驱动乳化液泵(3)工作,将乳化液由液箱(15)经输液管道送到综采工作面液压支架(14),为液压支架提供动力。乳化液泵的输出能力,为单体液压支柱供液的应不小于18MPa,为综采液压支架供液的应不小于30MPa,并且不得超过31.5MPa。乳化液泵采用的是由电动机驱动的电动泵;在运动形式上,采取柱塞驱动的形式,这主要是因为柱塞泵排出压力范围广、可靠性高;从外观结构上,泵分为卧式泵和立式泵,此次设计采用卧式泵,方便维护、维修、操作,可保证工作效率;泵的联数、缸数及作用数也是总体设计时需要考虑的关键问题,在柱塞泵中,一根柱塞和其连杆的组合,称为一联,当柱塞间相位差不同,但一同排出时,联可以称为缸,缸数的多少影响泵的流量脉动。一般而言,缸数越多,其脉动越小,但考虑到制造工艺的方便,此次设计为五缸泵,柱塞往复一次吸入与排出介质的次数称为作用数,因为结构的关系,柱塞泵一般是单作用泵。 图1 常规乳化液泵站液压系统示意图 在乳化液泵站的出液口还安装安全阀(8),作为泵站的的高压保护零件,安全阀的调定压力为泵工作压力的110%~115%左右,超压时,乳化液通过安全阀回流入液箱。图1中蓄能器(11)的主要作用是补充高压系统中的漏损,从而减少卸载阀的动作次数,延长液压系统中液压元件的使用寿命;同时还能吸收高压系统的压力脉动。 2乳化液泵站液压系统可靠性分析的重要作用 综采工作面的支护体系主要由液压支架与乳化液泵站以及控制、调节、保护元件和辅助装置构成。其中,乳化液泵站液压系统是整个工作面支护体系完整系统的一部分。泵站液压系统既能安全可靠地向工作面输送液压支架等液压装置所需压力等级的高压液体,又能将通过回液管道流回乳化液箱的乳化液经过滤净化后,再次输送至工作面液压设备,形成连续无间断的循环供液模式。在功能方面,当液压支架动作时泵站液压系统可以满足其需要,系统可以即时供给高压液体;当液压支架不动作乳化液泵仍在运转时,系统能够自动卸载,保证乳化液泵站安全运行;当液压支架等液压设备动作受阻时,工作液压力超过限定值,系统能够限压保护。乳化液泵站液压系统是综采工作面泵站与液压支架及辅助元件组成的整体系统的一部分。不仅可以向工作面液压装置提供所需压力等级的乳化液体,还可以将输送完能量的乳化液进行回收、过滤后再进行加压,形成连续循环的供液体系。乳化液泵液压系统通常具有以下特点:乳化液泵站液压系统可以满足工作面液压支架及其附属装置的工作用液要求,当工作面液压支架需要压力时,乳化液泵站可以及时提供符合压力及流量要求的乳化液;工作面液压支架不需要供液时,泵站液压系统仍正常运转并自动卸载压力;系统压力超过调定值时,系统可以自动卸载,当压力降至调定值时,系统又可恢复正常工作;保护乳化液泵,空载启动减少对泵体自身的损害;系统内有完善的压力及流量缓冲装置、良好的过滤装置、压力指示装置以及自动配液装置等。 3乳化液泵站液压系统可靠性 3.1建立可靠性模型 在分析乳化液泵的可靠性时,首先要了解乳化液泵中每个元部件的功能、各个元部件之间在功能上的关系,以及各个元部件的功能和故障对整个乳化液泵的影响。用方框代表系统元部件,用短线把各个代表元部件的方框按照功能上的逻辑关系连接起来,就建立了整个系统的可靠性框图。根据可靠性理论,乳化液泵各个元部件之间都是串联关系,其中任何一个元件出现故障都可以导致乳化液泵站故障。因此,乳化液泵站的可靠性模型是由电动机、齿轮副、滑块、曲轴、缸体、进液阀和排液阀组成的串联系统。设U代表乳化液泵站无故障工作的事件,Ui 代表第i个元部件无故障工作的事件。因为乳化液泵站各个元部件之间是串联关系,所以U事件出现等于U1,U2,…Un,事件同时发生,即:U=U1U2…Un。依照概率计算的原则,假如乳化液泵站中各元部件是相互独立的,得出的乳化液泵站可靠度

液压系统自己整理

目录(答案仅供参考) 1.液压传动定义及原理?P84 (2) 2.液压系统包括几个部分,各操纵那些部件?(豆) (3) 3.液压传动的优缺点? (3) 4.怎么选择液压油和使用注意事项 (4) 5.对液压系统的防护//为保证现代民航客机液压系统工作正常,在使用液压油时有哪些注意事项?(豆) (4) 6.液压油的种类 (4) 7.液压泵功率公式的推导? (5) 8.什么是液压泵的排量、理论流量、额定流量?相互之间的关系?(豆) (5) 9.额定压力 (5) 10.解释什么是液压泵的效率、容积效率和机械效率,以及三者的关系?分析影响液压泵效率的主要因素有哪些。(豆) (5) 11.如何确定电动机定量泵的机械效率? (5) 12.液压油温度与粘度的关系,对总效率的影响? (6) 13.用液压油的润滑特性解释为什么温度过高时会造成润滑效果下降,机械磨损加剧?(豆) (6) 14.说明不正确的油箱维护对液压泵的工作效率有何影响,应如何进行油箱维护?(豆) 6 15.液压泵产生“气塞”的可能原因是什么?产生气塞后油泵有何表现、应如何处理?(豆)//液压气塞原因和措施? (6) 16.更换液压系统的液压油后,为什么需要系统排气?如何进行排气?(豆) (6) 17.液压泵的类型? (7) 18.有的飞机液压系统有了柱塞泵之外还安装离心泵,为什么?//为什么有的飞机柱塞泵,在泵的吸油管入口集成了离心增压泵?(豆) (7) 19.恒压变量泵压力--流量特性曲线图?//请根据飞机上常用的柱塞泵的构造特点,分析其压力一流量特性,并绘出压力一流量特性曲线。(豆) (7) 20.定量泵释压阀(溢流阀)的作用,为什么要装卸荷阀? (7) 21.定量泵和变量泵的卸荷原理? (8) 22.什么是卸荷,试说明定量泵和变量泵卸荷的区别。(豆) (8) 23.说明用安全活门限制系统压力和用卸荷活门限制限制系统压力有何不同? (8) 24.定量泵用卸荷活门卸荷的基本组成回路: (8) 25.定量泵系统的“卸荷时间”指什么?如系统发生频繁卸荷,可能原因是什么?(豆) 8 26.变量泵为什么要装释压阀?(豆) (8) 27.液压控制元件? (8) 28.溢流阀作为安全活门使用和作为稳压活门使用有何区别? (9) 29.液压系统压力控制元件中,溢流阀和定值减压阀有降压作用,试说明它们的主要区别?(豆) (9) 30.传压筒的作用? (9) 31.液压保险的作用和流量保险的工作原理? (9) 32.作动筒的工作原理?类型? (9)

联合收割机液压系统结构故障分析与判断

47 河南农业 2019年第2期(中) HENANNONGYE 农业机械 NONG YE JI XIE 联合收割机液压系统结构故障分析与判断 赛爱华1,常树堂2 (1.河南省漯河市召陵区农机局,河南 漯河 462300;2.河南省漯河市郾城区农机化技术推广站,河南 漯河 462300) 摘 要:对小麦收割机稍加改动,就可以兼收油菜、大豆;换装割台后,对脱粒、清选部分装置稍做互换,便可以收获玉米籽粒。小麦联合收割机因能为多种农作物机械化收获提供服务而越来越受农民朋友的欢迎。随着小麦收获机使用频率的提高,伴随而来的是小麦收获机的维修问题,特别是液压系统的维修,成为许多机手十分头痛的问题。面对液压系统故障,只要了解收割机液压系统油路结构、工作原理、各部件功用,液压系统故障的排查是有规律可循的。基于此,本文主要就联合收割机液压系统结构故障分析与判断进行综述,为农机手提供借鉴。 关键词:联合收割机;液压系统;故障 一、联合收割机液压系统结构组成联合收割机的液压系统因能安全可靠地实现远距离传递动力和能量,完成远距离机械运动的自动控制,成为联合收割机上不可或缺的重要组成部分。联合收割机的液压系统组成与其他机械的液压控制系统一样,均由以下5个部分构成。 (一)动力源 动力源就是能将原动力输出的机械能转换为推动液压油做功的压力能。这个动力源一般由液压泵完成。 (二)控制元件 控制元件是指对系统中的液压油压力、流量和去向进行控制和调节的元件,主要指各类阀件,大家称之为液压控制器、控制阀或液压分配器。具体到收割机上有2个重要控制元件:液压转向器(或称为方向机、转向阀)、多路阀。 (三)执行元件 执行元件是指把液压油的压力能变成机械能,推动负载运动,满足机械使用者的需要,主要指液压油缸等。 (四)工作介质 小麦收割机一般采用68号抗磨液压油,利用其进行能量传递和信号传递。 (五)辅助元件 辅助元件主要是指动力、控制、执行元件以外的液压器件,在液压系统中起储存、输送、过滤、加热、冷却和测量等作用的器件,包括油管、接头、油箱、过滤器、散热器、储能器、各种测试仪表和安全阀等。 二、联合收割机液压系统主要组成部分功能及常见故障 (一)动力源——齿轮泵 联合收割机多采用齿轮泵作为液压 油的动力源。其构造为有一对几何参数相同的主、被动齿轮,被封闭在齿廓壳体和侧盖板组成的封闭空间内。工作原理是当齿轮泵主动齿轮运转时,带动从动齿轮与之啮合并一起运转,在吸油腔内由于两齿轮脱离时,齿间容积变大出现真空,而从油箱中吸油。吸入的油液由旋转的齿谷携带到排油腔,在排油腔由于齿间容积减小而将液压油挤出泵体。由于齿轮的齿顶和壳体内孔表面间及齿轮端面和盖板间间隙小,而且啮合齿的接触面接触紧密,起到密封作用,并把吸、压油区隔开,因此齿轮转动时泵便连续不断地将液压油排出,为系统提供高压油源[1] 。 现在的联合收割机上大都配有双联齿轮泵(既装备有2个这样的齿轮油泵,两泵主轴由联轴器相连),双联泵中2个油泵虽然转向相同,同为左旋转泵,但排量不同。一个泵向转向机构提供高压油源的叫恒流泵,另一个泵向全车部位如割台、无级变速、液压卸粮等提供高压油源,其油泵排量较大。 齿轮泵常见故障有油封漏油、壳体炸裂、噪声过大并有振动、高温过高以及元件速度不够。其中,油封漏油的原因有油封件老化、油封唇口损坏、泵轴与联轴器同心度差(易引起中间断轴)以及泵体内部磨损严重、高低压腔串通。油泵壳体炸裂的原因有安全阀压力调得过高、安全阀卡死、油泵出油口管路堵死、执行元限位机构反应不灵敏以及油缸启动时活塞抵死端盖导致油环面积不够。噪声过大并有震动的原因有低压管路及法兰处漏气、油箱油位过低、进油管路有折瘪现象导致局部区域形成节流,进 而造成通径不够、安装位置不牢或同轴度差太大以及进油滤清器堵塞。油温过高的原因有系统压力过高,内泄漏油造成能量损失;系统压力过载,安全阀打开;管道不通畅,节流孔堵塞,阻力太大;油箱油位太低。 (二)控制元件——液压控制阀液压阀通常也称液压分配器,从字典中可查到“阀”者,活动的门也。既然是可活动的门,自然可以打开和关闭。操作者通过打开和关闭这个“门”,可实现油源分配,改变系统管道油的流量大小、方向,进而满足机械使用者的需求。液压阀的基本结构主要包括阀芯、阀体和驱动阀芯在阀体内做相对运动的装置。阀芯的主要结构形式有滑阀、锥阀和球阀。阀体上除有与阀芯配合的阀套孔外,还有与外界连接的油管进出油口以及驱动阀芯与阀体做相对运动的装置,可以是手动机构,也可用弹簧配合机动机构。液压系统有转向和操纵两部分组成。2个分系统共用一个油箱和齿轮泵,通过单路稳定分流阀(或使用双联泵)分成两部分。转向部分用于控制收割机转向,主要工作部件是全液压转向器、转向油缸等;操纵部分用于控制工作装置,如割台、拨禾轮、粮仓和无级变速装置,主要工作部件是多路阀、无级变速油缸等。现在就联合收割机上的2个重要的液压控制器做一介绍:控制转向的阀(也称转向器)、控制如割台、拨禾轮、无极变速等功能的多路阀。 1.液压转向器(阀) 小麦收获机上一般都采用一种转阀式全液压转向器,与组合阀分体设计,可根据需要直接连接不同组合阀块,形 DOI:10.15904/https://www.wendangku.net/doc/0f12505909.html,ki.hnny.2019.05.027

推钢机液压系统的设计与可靠性分析

2016年7月机床与液压Jul.2016第 44 卷第13 期 MACHINE TOOL &HYDRAULICS Vol.44 No. 13 D O I:10.3969/j.issn. 1001-3881. 2016. 13.040 推钢机液压系统的设计与可靠性分析 王海芳,戴亚威,汪澄,韦博 (东北大学秦皇岛分校控制工程学院,河北秦皇岛〇66〇〇4) 摘要:在对推钢机传动系统相关资料深人研究的基础上,设计了一套液压传动系统,详细阐述其工作原理,并对其重 要元件的参数进行计算。基于液压元件基本失效概率,应用串联系统的可靠度计算方法建立该液压系统的可靠性数学模 型,最后利用MATLAB软件进行了仿真分析。结果表明:工作时间越长,推钢机液压系统的可靠性越低,而且其可靠度随 着时间先下降较快,后下降较缓,只有限定工作时间,液压系统的可靠性才能得到保障。 关键词:推钢机;液压系统;可靠性;串联系统;MATLAB 中图分类号:TH137 文献标志码:A 文章编号:1001-3881 (2016) 13-178-2 Design and Reliability Analysis on Hydraulic System of Rolling Pusher WANG Haifang,D AI Yawei,WANG Cheng,W EI Bo (School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao Hebei 066004, China) Abstract :The hydraulic system of a pusher drive system was designed based on the analysis of the related materials, and its work principle was introduced, and the parameters of important components in the hydraulic system were calculated. Based on the basic fail-ure probability of the hydraulic element, the reliability mathematical model of the hydraulic system was established by using the relia-bility calculation method of the series system, and the simulation analysis was carried out by using the MATLAB software. The simula-tion results show that increasing working hours can short reliability of pusher hydraulic system, and its reliability decrease rapidly first along with the time, then decrease slowly gradually, the reliability can be guaranteed in the limited working time. Keywords:Rolling pusher;Hydraulic system;Reliability;Series system ;MATLAB 〇前言 加热炉推钢机是轧钢生产线上将钢坯推进加热炉内进行加热的专用设备,推力要求大、推头 同步性要求高。旧式生产线上往往采用机械式推钢机,其体积大、价格高、故障率高、维修保养复杂。目前,推钢机的种类主要有螺旋式、齿条 式、曲柄连杆式等,其性能和要求各不相同[1]。随着轧钢生产的发展,利用液压油缸和液压系统的推力大、体积小、操作方便的优点,新型液压推钢机逐步取代了老式机械推钢机,使推料工序大大简化。 1工作原理 推钢机液压系统工作原理参见图1。启动主令控 制器,使三位四通阀的电磁铁1DT、3D T得电,二位 四通阀5D T得电,这时油栗输出压力油,经二位四 通阀、同轴马达分别进人两组4个油缸的无杆腔,4个油缸的有杆腔回油,经由调速阀、二位四通阀排回 油箱,这时4个油缸获得同步运动。推出热钢述后 (这时间很短)处于待命阶段,5D T断电,系统处 于卸荷状态。再次操纵主令控制器,使三位四通阀 的电磁铁2DT、4D T通电,同时二位四通阀的5DT 也通电,这时油栗输出压力油,经二位四通阀、两 同轴油马达分别进人两组4个油缸的有杆腔,4个 油缸的无杆腔回油,经由调速阀、二位四通阀排回 油箱[2]。 由于系统采用冗余设计,具有左右对称结构,工 作可靠性较高,而且如果钢坯比较小,只要求其中一 组两个油缸同步工作,只需使串接于油马达后的两个 两位四通阀其中一个工作,就可实现。系统通过设立 限位开关1SQ、2SQ、3SQ、4SQ来消除两组四个油缸 的位置误差,避免出现误差累积,影响系统同步精 度,同时也起限位作用[3]。 收稿日期:2015-05-15 基金项目:河北省自然科学基金资助项目(E2012407010; F2014203157);河北省博士后科研项目择优资助(B2014003012);河北省教育厅资助项目(2011136);秦皇岛科技支撑项目(201501B011);东北大学教改课题 资助项目(2014-47) 作者简介:王海芳(1976—),男,博士,副教授,研究方向为轧制过程自动化、液压伺服控制及可靠性研究。E-m ail: hfwang0335@ 126. com 〇

相关文档