文档库 最新最全的文档下载
当前位置:文档库 › 分子的立体构型(高考总复习)

分子的立体构型(高考总复习)

分子的立体构型(高考总复习)
分子的立体构型(高考总复习)

分子的立体构型

写出下列物质分子的电子式和结构式,并根据键角确定其分子构型:

分子类型化学式电子式结构式键角分子立体构型

三原子分子

CO2O==C==O180°直线形

H2O105°V形

四原子分子

CH2O约120°平面三角形

NH3107°三角锥形

五原子分子CH4109°28′正四面体形

(1)

分子类型键角立体构型实例

AB2

180°直线形CO2、BeCl2、CS2

<180°V形H2O、H2S

AB3

120°平面三角形BF3、BCl3

<120°三角锥形NH3、H3O+、PH3

AB4109°28′正四面体形CH4、NH+4、CCl4

(2)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2==CH—CH==CH2(1,3-丁二烯)、CH2==CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。

例1(2017·衡水中学高二调考)下列有关键角与分子立体构型的说法不正确的是()

A.键角为180°的分子,立体构型是直线形

B.键角为120°的分子,立体构型是平面三角形

C.键角为60°的分子,立体构型可能是正四面体形

D.键角为90°~109°28′之间的分子,立体构型可能是V形

【考点】常见分子的立体构型

【题点】键角与分子立体构型的关系

答案B

解析键角为180°的分子,立体构型是直线形,例如CO2分子是直线形分子,A正确;苯分

子的键角为120°,但其立体构型是平面正六边形,B错误;白磷分子的键角为60°,立体构

型为正四面体形,C正确;水分子的键角为105°,立体构型为V

形,D正确。

例2下列各组分子中所有原子都可能处于同一平面的是()

A.CH4、CS2、BF3

B.CO2、H2O、NH3

C.C2H4、C2H2、C6H6

https://www.wendangku.net/doc/0a4502175.html,l4、BeCl2、PH3

【考点】常见分子的立体构型

【题点】常见分子立体构型的综合判断

答案C

解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。

1.价层电子对互斥理论

分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,由于价层电子对相互排斥的作用,尽可能趋向彼此远离。

2.价层电子对的计算

(1)中心原子价层电子对数=σ键电子对数+孤电子对数。

(2)σ键电子对数的计算

由分子式确定,即中心原子形成几个σ键,就有几对σ键电子对。如H2O分子中,O有2对σ键电子对。NH3分子中,N有3对σ键电子对。

(3)中心原子上的孤电子对数的计算

中心原子上的孤电子对数=1

2(a-xb)

①a表示中心原子的价电子数;

对主族元素:a=最外层电子数;

对于阳离子:a=价电子数-离子电荷数;

对于阴离子:a=价电子数+离子电荷数。

②x表示与中心原子结合的原子数。

③b表示与中心原子结合的原子最多能接受的电子数,氢为1,其他原子=8-该原子的价电子数。

实例σ键电

子对数

孤电子

对数

价层电

子对数

电子对的排

列方式

VSEPR模型

分子的立体

构型

BeCl2、CO2202直线形直线形

BF3、BCl330

3平面三角形

平面三角形SO221V形

利用VSEPR模型确定分子或离子的立体构型的注意事项

(1)对于AB n型分子,成键电子对数等于配位原子的原子个数。

(2)若AB n型分子中,A与B之间通过两对或三对电子(即通过双键或三键)结合而成,则价层电子对互斥理论把双键或三键作为一对电子对看待。

(3)分子的中心原子的孤电子对数为0时,VSEPR模型与分子立体构型相同,分子均为空间对称性结构。

(4)分子的立体构型与分子类型有关,如AB2型分子只能为直线形或V形结构,AB3型分子只能为平面正三角形或三角锥形结构。故由分子类型(AB n型)和孤电子对数能很快确定分子的立体构型。

例3下列分子或离子的中心原子上未用于成键的价电子对最多的是()

A.H2O

B.HCl

C.NH+4

D.PCl3

【考点】价层电子对互斥理论

【题点】价层电子对数目的计算与判断

答案A

解析A项,氧原子有两对未成键的价电子对;B项,HCl分子属于AB型分子,没有中心原子;C项,NH+4的中心原子的价电子全部参与成键;D项,磷原子有一对未成键的价电子对。例4用价层电子对互斥理论(VSEPR)可以预测许多分子或离子的立体构型,有时也能用来推测键角大小。下列判断正确的是()

A.SO2、CS2、HI都是直线形的分子

B.BF3键角为120°,SnBr2键角大于120°

C.COCl2、BF3、SO3都是平面三角形的分子

D.PCl3、NH3、PCl5都是三角锥形的分子

【考点】价层电子对互斥理论

【题点】价层电子对互斥理论的应用

答案C

解析SO2是V形分子,CS2、HI是直线形的分子,A错误;BF3键角为120°,是平面三角形结构,而Sn原子价电子数是4,在SnBr2中两个价电子与Br形成共价键,还有一对孤对电子,对成键电子有排斥作用,使键角小于120°,B错误;COCl2、BF3、SO3都是平面三角形的分子,键角是120°,C正确;PCl3、NH3都是三角锥形的分子,而PCl5是三角双锥形结构,D错误。

学习小结:

分子立体构型的确定方法

中心原子价层电子对数n =σ键电子对数+1

2(a -xb ) ?

?

分子的立体构型——略去孤电子对在价层电子对互斥模型中占有的空间

注意 (1)价层电子对互斥构型是价层电子对的立体构型,而分子的立体构型指的是成键电子对的立体构型,不包括孤电子对。两者是否一致取决于中心原子上有无孤电子对(未用于形成共价键的电子对),当中心原子上无孤电子对时,两者的构型一致;当中心原子上有孤电子对时,两者的构型不一致。

(2)常见的分子立体构型:直线形、V 形、平面三角形、三角锥形、四面体形等。

1.用杂化轨道理论解释甲烷分子的形成 在形成CH 4分子时,碳原子的一个2s 轨道和三个2p 轨道发生混杂,形成四个能量相等的sp 3杂化轨道。四个sp 3杂化轨道分别与四个H 原子的1s 轨道重叠成键形成CH 4分子,所以四个C—H 键是等同的。

碳原子的sp 3杂化可表示如下:

2.轨道杂化与杂化轨道

3.杂化轨道类型及其立体构型 (1)sp 杂化

①sp 杂化:sp 杂化轨道是由一个n s 轨道和一个n p 轨道杂化而得。sp 杂化轨道间的夹角为180°,呈直线形,如BeCl 2分子。

②sp 杂化后,未参与杂化的两个n p 轨道可以用于形成π键,如乙炔分子中的C≡C 键的形成。

(2)sp 2杂化

①sp 2杂化:sp 2杂化轨道是由一个n s 轨道和两个n p 轨道杂化而得。sp 2杂化轨道间的夹角为120°,呈平面三角形,如BF 3分子。

②sp 2杂化后,未参与杂化的一个n p 轨道可以用于形成π键,如乙烯分子中的C==C 键的形

成。

(3)sp3杂化

①sp3杂化:sp3杂化轨道是由一个n s轨道和三个n p轨道杂化而得。sp3杂化轨道的夹角为109°28′,呈空间正四面体形(如CH4、CF4、CCl4)。

②sp3杂化后,所有的n p轨道都形成σ键,不能形成π键。

(1)原子轨道的杂化过程

例5下列关于杂化轨道的说法错误的是()

A.并不是所有的原子轨道都参与杂化

B.同一原子中能量相近的原子轨道参与杂化

C.杂化轨道能量集中,有利于牢固成键

D.杂化轨道中一定有电子

【考点】杂化轨道理论

【题点】关于杂化轨道理论的理解

答案D

解析参与杂化的原子轨道,其能量不能相差太大,如1s与2s、2p的能量相差太大,不能

形成杂化轨道,即只有能量相近的原子轨道才能参与杂化,故A 、B 项正确;杂化轨道的电子云一头大一头小,成键时利用大的一头,可使电子云的重叠程度更大,形成牢固的化学键,故C 项正确;并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤电子对(如NH 3、H 2O 的形成),故D 项错误。

例6 有关杂化轨道的说法不正确的是( )

A.杂化前后的轨道数不变,但轨道的形状发生了改变

B.sp 3、sp 2、sp 杂化轨道的夹角分别为109°28′、120°、180°

C.四面体形、三角锥形、V 形分子的结构可以用sp 3杂化轨道解释

D.杂化轨道全部参与形成化学键 【考点】杂化轨道理论

【题点】关于杂化轨道理论的理解 答案 D

解析 杂化轨道用于形成σ键和容纳孤电子对。

1.杂化轨道的用途及其类型的判断

(1)用途:杂化轨道只能用于形成σ键或者用来容纳孤电子对,而两个原子之间只能形成一个σ键。

(2)判断方法:杂化轨道数=中心原子孤电子对数+中心原子结合的原子数,再由杂化轨道数判断杂化类型。

2.杂化轨道的立体构型与微粒的立体构型

VSEPR 模型和杂化轨道的立体构型是一致的,略去VSEPR 模型中的孤电子对,就是分子(或离子)的立体构型。 代表物 项目 CO 2 CH 2O CH 4 SO 2 NH 3 H 2O 价层电子对数 2 3 4 3 4 4 杂化轨道数 2 3 4 3 4 4 杂化类型 sp sp 2 sp 3 sp 2 sp 3 sp 3 杂化轨道 立体构型 直线形 平面三角形 正四面体形 平面 三角形 四面体形 四面 体形 VSEPR 模型 直线形 平面 三角形 正四 面体形 平面 三角形 四面 体形 四面 体形 分子构型

直线形

平面三角形

正四面体形

V 形

三角锥形

V 形

杂化类型的判断方法

(1)利用价层电子对互斥理论、杂化轨道理论判断分子构型的思路: 价层电子对――→判断杂化轨道数――→判断杂化类型――→判断

杂化轨道构型。

(2)根据杂化轨道之间的夹角判断:若杂化轨道之间的夹角为109°28′,则中心原子发生sp 3杂化;若杂化轨道之间的夹角为120°,则中心原子发生sp 2杂化;若杂化轨道之间的夹角为

180°,则中心原子发生sp杂化。

(3)有机物中碳原子杂化类型的判断:饱和碳原子采取sp3杂化,连接双键的碳原子采取sp2杂化,连接三键的碳原子采取sp杂化。

例7(2018·深州中学期中)下列分子中中心原子的杂化方式和分子的立体构型均正确的是()

A.C2H2:sp2、直线形

B.SO2-4:sp3、三角锥形

C.H3O+:sp3、V形

D. BF3:sp2、平面三角形

【考点】分子立体构型的综合

【题点】杂化轨道理论的综合应用

答案D

解析乙炔的结构式为H—C≡C—H,每个碳原子价层电子对个数是2且不含孤电子对,所以C原子采用sp杂化,为直线形结构;SO2-4中,价层电子对数=4,孤电子对数为0,采取sp3杂化,为正四面体形;H3O+离子中价层电子对=3+1=4,所以中心原子原子轨道为sp3杂化,该离子中含有一个孤电子对,所以其立体构型为三角锥形;BF3分子中硼原子价层电子对数=3+0=3,杂化轨道数为3,孤电子对数为0,所以其立体构型为平面三角形。

例8计算下列各微粒中心原子的杂化轨道数,判断中心原子的杂化轨道类型,写出VSEPR 模型名称。

(1)CS2__________、__________、__________。

(2)NH+4__________、__________、__________。

(3)H2O__________、__________、__________。

(4)PCl3__________、__________、__________。

(5)BCl3__________、__________、__________。

【考点】杂化轨道理论的应用

【题点】杂化轨道理论的综合应用

答案(1)2sp直线形(2)4sp3正四面体形(3)4sp3四面体形(4)4sp3四面体形(5)3sp2平面三角形

学习小结:

VSEPR模型

1.NH3、NH+4中共价键形成的比较

(1)用电子式表示NH3、NH+4的形成

①N原子与H原子以共价键结合成NH3分子:

②NH3分子与H+结合成NH+4:

(2)②中共价键的形成与①相比较有何不同?

答案②中形成共价键时,N原子一方提供孤电子对,H+提供空轨道。

2.配位键的概念及表示方法

(1)概念:成键原子一方提供孤电子对,另一方提供空轨道形成的共价键。

(2)表示方法:配位键常用A→B表示,其中A是提供孤电子对的原子,B是接受孤电子对或提供空轨道的原子。

3.特点

NH+4的立体构型是正四面体形,四个N—H键的键长相同,键能相同,试从原子轨道杂化的角度分析其原因:NH+4中N原子的2s、2p轨道进行sp3杂化,形成4个能量完全相同的新轨道,故形成的四个N—H键的键长、键能都相同。

配位键的理解

(1)配位键是一种特殊的共价键。配位键中的共用电子对是由成键单方提供的,而其他的共价键的共用电子对是由成键双方提供的。

(2)配位键的形成条件

①成键原子一方能提供孤电子对。如分子有NH3、H2O、HF、CO等;离子有Cl-、OH-、CN -、SCN-等。

②成键原子另一方能提供空轨道。如H+、Al3+、B及过渡金属的原子或离子。

(3)配位键同样具有饱和性和方向性。一般来说,多数过渡金属的原子或离子形成配位键的数目是基本不变的,如Ag+形成2个配位键;Cu2+形成4个配位键等。

例9若X、Y两种粒子之间可形成配位键,则下列说法正确的是()

A.X、Y只能是分子

B.X、Y只能是离子

C.若X提供空轨道,则Y至少要提供一对孤电子对

D.若X提供空轨道,则配位键表示为X→Y

【考点】配位键

【题点】配位键的形成及判断

答案C

解析形成配位键的两种微粒可以均是分子或者均是离子,还可以一种是分子、一种是离子,但必须是一种微粒提供空轨道、另一种微粒提供孤电子对,A、B项错误,C项正确;配位

键中箭头应该指向提供空轨道的X,D项错误。

例10

下列不能形成配位键的组合是()

A.Ag+、NH3

B.H2O、H+

C.Co3+、CO

D.Ag+、H+

【考点】配位键

【题点】配位键的形成及判断

答案D

解析配位键的形成条件必须是一方能提供孤电子对,另一方能提供空轨道,A、B、C三项中,Ag+、H+、Co3+能提供空轨道,NH3、H2O、CO能提供孤电子对,所以能形成配位键,而D项Ag+与H+都只能提供空轨道,而无法提供孤电子对,所以不能形成配位键。

1.配合物的概念

把金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物称为配位化合物,简称配合物。如[Cu(NH3)4]SO4、[Ag(NH3)2]OH、NH4Cl等均为配合物。

实验操作实验现象有关离子方程式

滴加氨水后,试管中首先

出现蓝色沉淀,氨水过量后沉淀逐渐溶解,滴加乙醇后析出深蓝色晶体[Cu(NH3)4]SO4·H2O Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4、Cu(OH)2+4NH3===[Cu(NH3)4]2++2OH-

溶液颜色

变血红色

Fe3++3SCN-===Fe(SCN)3

上述实验现象产生的原因主要是配离子的形成。以配离子[Cu(NH3)4]2+为例,NH3分子中氮原子的孤电子对进入Cu2+的空轨道,Cu2+与NH3分子中的氮原子通过共用氮原子提供的孤电

子对形成配位键。配离子[Cu(NH3)4]2+可表示为。

3.配合物的组成

配合物[Cu(NH3)4]SO4其组成如下图所示:

(1)中心原子是提供空轨道接受孤电子对的原子。中心原子一般都是带正电荷的阳离子(此时又叫中心离子),过渡金属离子最常见的有Fe3+、Ag+、Cu2+、Zn2+等。

(2)配体是提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。配体中直接同中心原子配

位的原子叫做配位原子。配位原子必须是含有孤电子对的原子,如NH 3中的N 原子,H 2O 中的O 原子等。

(3)配位数是直接与中心原子形成的配位键的数目。如[Fe(CN)6]4-中Fe 2+

的配位数为6。

形成配合物的原理

形成配合物的中心原子(离子)必须存在空轨道,配体一般都存在着孤电子对。当配体接近中心原子(离子)时,为了增加成键能力,中心原子(离子)用能量相近的空轨道杂化,配体的孤电子对填到中心原子(离子)已杂化的空轨道中形成配离子。配离子的立体构型、配位数及稳定性等主要决定于杂化轨道的数目和类型。

例11 下列不属于配位化合物的是( ) A.六氟合铝酸钠:Na 3[AlF 6]

B.氢氧化二氨合银:[Ag(NH 3)2]OH

C.六氟合铁酸钾:K 3[FeF 6]

D.十二水硫酸铝钾:KAl(SO 4)2·12H 2O 【考点】常见的配合物及相关实验 【题点】配合物的概念及判断 答案 D

例12 回答下列问题:

(1)配合物[Ag(NH 3)2]OH 的中心离子是_______,配位原子是________,配位数是________,它的电离方程式是__________________________________________________________。 (2)向盛有少量NaCl 溶液的试管中滴入少量AgNO 3溶液,再加入氨水,观察到的现象是__________________________________________________________________________。 (3)解释加入氨水后,现象发生变化的原因______________________________________。 【考点】配合物的综合考查 【题点】配合物组成的综合分析

答案 (1)Ag + N 2 [Ag(NH 3)2]OH===[Ag(NH 3)2]++OH -

(2)先产生白色沉淀,加入氨水后,白色沉淀溶解

(3)AgCl 存在微弱的溶解平衡:AgCl(s)Ag ++Cl

-,向其中滴加氨水,Ag +

与NH 3能发生如

下反应:Ag ++2NH 3===[Ag(NH 3)2]+

,会使沉淀溶解平衡向右移动,最终因生成[Ag(NH 3)2]Cl 而溶解

解析 在配合物[Ag(NH 3)2]OH 中,中心离子是Ag +

,配位原子是NH 3分子中的N 原子,配位数是2。 学习小结:

配位键与非极性键、极性键的区别与联系 类型 比较 共价键 非极性键

极性键

配位键

本质 相邻原子间的共用电子对(电子云重叠)与原子核间的静电作用

成键条件 (元素种类) 成键原子得、失电子能力相同(同种非金属)

成键原子得、失电子能力差别较小(不同非金属或少数金属与非金属)

成键原子一方有孤电子对(配体),另一方有空轨道(中心离子)

特征 有方向性、饱和性

1.下列说法中正确的是(D)

A.NO2、SO2、BF3、NCl3分子中没有一个分子中原子的最外层电子都满足了8电子稳定结构B.P4和CH4都是正四面体形分子,且键角都为109°28′

D.NH3分子中有一对未成键的孤电子对,它对成键电子的排斥作用较强

【解析】:NCl3分子的电子式为,分子中各原子都满足8电子稳定结构,A错误;P4为正四面体分子,但其键角为60°,B错误;NH+4为正四面体结构而非平面正方形结

构,C错误;NH3分子电子式为,有一对未成键电子,由于未成键电子对成键电子的排斥作用,使其键角为107°,呈三角锥形,D正确。

2.碳酸亚乙烯酯是锂离子电池低温电解液的重要添加剂,其结构如右图所示。下列有关该物质的说法正确的是(A)

A.分子式为C3H2O3 B.分子中含6个σ键

C.分子中只有极性键D.8.6 g该物质完全燃烧得到6.72 L CO2

3.已知O3分子为V形结构,关于相同条件下O3和O2在水中溶解度的比较,下列说法正确的是(C)

A.O3在水中的溶解度和O2一样B.O3在水中的溶解度比O2小

C.O3在水中的溶解度比O2大D.无法比较

4.(18分)X、Z、Q、R、T、U分别代表原子序数依次增大的短周期元素。X和R属同族元素;Z和U位于第ⅦA族;X和Z可形成化合物XZ4;Q基态原子的s轨道和p轨道的电子总数相等;T的一种单质在空气中能够自燃。

请回答下列问题:

(1)R基态原子的电子排布式是________________。

(2)利用价层电子对互斥理论判断TU3的立体构型是____________。

(3)X所在周期元素最高价氧化物对应的水化物中,酸性最强的是________(填化学式);Z和U 的氢化物中沸点较高的是________(填化学式);Q、R、U的单质形成的晶体,熔点由高到低的排列顺序是______________(填化学式)。

(4)CuSO4溶液能用作T4中毒的解毒剂,反应可生成T的最高价含氧酸和铜,该反应的化学方程式是_____________________________________________________________。

【答案】:(1)1s22s22p63s23p2或[Ne]3s23p2(2)三角锥形

(3)HNO3HF Si、Mg、Cl2(4)10CuSO4+P4+16H2O===4H3PO4+10Cu+10H2SO4

【解析】:X、Z、Q、R、T、U分别代表原子序数依次增大的短周期元素。Z和U位于第ⅦA 族,故Z为F元素,U为Cl元素;X和Z可形成化合物XZ4,则X为C元素;X和R属同族元素,则R为Si元素;Q基态原子的s轨道和p轨道的电子总数相等,则Q为Mg元素;T 的一种单质在空气中能够自燃,则T为P元素。

(1)R为Si元素,原子序数为14,故其基态原子的电子排布式是1s22s22p63s23p2或[Ne]3s23p2。

(2)TU3为PCl3,根据价层电子对互斥理论,由中心原子P的孤电子对数为1,成键电子对数为3,故PCl3的VSEPR模型为四面体形,立体构型为三角锥形。

(3)与碳同一周期,非金属性由强到弱依次为F、O、N,由于F没有正价,O无最高正价,故X所在周期元素最高价氧化物对应的水化物中,酸性最强的是HNO3;HF、HCl均为分子晶体,但由于HF中存在氢键,所以沸点:HF>HCl;Si为原子晶体,Mg为金属晶体,Cl2为分子晶体,熔点由高到低的顺序为Si、Mg、Cl2。

(4)CuSO4溶液与P4反应可生成P的最高价含氧酸H3PO4和铜,故该反应的化学方程式为10CuSO4+P4+16H2O===4H3PO4+10Cu+10H2SO4。

一、单项选择题

1.在以下的分子或离子中,立体结构的几何形状不是三角锥形的是(C)

A.NF3

B.C

C.CO2

D.H3O+

2.下列离子的VSEPR模型与离子的空间立体构型一致的是(B)

A.S

B.Cl

C.N

D.Cl

3.膦(PH3)又称磷化氢,在常温下是一种无色、有大蒜臭味的有毒气体,电石气的杂质中常含有磷化氢。它的分子构型是三角锥形。则下列关于PH3的叙述正确的是(A)

A.PH3分子中有未成键的孤电子对B.PH3是空间对称结构

C.PH3是一种强氧化剂D.PH3分子中的P—H键间夹角是90°

【解析】:P最外层有5个价电子,只能形成三个共价键,有一对为孤对电子,A项对;PH3的结构与NH3相似,皆为三角锥形,电荷分布不均匀,为极性分子,B项错;PH3中的P是-3价,有强还原性,C项错;PH3的结构为三角锥形,P—H键间夹角略小于NH3中N—H 键间夹角,故D项错。

4.下列分子的空间构型是正四面体形的是(B)

①CH4②NH3③CF4④SiH4⑤C2H4⑥CO2

A.①②③

B.①③④

C.①③⑤

D.②④⑤

5.用价层电子对互斥理论预测H2S和BF3的立体结构,两个结论都正确的是(D) A.直线形;三角锥形B.V形;三角锥形

C.直线形;平面三角形D.V形;平面三角形

【解析】:H2S与H2O类似,中心原子S上有2对孤电子对,为了减小孤电子对的排斥作用,只能将H和孤电子对相间排列,H2S分子构型呈V形;BF3分子的中心原子B上无孤电子对,当分子构型呈平面三角形时,成键电子对之间的斥力最小,分子最稳定。故选D。

6.下列关于价层电子对互斥模型(VSEPR模型)的叙述中不正确的是(C)

A.VSEPR模型可用来预测分子的立体结构

B.分子中价电子对相互排斥决定了分子的空间结构

C.中心原子上的孤电子对不参与互相排斥

D.分子中键角越大,价电子对相互排斥力越小,分子越稳定

7.下列分子和离子中,中心原子价层电子对的立体构型为四面体形且分子或离子的立体构型为V形的是(D)

A.N

B.PH3

C.H3O+

D.OF2

8.已知在CH4中,C—H键间的键角为109°28',NH3中,N—H键间的键角为107°,H2O中O—H 键间的键角为105°,则下列说法中正确的是(A)

A.孤电子对与成键电子对间的斥力大于成键电子对与成键电子对间的斥力

B.孤电子对与成键电子对间的斥力小于成键电子对与成键电子对间的斥力

C.孤电子对与成键电子对间的斥力等于成键电子对与成键电子对间的斥力

D.题干中的数据不能说明孤电子对与成键电子对间的斥力与成键电子对与成键电子对间的斥力之间的大小关系

9.下列叙述正确的是(C)

A.NH3分子中N处于3个H所组成的三角锥形的中心

https://www.wendangku.net/doc/0a4502175.html,l4分子中C处于4个Cl所组成的正方形的中心

C.H2O分子中O不处于2个H所连成的直线的中点

D.CO2分子中C不处于2个O所连成的直线的中点

【解析】:NH3分子呈三角锥形,分子中的氮原子处于3个氢原子所组成的三角锥形的顶点,A 项错误;CCl4分子呈正四面体形,分子中的碳原子处于4个氯原子所组成的正四面体的中心,B 项错误;H2O分子呈V形,分子中的氧原子不处于2个氢原子所连成的直线的中心,而在V字的折点上,C项正确;CO2分子呈直线形,分子中的碳原子处于2个氧原子所连成的直线的中点,D 项错误。

二、填空题

10.已知A、B、C、D、E代表五种元素。A元素的三价离子3d能级处于半充满;B元素原子的最外层电子数是内层电子总数的2倍;C的原子轨道中有2个未成对的电子,且与B可形成两种常见的气体;D的原子序数小于A,D与C可形成DC2和DC3两种分子,且DC2是极性分子,DC3是非极性分子;E是短周期元素中除了稀有气体外原子半径最大的元素。试回答下列问题:

(1)写出A元素基态原子的电子排布式。

(2)B、C、D三种元素的电负性由大到小的顺序为(写元素符号)。

(3)E与C以1∶1形成的物质的电子式为。

(4)用VSEPR理论判断DC3分子的空间立体结构为。

(5)元素周期表中第一电离能最大的元素是(填元素符号)。

【答案】:(1)1s22s22p63s23p63d64s2 (2)O>S>C

(3)Na+]2-Na+ (4)正三角形(5)He

【解析】:由已知可推知,A:Fe,B:C,C:O,D:S,E:Na。

(1)A元素基态原子的电子排布式为1s22s22p63s23p63d64s2。

(2)B、C、D分别对应的是C、O、S,它们的电负性由大到小的顺序为O>S>C。

(3)E与C以1∶1形成的物质是Na2O2。

(5)在元素周期表中第一电离能最大的元素是He。

11.(1)利用VSEPR推断分子或离子的立体结构。

PO3-4________;CS2________;AlBr3(共价分子)________。

(2)有两种活性反应中间体粒子,它们的粒子中均含有1个碳原子和3个氢原子。请依据下面给出的这两种微粒的球棍模型,写出相应的化学式:

________;________。

(3)按要求写出第二周期非金属元素构成的中性分子的化学式。平面三角形分子________,三角锥形分子________,四面体形分子________。

【答案】:(1)四面体形直线形平面三角形(2)CH+3CH-3

(3)BF3NF3CF4

【解析】:PO3-4是AB4型,成键电子对是4,为四面体形。CS2是AB2型,成键电子对是2,是直线形。AlBr3是AB3型,成键电子对是3,是平面三角形。AB3型,中心原子无孤电子对的呈平面三角形,有一对孤电子对的呈三角锥形,所以分别是CH+3、CH-3。第二周期非金属元素构成的中性分子的化学式,呈三角锥形的是NF3,呈平面三角形的是BF3,呈四面体形的是CF4。

12.第四周期的Cr、Fe、Co、Ni、Cu、Zn等许多金属能形成配合物。

(1)Cr的核外电子排布式为;

(2)科学家通过X射线测得胆矾结构示意图可简单表示如下:

图中虚线表示的作用力为;

(3)胆矾溶液与氨水在一定条件下可以生成Cu(NH3)4SO4·H2O晶体。在Cu(NH3)4SO4·H2O晶体中,[Cu(NH3)4]2+为平面正方形结构,则呈正四面体结构的原子团是,其中心原子的杂化轨道类型是;

(4)①过渡金属配合物Ni(CO)n的中心原子价电子数与配体提供电子总数之和为18,则n=。CO与N2结构相似,CO分子内σ键与π键个数之比为。

②甲醛(HCHO)在Ni催化作用下加氢可得甲醇(CH3OH)。甲醛分子内C的杂化方式为,甲醇分子内的O—C—H键角(填“大于”“等于”或“小于”)甲醛分子内的O—C —H键角。

【答案】:(1)1s22s22p63s23p63d54s1 (2)氢键、配位键

(3)S sp3 (4)①41∶2②sp3小于

【解析】:(1)Cr的核外电子排布遵循“半满稳定”,其电子数与构造原理略有差异。

(2)Cu2+与水分子的氧原子间形成配位键;而水分子的氢原子与水分子的氧原子、硫酸根的氧原子间形成的是氢键。

(3)H2O是角形分子,呈四面体结构的原子团只能是S,其中心原子S采取sp3杂化。

(4)①配合物Ni(CO)n中由CO提供孤电子对,Ni的价电子数为10,则由CO提供的电子数为8,n=4。N2与CO等电子体,故分子内存在三键,σ键一个,π键两个。

②甲醇形成四条σ键,碳原子采取sp3杂化。甲醇中O—C—H的键角接近109°28',甲醛中碳原子为sp2杂化,键角为120°。

分子的立体构型(高考总复习)

分子的立体构型 写出下列物质分子的电子式和结构式,并根据键角确定其分子构型: 分子类型化学式电子式结构式键角分子立体构型 三原子分子 CO2O==C==O180°直线形 H2O105°V形 四原子分子 CH2O约120°平面三角形 NH3107°三角锥形 五原子分子CH4109°28′正四面体形 (1) 分子类型键角立体构型实例 AB2 180°直线形CO2、BeCl2、CS2 <180°V形H2O、H2S AB3 120°平面三角形BF3、BCl3 <120°三角锥形NH3、H3O+、PH3 AB4109°28′正四面体形CH4、NH+4、CCl4 (2)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2==CH—CH==CH2(1,3-丁二烯)、CH2==CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。 例1(2017·衡水中学高二调考)下列有关键角与分子立体构型的说法不正确的是() A.键角为180°的分子,立体构型是直线形 B.键角为120°的分子,立体构型是平面三角形 C.键角为60°的分子,立体构型可能是正四面体形 D.键角为90°~109°28′之间的分子,立体构型可能是V形 【考点】常见分子的立体构型 【题点】键角与分子立体构型的关系 答案B 解析键角为180°的分子,立体构型是直线形,例如CO2分子是直线形分子,A正确;苯分

子的键角为120°,但其立体构型是平面正六边形,B错误;白磷分子的键角为60°,立体构 型为正四面体形,C正确;水分子的键角为105°,立体构型为V 形,D正确。 例2下列各组分子中所有原子都可能处于同一平面的是() A.CH4、CS2、BF3 B.CO2、H2O、NH3 C.C2H4、C2H2、C6H6 https://www.wendangku.net/doc/0a4502175.html,l4、BeCl2、PH3 【考点】常见分子的立体构型 【题点】常见分子立体构型的综合判断 答案C 解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。 1.价层电子对互斥理论 分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,由于价层电子对相互排斥的作用,尽可能趋向彼此远离。 2.价层电子对的计算 (1)中心原子价层电子对数=σ键电子对数+孤电子对数。 (2)σ键电子对数的计算 由分子式确定,即中心原子形成几个σ键,就有几对σ键电子对。如H2O分子中,O有2对σ键电子对。NH3分子中,N有3对σ键电子对。 (3)中心原子上的孤电子对数的计算 中心原子上的孤电子对数=1 2(a-xb) ①a表示中心原子的价电子数; 对主族元素:a=最外层电子数; 对于阳离子:a=价电子数-离子电荷数; 对于阴离子:a=价电子数+离子电荷数。 ②x表示与中心原子结合的原子数。 ③b表示与中心原子结合的原子最多能接受的电子数,氢为1,其他原子=8-该原子的价电子数。 实例σ键电 子对数 孤电子 对数 价层电 子对数 电子对的排 列方式 VSEPR模型 分子的立体 构型 BeCl2、CO2202直线形直线形 BF3、BCl330 3平面三角形 平面三角形SO221V形

高一化学分子的立体构型

2.2 分子的立体构型第3课时配合物理论简介学案(人 教版选修3) [目标要求] 1.掌握配位键概念及其形成条件。2.知道配位化合物的形成及应用。3.知道几种常见配离子:[Cu(H2O)4]2+、[Cu(NH3)4]2+、[Fe(SCN) ]+、[Ag(NH3)2]+等的颜色及性质。 2 一、配位键 1.概念 [Cu(H2O)4]2+读做________________,呈________色。在此离子中铜离子与水分子之间的化学键是由水分子提供____________给铜离子,铜离子接受水分子提供的孤电子对形成的,这类特殊的________键称为配位键。 2.表示 配位键可以用A→B来表示,其中A是________孤电子对的原子,叫做电子给予体;B是________电子的原子,叫做电子接受体。 3.形成条件 配位键的形成条件是:(1)一方____________,(2)一方____________。 二、配位化合物 1.配位化合物 通常把金属离子(或原子)与某些分子或离子(称为配体)以________结合形成的化合物称为配位化合物。 2.各组成名称 [Cu(H2O)4]2+中Cu2+称为____________,H2O称为________,4称为____________。 三、与配位键有关的几个重要反应

1.完成下列反应 (1)Cu2++2NH3·H2O===________________。 (2)Cu(OH)2+4NH3·H2O===________________________________。 2.向氯化铁溶液中加入一滴硫氰化钾溶液,现象为______________。离子方程式为 ________________________________________________。 3.氨气与盐酸反应的离子方程式为________________________,铵根离子中的化学键 类型是________________________,立体构型是________________。氮原子的杂化方式 是________________。 4.AgCl+2NH3·H2O===______________________。 5.AgNO3+NH3·H2O===________________, AgOH+2NH3·H2O===________________________________________。 1.下列物质:①H3O+②[B(OH)4]-③CH3COO- ④NH3⑤CH4中存在配位键的是() A.①②B.①③C.④⑤D.②④ 2.与人体血液中血红蛋白以配位键结合的一种有毒气体是() A.氯气B.氮气C.一氧化碳D.甲烷3.下列各组离子中因有配合离子生成而不能大量共存的是() A.K+、Na+、Cl-、NO-3 B.Mg2+、Ca2+、SO2-4、OH- C.Fe2+、Fe3+、H+、NO-3 D.Ba2+、Fe3+、Cl-、SCN- 4.Co(NH3)5BrSO4可形成两种钴的配合物。已知两种配合物的分子式分别为 [Co(NH3)5Br]SO4和[Co(SO4)(NH3)5]Br,若在第一种配合物的溶液中加入BaCl2溶液,现象是__________________;若在第二种配合物的溶液中加入BaCl2溶液,现象是____________,若加入AgNO3溶液时,现象是______________。

分子的立体结构教案

第二节分子的立体结构 第三课时 教学目标 1.配位键、配位化合物的概念 2.配位键、配位化合物的表示方法 教学重点 配位键、配位化合物的概念 教学难点 配位键、配位化合物的概念 教学方法 1.通过图片模型演示,让学生对增强配合物感性认识。 2.通过随堂实验、观察思考、查阅资料等手段获取信息,学习科学研究的方法。教学具备 1. 多媒体教学投影平台,试管、胶头滴管 2. ①CuSO4②CuCl2·2H2O ③CuBr2④NaCl ⑤K2SO4 ⑥KBr ⑦氨水⑧乙醇 ⑨FeCl3⑩KSCN 教学过程

提出问题:什么是配位键。 放影配位键的形成过程。 归纳配位键的形成条件: 四、配合物理论简介 1.配位键 共享电子对由一个原子单方面提供而跟另一个原子共享的共价键叫做 配位键。(是一类特殊的共价键) 如NH+ 4 的形成:NH3+H+ ====== NH+ 4 氨分子的电子式是,氮原子上有对孤对电子。当氨分子跟氢离子 相作用时,氨分子中氮原子提供一对电子与氢原子共享,形成了配位键。 配位键也可以用A→B来表示,其中A是提供孤对电子的原子,叫做给予体; B是接受电子的原子,叫做接受体。 可见,配位键的成键条件是:给予体有孤对电子;接受体有空轨道。 把抽象的 理论直观 化 给予学生 探索实践 机会,增 强感性认 识。 对上述现象,请给予合理解释图片展示,视觉感受,直观理解。阅读了解配位化合物的定义演示实验 2-2 看图解释配位键的形成。 提出问题:学生阅读课本第43页,归纳:(学生代表回答) 实验证明,上述实验中呈天蓝色的物质是水合铜离子,可表示为 [Cu(H2O)4]2+,叫做四水合铜离子。在四水合铜离子中,铜离子与水分子之间 的化学键是由水分子提供孤对电子对给予-铜离子,铜离子接受水分子的孤 对电子形成的,这类“电子对给予-接受键”就是配位键。如图2-28: 其结构简式可表示为:(见上右图) 2. 配位化合物 (1)定义: (2)配合物的形成{以[Cu(NH3)4]2+的形成为例}: 课本第44页[实验2-2],学生完成。(略) 向硫酸铜溶液里逐滴加入氨水,形成难溶物的原因是按水呈碱性,可与Cu2+ 形成难溶的氢氧化铜形成难溶的氢氧化铜: Cu2++2OH-======Cu(OH)2↓ 上述实验中得到的深蓝色晶体是[Cu(NH3)4]SO4·H2O。结构测定实验证明, 无论在氨水溶液中还是在晶体中,深蓝色都是由于存在[Cu(NH3)4]2+,它是 Cu2+的另一种常见配离子,中心离子仍然是Cu2+,而配体是NH3. Cu(OH)2+4NH3====[Cu(NH3)4]2++2OH-蓝色沉淀变为深蓝色溶液,在[Cu(NH3)4]2+ 里,NH3分子的氮原子给出孤对电子对,Cu2+接受电子对,以配位键形成了 [Cu(NH3)4]2+(图23—29); 在中学化学中,常见的以配位键形成的配合物还有:、。 加强学生 的自学能 力和组 织、推断 能力。 培养阅读 能力 培养学生 的发散思 维。

分子的立体构型知识点

第二节分子的立体构型 知识点一形形色色的分子 1. 分子的立体构型 (1)概念:指多原子构成的共价分子中的原子的空间关系问题。由于多原子构成的分子中一定存在共价键,共价键的方向性使得分子中的原子按一定的空间结构排列,形成了分子的构型。如3原子分子的构型有直线型(CO2)和V(H2O)型两种。 (2)作用:分子构型对物质的活泼性、极性、状态、颜色和生物活性等性质都起决定性作用。 特别提醒:双原子均为直线型,不存在立体构型。 2.形形色色的分子 不同分子,构型不同。常见分子立体构型如下表: 知识点二价层电子对互斥模型 1.价层电子对互斥理论(VSEPR模型) (1)内容:分子中的价层电子对(包括σ键电子对和中心原子上的孤对电子)由于相互排斥作用,尽可能而趋向于彼此远离以减小斥力,分子尽可能采用对称的空间构型。电子对之间夹角越大,排斥力越小。 (2)VSEPR模型特征:用有区别的标记表示分子中的孤对电子和成对电子,如H2O、NH3的VSEPR 模型特征为: 2.利用价层电子对互斥理论判断分子的空间构型 (1)VSEPR模型把分子分成以下两大类 ①中心原子上的价电子都用于成键。在这类分子中,由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离,成键原子的几何构型总是采取电子对排斥最小的那种结构。它们的立体结构可用中心原子周围的原子数来预测。如:

②中心原子上有孤对电子的分子或离子。对于这类分子,首先建立四面体模型,每个键占据一个方向(多重键只占据一个方向),孤对电子也要占据中心原子周围的空间,并参与互相排斥。 (2)价层电子对数的计算 ①σ键电子对数的计算 σ键电子对数可由分子式确定,中心原子有几个σ键,就有几对σ键电子对。如H2O分子中σ键电子对数为,NH3分子中σ键电子对数为。 ②孤电子对数的计算 中心原子上的孤电子对数=1/2(a-xb) a为中心原子的价电子数; x为与中心原子结合的原子数; b为与中心原子结合的原子最多能接受的电子数。 如:如何确定CO2-3和NH+4的中心原子的孤电子对数 阳离子:a为中心原子的价电子数减去离子的电荷数(绝对值),故NH+4中中心原子为N,a=5-1,b=1,x=4,所以中心原子孤电子对数=1/2(a-xb)=1/2(4-4×1)=0。 阴离子:a为中心原子的价电子数加上离子的电荷数(绝对值),故CO2-3中中心原子为C:a=4+2,b=2,x=3,所以中心原子孤电子对数=1/2(a-xb)=1/2(6-3×2)=0。 ③中心原子的价层电子对数=σ键电子对数+1/2(a-xb)。 例1:下列分子中心原子的价层电子对数是3的是( ) A.H2O B.BF3C.CH4D.NH3 【解析】H2O中O的价层电子对数=2+1/2(6-2×1)=4 BF3中B的价层电子对数=3+1/2(3-3×1)=3 CH4中C的价层电子对数=4+1/2(4-4×1)=4 NH3中N的价层电子对数=3+1/2(5-3×1)=4。 (3)分子立体构型的确定 依据价层电子对互斥模型,判断出分子中中心原子的孤电子对数,再利用中心原子的成键电子对数,两者结合,就可以确定分子较稳定的立体构型。举例说明如下表:

人教版化学选修三2.2《分子的立体构型(第一课时)价层电子对互斥理论》课程教学设计

人教版化学选修3第二章第二节《分子的立体构型》第一课时 《价层电子对互斥理论》教学设计 一、教材分析 内容标准要求认识共价分子结构的多样性和复杂性,能根据有关理论判断简单分子或离子的立体构型。价层电子对互斥理论是新课程人教版《化学》选修三第二章“分子结构与性质”第二节的内容,是高中化学新课程教材中新增的内容,它建立在共价键的分类、键参数、 电子式的书写等基础知识之上,来预测AB n 型共价分子的立体构型,使学生对已有认知中 “CO 2分子为直线型、H 2 O分子为V型、CH 4 分子为正四面体型”等知识有更深层的认识。 第一节的共价键为其做铺垫,而后面的杂化轨道理论又可以与之相辅相成的共同解决分子立体构型的问题。 二、学情分析 通过对《共价键》的学习,同学们对共价键分类、键参数、电子式的书写等基础知识有一定的掌握,对“由相同数目的原子组成的分子,其构型有很大差异”的疑问是其学习价层 电子对互斥理论的驱动力。 三、教学目标 1.结合实例了解共价分子具有特定的空间结构,并可运用相关理论和模型进行解释和预测。 2.知道分子的结构可以通过波谱、X-射线衍射等技术进行测定。 四、教学重难点 重点:利用价层电子对互斥模型预测简单分子或离子的立体结构 难点:价层电子对互斥理论模型;价层电子对数、孤电子对数的计算 五、教学过程 环节一:利用分子的微观图片,创设情境,引发兴趣。 【引入】展示教材图片——形形色色的分子。为什么这些分子会有如此的立体构型呢?而同 样是AB 2型分子,为什么CO 2 为直线形,H 2 O为V形?今天我们通过学习“价层电子对互 斥理论”来解释这一现象。 环节二:以NH 3 为例,演示利用价层电子对互斥理论预测分子构型的步骤,帮助学生建立理论模型。 【教师活动1】以NH 3 为例,演示利用价层电子对互斥理论预测分子构型的步骤:①确定中心原子(分子中原子数少的为中心原子)②确定σ键电子对③确定孤电子对数④确定中心

分子的立体构型

[知识要点] 一、常见多原子分子的立体结构: (原子数目相同的分子的立体结构不一定相同) CH4 NH3 CH2O CO2 H2O 【小结】同为三原子分子或四原子分子,分子的空间构型不同。所以多原子分子的立体结构不但与所连原子数目有关,还与其他因素(比如中心原子是否有孤对电子及孤对电子的数目)有关 二、价层电子对互斥模型: (用中心原子是否有孤对电子及孤对电子的数目,预测分子的立体结构)价层电子对互斥模型认为分子的立体结构是由于分子中的价电子对(成键电子对和孤对电子对)相互排斥的结果。中心原子价层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型这种模型把分子分为两类: 1、中心原子上的价电子都用于形成共价键(中心原子无孤对电子) 中心原子无孤对电子,分子中存在成键电子对与成键电子对间的相互排斥,且作用力相同,分子的空间构型以中心原子为中心呈对称分布。如CO2、CH2O、CH4、HCN等分子。它们的立体结构可用中心原子周围的原子数来预测: 2、中心原子上有孤对电子(未用于形成共价键的电子对)的分子。 中心原子上有孤对电子,分子中存在成键电子对与成键电子对间的相互排斥、成键电子对与孤对电子对间的相互排斥、孤对电子对与孤对电子对间的相互排斥。孤对电子要占据中心原子周围的空间,并参与互相排斥,使分子呈现不同的立体构型 如H2O和NH3,中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥,中心原子周围的δ键+孤对电子数=4,所以NH3与H2O的VSEPR理想模型都是四面体形。因而H2O分子呈V 型,NH3分子呈三角锥形。 【小结】电子对的空间构型(VSEPR理想模型)与分子的空间构型存在差异的原因是由于孤对电

人教版高中化学选修三 2.2 分子的立体构型_教案设计

《分子晶体》教学设计 【教学目标】 1、通过了解干冰等分子晶体的宏观性质,引导学生理解分子晶体的概念和空间结构特点及微粒的 堆积方式; 2、掌握分子晶体的性质特征; 3、了解范德华力对分子晶体性质的影响情况; 4、了解氢键对分子晶体性质饿影响情况。 5、运用模型方法和类比方法认识分子晶体与其他晶体的本质差别。 6、使学生主动参与科学研究体验研究过程激发他们的学习兴趣。唤起学生的空间想象 能力提高学生的审美情趣和科学鉴赏能力。 【教学重点】掌握分子晶体的结构与性质特点。 【教学难点】理解不同相互作用构成晶体的的区别和联系。 【教学过程】 一、课前准备 1.要求每个学生制作一个边长为5厘米的立方体模型 2.在课前组织学生阅读教材关于分子晶体的结构特征的内容,组织观看老师自己录制的微课《1分子晶体的结构和性质特征》《2分子晶体熔沸点高低的判断方法》《3分子晶体的结构特征和结构模型》,达到预习的效果。 3.老师列出下列一系列问题,要求学生在预习的基础上得出结论,每个小

组在课堂上进行展示一个问题。 自主学习和展示问题 (1).分子晶体的概念是什么?分子晶体内的作用力有哪些?这些作用力分别影响分子晶体的那些性质? (2).分子晶体具有哪些物理特性?为什么具有这些特性?C60、淀粉、蛋白质、油脂是否为分子晶体? (3).无氢键存在的分子晶体,如何判断熔沸点的高低? (4).举出实例说明存在氢键的分子晶体的熔沸点比无氢键的分子晶体的熔沸点高。 (5).氨气、水、HF、乙醇等分子间均存在氢键,为何水的熔沸点最高?一个水分子同时与几个其它分子形成氢键?1mol水中存在多少个氢键?NH3和HF呢?一般物质都具有热胀冷缩的特性,为何冰的密度比水小?(6).N2、CO分子量相同,结构相似,都是分子晶体,都不存在分子间氢键,两者的熔沸点相同吗? (7).概括影响分子晶体熔沸点高低的影响因素,并叙述判断分子晶体熔沸点高低判断的详细方法。 (8).为什么F2、Cl2、Br2、I2的熔沸点逐渐升高?而锂、钠、钾、铷、铯的熔沸点逐渐降低? (9).举例说明什么是分子密堆积结构,什么是分子非密堆积结构?分子晶体的密度取决于哪些因素? 二、课堂流程 1.老师交代本节课的教学内容,学习目标。

高中化学《分子的立体结构》导学案 新人教版选修4

第二节分子的立体结构 第一课时 教学目标: 1.会判断一些典型分子的立体结构,认识分子结构的多样性和复杂性,理解价层电子对 互斥模型。 2.通过对典型分子立体结构探究过程,学会运用观察、比较、分类及归纳等方法对信息 进行加工,提高科学探究能力。 3.通过观察分子的立体结构,激发学习化学的兴趣,感受化学世界的奇妙。 教学重点:价层电子对互斥模型 教学难点:能用价层电子对互斥模型解释分子的立体结构 教学过程: 教师活动学生活动设计意图【课始检测】展示CO2、H2O、NH3、 CH2O、C H4等分子的球棍模型(或比例模型),让学生判断它们的立体构型并思考:为什么会具有这样的构型?观察判断 思考讨论 承上启下, 温故知新 【目标展示】多媒体展示本节教学目 标并口述。 熟悉本节目标有的放矢【精讲精练】 一、形形色色的分子 【自主学习】请学生阅读教材P35相 关内容,思考如下问题: 1、分子中所含有的原子个数与它们 的空间构型有何关系? 2、同为三原子分子,CO2 和 H2O 分子的空间结构却不同,什么原因?同为四原子分子,CH2O与 NH3分子的的空间结构也不同,什么原因?思考讨论回答 培养学生联 系思考的能 力,引导学 生完成对分 子空间构型 的成因的设 想

【板书】二、价层电子对互斥理论1、价层电子对互斥理论: 分子的立体构型是“价层电子对”相互排斥的结果。 【讲解】分子中的孤电子对—孤电子对的斥力>成键电子对—孤电子对的斥力>成键电子对—成键电子对的斥力。由于相互排斥作用,尽可能趋向彼此远离,排斥力最小。 【归纳】2、价层电子对的计算:价层电子对是指分子中心原子上的电 子对。以ABn型分子为例: 价层电子对数=中心原子所成σ键数+ 中心原子孤电子对数=n +1/2(a-nb) 注:a为中心原子A价电子数,b为配位原子B最多能接受的电子数,n即为分子式中的n值,即配位原子的个数。【强调】阴阳离子的价层电子对数的求法。 3、VSEPR模型: 【启发思考】如何应用价层电子对数确定VSEPR模型及空间构型?讨论,归纳,回答 归纳 强调重点内 容,加深学 生印象

2.2《分子的立体结构》教案(人教版选修3)

第二章第二节分子的立体结构 主要知识点: 写出CO2、H2O、NH3、CH2O、CH4的结构式和电子式; 一、形形色色的分子 大多数分子是由两个以上原子构成的,于是就有了分子中的原子的空间关系问题,这就是所谓“分子的立体结构”。例如,三原子分子的立体结构有直线形和V形两种。如C02分子呈直线形,而H20分子呈V形,两个H—O键的键角为105°。 三原子分子立体结构:有直线形C02、CS2等,V形如H2O、S02等。 大多数四原子分子采取平面三角形和三角锥形两种立体结构。例如,甲醛(CH20)分子呈平面三角形,键角约120°;氨分子呈三角锥形,键角107°。 四原子分子立体结构:平面三角形:如甲醛(CH20)分子等,三角锥形:如氨分子等。 五原子分子的可能立体结构更多,最常见的是正四面体形,如甲烷分子的立体结构是正四面体形,键角为109°28/。 五原子分子立体结构:正四面体形如甲烷、P4等 测分子体结构:红外光谱仪→吸收峰→分析 肉眼不能看到分子,那么,科学家是怎样知道分子的形状的呢?早年的科学家主要靠对物质的宏观性质进行系统总结得出规律后进行推测,如今,科学家已经创造了许许多多测定

分子结构的现代仪器,红外光谱就是其中的一种。 分子中的原子不是固定不动的,而是不断地振动着的。所谓分子立体结构其实只是分子中的原子处于平衡位置时的模型。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过计算机模拟,可以得知各吸收峰是由哪一个化学键、哪种振动方式引起的,综合这些信息,可分析出分子的立体结构。二、价层电子对互斥模型 在1940年,希吉维克(Sidgwick)和坡维尔(Powell)在总结实验事实的基础上提出了一种简单的理论模型,用以预测简单分子或离子的立体结构。这种理论模型后经吉列斯比(R.J,Gillespie)和尼霍尔姆(Nyholm)在20世纪50年代加以发展,定名为价层电子对互斥模型,简称VSEPR(Valence Shell Electron Pair Repulsion)。 1.价层电子互斥模型 分子的空间构型与成键原子的价电子有关。价层电子对互斥模型可以用来预测分子的立体结构。应用这种理论模型,分子中的价电子对(包括成键电子对和孤电子对),由于相互排斥作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。 价电子对之间的斥力 1).电子对之间的夹角越小,排斥力越大。 2).由于成键电子对受两个原子核的吸引,所以电子云比较紧缩,而孤对电子只受到中心原子的吸引,电子云比较“肥大”,对邻近电子对的斥力较大,所以电子对之间的斥力大小顺序如下:孤电子对—孤电子对>孤电子对—成键电子>成键电子—成键电子 3).由于三键、双键比单键包含的电子数多,所以其斥力大小次序为三键>双键>单键 2.价层电子对互斥理论:对ABn型的分子或离子,中心原子A价层电子对(包括用于形成共价键的共用电子对和没有成键的孤对电子)之间存在排斥力,将使分子中的原子处于尽可能远的相对位置上,以使彼此之间斥力最小,分子体系能量最低。 3.价层电子对互斥模型: 这种模型把分子分成以下两大类:一类是中心原子上的价电子都用于形成共价键,如C02、CH20、CH4等分子中的碳原子,在这类分子中,由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离,成键原子的几何构型总是采取电子对排斥最小的那种结构。它们的立体结构可用中心原子周围的原子数n来预测,概括如下: 另一类是中心原子上有孤对电子(未用于形成共价键的电子对)的分子,如H2O和NH3,

分子的立体构型

分子的立体构型 第1课时价层电子对互斥理论 [目标定位] 1.认识共价分子结构的多样性和复杂性。2.理解价层电子对互斥理论的含义。3.能根据有关理论判断简单分子或离子的构型。 一、常见分子的立体构型 1.写出下列物质分子的电子式和结构式,并根据键角确定其分子构型: 2.归纳总结分子的立体构型与键角的关系:

分子的立体构型 (1)分子构型不同的原因:共价键的方向性与饱和性,由此产生的键长、键角不同。 (2)依据元素周期律推测立体结构相似的分子,如CO2与CS2、H2O与H2S、NH3与PH3、CH4与CCl4等;CH4和CCl4都是五原子型正四面体,CH3Cl、CH2Cl2、CHCl3是四面体构型但不是正四面体,而白磷是四原子型正四面体,它与CH4等五原子型正四面体的构型、键角是不同的(P4分子中的键角为60°)。 (3)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2===CH—CH===CH2(丁二烯)、CH2===CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。 1.硫化氢(H2S)分子中,两个H—S键夹角都接近90°,说明H2S分子的立体构型为__________;二氧化碳(CO2)分子中,两个C===O键夹角是180°,说明CO2分子的立体构型为__________;四氯化碳(CCl4)分子中,任意两个C—Cl键的夹角都是109°28′,说明CCl4分子的立体构型为____________。 答案V形直线形正四面体形 解析用键角可直接判断分子的立体构型。三原子分子键角为180°时为直线形,小于180°时为V形。S、O同主族,因此H2S和H2O分子的立体构型相似,为V形。由甲烷分子的立体构型可判断CCl4的分子构型。 2.下列各组分子中所有原子都可能处于同一平面的是() A.CH4、CS2、BF3B.CO2、H2O、NH3 C.C2H4、C2H2、C6H6D.CCl4、BeCl2、PH3 答案 C 解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。 二、价层电子对互斥理论 1.价层电子对互斥理论的基本内容:分子中的价电子对——成键电子对和孤电子对由于相互排斥作用,尽可能趋向彼此远离。 (1)当中心原子的价电子全部参与成键时,为使价电子斥力最小,就要求尽可能采取对称结构。

高中化学 人教版选修3 第2章 第2节 分子的立体构型 教学设计、教案

第二节分子的立体构型 第1课时价层电子对互斥理论[明确学习目标] 1.认识共价分子结构的多样性和复杂性。2.能根据价层电子对互斥理论判断简单分子或离子的构型。 学生自主学习 一、形形色色的分子 1.三原子分子(AB2型) 2.四原子分子(AB3型) 3.五原子分子(AB4型)

最常见的为□09正四面体形,如甲烷分子的立体结构为□10正四面体形,键角为□11109°28′。 二、价层电子对互斥理论 1.价层电子对互斥理论(VSEPR) 分子中的价层电子对(包括□01σ键电子对和中心原子上的□02孤电子对)由于□03相互排斥而趋向尽可能彼此远离,分子尽可能采取对称的立体构型,以减小斥力。 2.价层电子对的确定方法 σ键电子对数可由分子式确定。 a表示中心原子的价电子数,对于主族元素来说,a=原子的□04最外层电子数;对于阳离子来说,a=中心原子的□05价电子数-离子电荷数;对于阴离

子来说,a=中心原子的□06价电子数+|离子电荷数|。 x表示与中心原子结合的□07原子数。 b表示与中心原子结合的原子□08最多能接受的电子数,氢为1,其他原子=□098-该原子的价电子数。 3.VSEPR模型预测分子或离子的立体构型 (1)中心原子上的价电子都用于形成共价键的分子 (2)中心原子上有孤电子对的分子 对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的立体构型。

1.五原子的分子空间构型都是正四面体吗? 提示:不是,只有中心原子所连四个键的键长相等时才为正四面体。如CH3Cl 因C—H键和C—Cl键键长不相等,故CH3Cl分子的四面体不再是正四面体。 2.VSEPR模型和分子的立体构型二者相同吗? 提示:不一定相同。(1)VSEPR模型指的是包括σ键电子对和孤电子对在内的空间构型;分子的立体构型指的是组成分子的所有原子(只考虑分子内的σ键)所形成的空间构型。 (2)若分子中没有孤电子对,VSEPR模型和分子立体构型一致;若分子中有孤电子对,VSEPR模型和分子立体构型不一致。

分子的立体构型,,学案-分子立体构型的判断

分子的立体构型,,学案:分子立体构型的判断 第二节分子的立体构型教学目标:1、了解共价分子结构的多样性。2、初步认识价层电子对互斥模型。3、能利用VSEPR模型预测简单分子或离子的立体构型。教学重、难点:利用价层电子对互斥理论判断分子的立体构型。教学过程:一、形形色色的分子学生活动:(表格一)分子类型三原子分子四原子分子五原子分子化学式CO2 H2O C2H2 CH2O NH3 P4 CH4 立体构型结构式键角比例模型[问题导入] 1、立体结构是由什么决定的?2、分子的立体结构如何测得?并请学生阅读“资料卡片”及“科学视野”。[学生阅读并填空] 1、分子立体结构和有关。2、分子立体结构可由测得。[过渡]为什么原子数目相同的分子空间结构不同?[分析] 1、对比CO2和H2O的电子式和结构,得出原子个数相同的分子,含有孤电子对和不含孤电子对的分子结构不同。[总结] 孤电子对占有一定的空间,对其它成键电子对存在排斥力,影响分子的空间构型。[过渡] 由此科学家提出了价层电子对互斥理论。[导入] 二、价层电子对互斥理论(VSEPR theory)1、内容:多原子分子中,中心原子的价层电子对(孤电子对和σ键电子对)之间相互排斥,使分子的空间构型总是趋向价层电子对间排斥力最小的那种构型。这种构型称为价层电子对互斥模型(即VSEPR模型)。(1)中心原子的确定:对于ABn型分子,则A为中心原子。(2)价层电子对的确定:价层电子对=孤电子对+σ键电子对σ键电子对由n值决定,等于与中心原子结合的原子数n 孤电子对数=1/2 (a—xb)其中a为中心原子的价电子数,对于主族元素来说,价电子数等于原子的最外层电子数,x为与中心原子结合的原子数,b为与中心原子结合的原子最多能接受的电子数,氢为1,其它原子等于8-该原子的价电子数。对于阳离子,a为中心原子的价电子数减去离子的电荷数对于阴离子,a为中心原子的价电子数加上离子的电荷数[练习]表格二:分子或离子中心原子 a x b 孤电子对数SO2 NH4+ CO32- 2、VSEPR模型和分子构型的关系。(VSEPR模型中略去孤电子对即为分子构型)[学生推测] 表格三:中心原子周围的价层电子对数目VSEPR模型孤电子对数分子的空间构型 2 直线型0 3 平面三角形0 1 4 正四面体型0 1 2 (3)利用上表,由价层电子对数确定VSEPR模型,由孤电子对确定分子的空间构型[分组计算] 分子或离子孤电子对数价层电子对数VSEPR模型分子或离子的立体结构C02 SO2 CO32- CH4 [练习]1、确定NH3 NH4+SO32- H2SBF3VSEPR模型和立体构型。2、分析NH3 及CH4键角关系。价层电子对空间构型中电子对间斥力:孤对-孤对孤对–键对键对–键对七、板书设计第二节分子的立体构型一、形形色色的分子二、价层电子对互斥理论1、内容:2、VSEPR 模型和分子构型的关系。3、VSEPR模型的应用价层电子对包括σ键电子对和中心原子孤电子对中心原子上的孤电子对数=1/2 (a—xb)

【原创】化学分子的立体结构教案(人教新课标选修)_1

教学目标 1.认识杂化轨道理论的要点 2.进一步了解有机化合物中碳的成键特征 3.能根据杂化轨道理论判断简单分子或离子的构型 4.采用图表、比较、讨论、归纳、综合的方法进行教学 5.培养学生分析、归纳、综合的能力和空间想象能力 教学重点 杂化轨道理论的要点 教学难点 分子的立体结构,杂化轨道理论 [展示甲烷的分子模型] [创设问题情景] 碳的价电子构型是什么样的?甲烷的分子模型表明是空间正四面体,分子中的C—H键是等同的,键角是109°28′。 说明什么? [结论] 碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。 师:碳原子的价电子构型2s22p2,是由一个2s轨道和三个2p轨道组成的,为什么有这四个相同的轨道呢? 为了解释这个构型Pauling提出了杂化轨道理论。 板:三、杂化轨道理论 1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨 道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。 [思考与交流] 甲烷分子的轨道是如何形成的呢? 形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。

根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化轨道外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。 [讨论交流]: 应用轨道杂化理论,探究分子的立体结构。 [总结评价]:引导学生分析、归纳、总结多原子分子立体结构的判断规律,完成下表。 [讨论]:怎样判断有几个轨道参与了杂化?(提示:原子个数) [结论]:中心原子的孤对电子对数与相连的其他原子数之和,就是杂化轨道数。 [讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为180°的直线型杂化轨道,SP2杂化轨道为120°的平面三角形,SP3杂化轨道为109°28′的正四面体构型。 [科学探究]:课本42页 [小结]:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键; CH2O中含有3σ键和1个π键

分子的立体构型(1)

新课标人教版选修三物质结构与性质 第二章分子结构与性质第二节分子的立体结构 第一课时 一、形形色色的分子 【投影展示】CO2、H2O、NH3、CH2O、CH4分子的球辊模型(或比例模型); 1、三原子分子 化学式结构式分子的立体结构模型分子的空间构型键角 直线形180° V形105° 2、四原子分子 化学式结构式分子的立体结构模型 平面三角形120° 三角锥形107°3、五原子分子 正四面体形109°28’4、其他分子 5、资料卡片CH3COOH C8H8 CH3OH C6H6 CH3CH2OH

分子世界如此形形色色,异彩纷呈,美不胜收,常使人流连忘返。 分子立体构型与其稳定性有关。例如,上图S 83像皇冠,如果把其中一个向上的硫原子倒转向下,尽管也可以存在,却不如皇冠是稳定;又如椅式C 6H 6比船式C 6H 6稳定 【问题】1、什么是分子的立体构型 答:分子的立体构型是指分子中原子的空间排布。 那么分子结构又是怎么测定的呢可以用现代手段测定。 【阅读】 选修3 P37——科学视野分子的立体结构的测定: 红外线光谱 学生活动:知识整理:运用你对分子的已有的认识,完成下列表格 分子式 分子的立体 结构 原子数目 键角 电子式 H 2O CO 2 NH 3 BF 3 CH 2O CH 4 C 2H 4 C 6H 6 P 4 【问题】 3、 同为三原子分子的CO 2和H 2O ,四原子分子的NH 3和CH 2O ,它们的立体结构却不同,为什么 学生活动:【准备知识】填写下列表格中内容: 分子中的原子 分子立体构型 红外线 分析

二、 价层电子对 互斥模型(VSEPR 模型) 1、价层电子对互斥模型: 1940年美国的Sidgwick NV 等人相继提出了价层电子对互斥理论,简称VSEPR 法,该法适用于主族元素间形 成的ABn 型分子或离子。 该理论认为:一个共价分子或离子中,中心原子A 周围所配置的原子B (配位原子)的几何构型,主要决定于中心原子的价电子层中各电子对间的相互排斥作用。 a:中心原子的价电子数(最外层电子数) ① 对于阳离子价电子数=最外层电子数-电荷数 ② 对于阴离子价电子数=最外层电子数+电荷数 x :与中心原子相结合的原子数 b :与中心原子相结合的原子能得到的电子数 例如:CO 2: CO 2 孤电子对=1/2(4-2×2) =0 分子真实 构型 中心原子上孤电子对=1/2(a -x b)

人教版化学选修三2.2《分子的立体构型》课程教学设计

《第二节分子的立体构型》教学设计 一、教材分析 本节课是选修3的第二章第二节内容,是在必修2已介绍共价键的知识基础上,介绍分子的立体结构。本节内容对空间想象能力要求较高,但不必讲解太深,能根据价层电子对互斥理论对简单共价分子结构的多样性和复杂性进行解释即可。 二、学情分析 学生的空间想象思维较弱,相关知识的链接不够,在教学中需要细致把握。但另一方面 本节知识属于化学理论教学和已有知识关联度较少,通过设计引导能取得很好教学效果。 三、考纲要求: 1、认识共价分子的多样性和复杂性 2、初步认识价层电子对互斥模型; 3、能用VSEPR模型预测简单分子或离子的立体结构 四、教学目标 知识与技能 1、使学生正确理解价层电子对互斥理论 2、学会分析分子的立体构型 能力培养 1、通过价层电子对互斥理论的教学,提升学生化学理论素养。 2、通过探究分子的立体构型,培养学生空间想象能力,自学能力。 情感价值观的培养 通过学习培养学生独立思考、积极进取的精神,用数学的思想解决化学问题的能力。切 身感悟化学学科的奇妙,体验探究中的困惑、顿悟、喜悦;在质疑、体会、反思中提升自身素质。 五、重点难点 1、分子的立体构型 2、价层电子对互斥理论 六、教学方法 探究式教学法,模型构造,学生自主学习,多媒体。 七、教学过程 [复习回顾] σ键成键方式“头碰头”,呈轴对称 1.共价键的类型 π键成键方式“肩并肩”,呈镜像对称 2.判断规律 共价单键是σ键, 共价双键中一个是σ键,另一个是π键,

共价三键中一个是σ键,另两个为π键 键能 衡量化学键稳定性 键参数 键长 键角 描述分子的立体结构的重要因素 [板书] 第二节 分子的立体构型 [提问] 什么是分子的立体构型? [学生回答] 分子的立体构型是指多原子分子构成的分子中原子的空间位置关系。 [追问] 双原子分子存在立体结构吗? [过渡] 多原子分子的立体结构是什么构型呢? [板书] 一.形形色色的分子 [学生活动] 看大屏幕 1、双原子分子:直线形 O 2 HCl 2、三原子分子立体结构(直线形 CO 2 和 V 形 H 2O ) 3、四原子分子立体结构(直线形 C 2H 2、平面三角形 CH 2O 、三角锥形 NH 3、正四面体 P 4) 4、五原子分子立体结构(最常见的是正四面体 CH 4) 5、其他 [问题导入] 1、 同为三原子分子,CO 2 和 H 2O 分子的空间结构却不同,为什么? 同为四原子分子,CH 2O 与 NH 3 分子的空间结构也不同,为什么? 2、立体结构是由什么决定的? 分子的立体结构如何测得? 并请学生阅读课本 P 37-P 38 二。 [学生阅读得出结论] 分子的立体构型是指分子中的原子在空间的排布。 对 ABn 型分子或离子,中心原子 A 的价层电子对(包括σ键电子对和孤电子对)之 间存在斥力,使分子中的原子处于尽可能远的相对位置上,以使彼此之间斥力最小,分子体 系能量最低。由此可知,分子的立体构型是价层电子对互相排斥的结果。 分子或离子中中心原子的价层电子对在空间的分布(即含孤对电子的 V SEPR 模型) VSEPR 模型和分子构型的关系。(VSEPR 模型中略去孤电子对即为分子构型)

分子的立体构型教案

《分子的立体构型》教案 授课人:龚韦韦 一、教学目标 1、知识技能:①正确理解价层电子对互斥理论。 ②学会分析分子的立体构型 ③理解分子的杂化轨道概念的基本思想及三种主要杂化方式 2、能力培养:①通过价层电子对互斥理论的学习,提升学生化学理论素养。 ②通过探究分子的立体构型,培养学生空间想象能力。 3、情感目标:培养学生独立思考、积极进取的精神和严谨、细致的科学态度,并提高用数学的思想解决化学问题的能力。 二、考纲要求: 1、能根据杂化轨道理论判断简单分子或离子的构型。 2、能用VSEPR 模型预测简单分子或离子的立体结构。 3、了解简单配合物的成键情况。 三、重点难点 分子的立体构型和价层电子对互斥理论 四、教学策略和手段 探究式教学法、模型构造、学生自主学习、多媒体 五、课前准备 课件制作、学案 六、教学过程 【情景再现】CH 4分子形成 【考点解读】 考点一. 杂化轨道理论 1、杂化:原子内部能量相近的原子轨道,在外界条件影响下重新组合的过程叫原子轨道的杂化 2、杂化轨道:原子轨道组合杂化后形成的一组新轨道 3、杂化轨道类型 C H H H H 109°28′ C 的基态 2p 激发态 2p 杂化3sp

杂化 类型 杂化轨 道数目 杂化轨 道间夹角 空间构型实例sp 2 180°直线形BeCl2 sp2 3 120°平面三角形BF3 sp3 4 109°28′正四面体形CH4 例题:蛋白质由多肽链组成,其基本单元如下图 (1)指出分子中共价键的类型及数目? (2)在图中用小红点标出孤对电子。 (3)在此基本单元中,采取SP3杂化的原子为,采取SP2杂化的原子为; 【总结】 要判断杂化类型必须要知道原子价层电子对的情况,即σ电子对和孤电子对。【思考】如何判断σ电子对和孤电子对? 经验公式(对于ABm型分子) σ电子对:与中心原子成键的原子个数——m 孤电子对数= (a-bm)÷2 =(中心原子价电子数-每个配位原子最多能接受的电子数×m)÷2 【练习】 1、《高考365》P84 考点例析1下列物质的杂化方式不是SP3杂化的是() A NH3 B CH4 C CO2 D H2O 2、下列分子和离子中,中心原子的价电子对几何构型不为四面体的是() A、NH4+ B、SO2 C、SO42- D、OF2 价层 电子 对数 杂化类 型 σ电子 对数 孤电 子对 数 价层电子对空 间构型 分子空间构型实例 2 SP 2 0 直线形直线形CO2 3 SP2 3 0 平面三角形 平面三角形BF3 2 1 V形SnBr2 4 SP3 4 0 正四面体形 正四面体形CH4 3 1 三角锥形NH3 2 2 V形H2O

相关文档