文档库 最新最全的文档下载
当前位置:文档库 › 编码器应用技术

编码器应用技术

编码器应用技术
编码器应用技术

编码器应用技术

-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

编码器应用技术

编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备,是集光、机、电技术于一体的数字化传感器,可以高精度测量被测物的转角或直线位移量。

1、编码器的定义:

中文名称:编码器

英文名称:coder; encoder

定义:一种按照给定的代码产生信息表达形式的器件。

2、编码器的分类:

(1)根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

(2)按测量方式的分类,编码器可分为旋转编码器、直尺编码器

(3)根据读出方式,编码器可以分为接触式和非接触式两种。接触式采用电刷输出,用电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。

(4)根据其刻度方法及信号输出形式或者信号原理或者编码方式,可分为增量式、绝对式以及混合式三种。

我们常用这种分类方法区别编码器,并且混合式的编码器也是由增量型和绝对值型的组合而成的,增量型和绝对型一般都应用于速度控制或位置控制系统的检测元件,以下将重点讲述。

编码器控制转速的原理:

ΔN=ND1(测量)-ND2(理论),N为电机转速

当测出的脉冲个数与计算出的理论值有偏差时,可根据电压与脉冲个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减去。当运行时间越长路线越长,离我们预制的路线偏离就多了。这时系统起动位置环,通过不断测量光电编码器每秒钟输出的脉冲个数,并与标准值PD(理想值)进行比较,计算出增量△P并将之转换成对应的D/A 输出数字量,通过控制器减少输个电机的脉冲个数,在原来输出电压的基础上减去增量,迫使电机转速降下来,当测出的△P近似为零时停止调节,这样可将电机转速始终控制在允许的范围内。

编码器的常规工作电压有以下几种:5V、12V、24V、5-24V(通用型)、5-30V

编码器常规防护性能:防油、防尘、抗震型。

弹性联接器:编码器轴与用户轴联接时,存在同轴误差,严重时将损坏编码器。要求采用弹性联接器(编码器厂家提供选件),解决偏心问题,一般可以做到允许扭矩 <1N.m, 不同轴度<0.2mm,轴向偏角 <1.5度。

编码器端孔径(mm) 用户端孔径(mm)

Φ4、5、6、8、10、15 Φ4、5、6、6.35、8、10、15

3、增量式编码器

增量式编码器(其中增量脉冲编码器简称SPC)是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。

顺时针运动逆时针运动

A B

1 1 0 1

0 0

1 0 A B

1 1 1 0 0 0 0 1

增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号,由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转;另每转输出一个Z相脉冲以代表零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5-10000线。

基本技术规格

(1)分辨率:用编码器轴转动一周所产生的输出信号基本周期来表示的,即脉冲数/转(PPR),码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。倍频提高分辨率。

(2)精度:度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。精度通常用角度、角分、角秒来表示。编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关。

(3)输出信号的稳定性:在实际运行条件下,保持规定精度的能力。影响编码器输出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源特性的变化。由于温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性,在设计和使用中都要给予充分考虑。

(4)响应频率:编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度。当编码器高速旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。如果光电检测器件和电子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉冲的现象。这样输出信号就不能准确反映轴的位置信息。所以,每一种编码器在其分辨率一定的情况下,它的最高转速也是一定的,即它的响应频率是受限制的。编码器的最大响应频率、分辨率和最高转速之间的关系如公式:

(5)信号输出形式:有正弦波(电流或电压),方波(TTL、HTL),集电极开路Open Collector(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL(ToTEM Pole)也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号经过放大、整形得到了正弦波或矩形波。

正弦波:基本消除了定位停止时的振荡现象,并且容易通过电子内插方法,以较低的成本得到较高的分辨率。

矩形波:容易进行数字处理,多用。

信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

如单相联接,用于单方向计数,单方向测速。

A.B两相联接,用于正反向计数、判断正反向和测速。

编码器和译码器的应用

编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 2、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 1、什么是编码: 教材说:用文字、符号、或者数字表示特定对象的过程称为编码 具体说:编码的逻辑功能是把输入的每个高、低电平信号编成对应的二进制代码 2、编码器74LS147的特点及引脚排列图: 74LS147是优先编码器,当输入端有两个或两个以上为低电平,它将对优先级别相对较高的优先编码。其引脚排列图: 3、什么是译码:译码是编码的逆过程,把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出,译码器广泛用于代码转换、终端的数字显示、数据分配、组合控制信号等。 译码器按照功能的不同,一般分为三类:二进制译码器、二—十进制译码器、显示译码器。 (1)变量译码器(用以表示输入变量的状态) 74LS138的特点及其引脚排列图:反码输出。 ABC是地址输入端,Y0—Y7是输出端,G1、G2A’、G2B’为 使能端,只有当G1=G2A’=G2B’=1时,译码器才工作。 (2)码制变换译码器:用于同一个数据的不同代码之间的相互转换,代表是4—10线译码器 译码器74LS42的特点及其引脚排列图: 译码器74LS42的功能是将8421BCD码译成10个对象 其原理与74LS138类同,只不过它有四个输入端, 十个输出端,4位输入代码0000—1111十六种状态组合

其中有1010—1111六个没有与其对应的输出端, 这六组代码叫做伪码,十个输出端均为无效状态。 (3)数码显示与七段译码驱动器:将数字、文字、符号的代码译成数字、文字、符号的电路 a、七段发光二极管数码显示管的特点:(共阴极) b、七段译码驱动器: 4、在本数字电路实验装置上已完成了译码器74LS48和数码管之间的连接图。 三四五脚接高电频,数码管的单独端接低电频。

编码器的工作原理及分类

编码器的工作原理及分类 编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。 故障现象:旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”。。。联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用

译码器、编码器及其应用实验报告

实验四 译码器、编码器及其应用 实验人员: 班号: 学号: 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验容 (1) 74LS138译码器逻辑功能的测试。将74LS138输出Y 0????~Y 7????接数字实验箱LED 管,地址Y 2Y 1Y 0输入接实验箱开关,使能端接固定电平(Y YY 或GND )。电路图如Figure 1所示: Figure 1 E Y 1YY 2Y ?????????? YY 2Y ??????????≠100时,任意拨动开关,观察LED 显示状态,记录观察结果。 E Y 1YY 2Y ?????????? YY 2Y ??????????=100时,按二进制顺序拨动开关,观察LED 显示状态,并与功能表对照,记录观察结果。 用Multisim 进行仿真,电路如Figure 2所示。将结果与上面实验结果对照。

Figure 2 (2) 利用3-8译码器74LS138和与非门74LS20实现函数: Y =Y ???Y ???+Y ???Y ???+YYY 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: Y =Y ???Y ???+Y ???Y ???+YYY =Y ???Y ???Y ???+Y ???Y ???Y +A Y ???Y ???+YYY =Y 0+Y 1+Y 4+Y 7=Y 0????Y 1????Y 4????Y 7????????????????????? 按Figure 3所示的电路连接。并用Multisim 进行仿真,将结果对比。 Figure 3

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

编码器使用教程与测速原理

编码器使用教程与测速原理 我们将通过这篇教程与大家一起学习编码器的原理,并介绍一些实用的技术。 1.编码器概述 编码器是一种将角位移或者角速度转换成一连串电数字脉冲的旋转式传感器,我们可以通过编码器测量到底位移或者速度信息。编码器从输出数据类型上分,可以分为增量式编码器和绝对式编码器。 从编码器检测原理上来分,还可以分为光学式、磁式、感应式、电容式。常见的是光电编码器(光学式)和霍尔编码器(磁式)。 2.编码器原理 光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。光电编码器是由光码盘和光电检测装置组成。光码盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,检测装置检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。 霍尔编码器是一种通过磁电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。霍尔编码器是由霍尔码盘和霍尔元件组成。霍尔码盘是在一定直径的圆板上等分地布置有不同的磁极。霍尔码盘与电动机同轴,电动机旋转时,霍尔元件检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。

可以看到两种原理的编码器目的都是获取AB相输出的方波信号,其使用方法也是一样,下面是一个简单的示意图。 3.编码器接线说明 具体到我们的编码器电机,我们可以看看电机编码器的实物。 这是一款增量式输出的霍尔编码器。编码器有AB相输出,所以不仅可以测速,还可以辨别转向。根据上图的接线说明可以看到,我们只需给编码器电源5V供电,在电机转动的时候即可通过AB相输出方波信号。编码器自带了上拉电阻,所以无需外部上拉,可以直接连接到单片机IO读取。

旋转编码器的输出电路以及常用术语介绍

旋转编码器的输出电路以及常用术语介绍 来源:互联网 旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。当旋转编码器轴带动光栅盘旋转时,经发光元件发出的光被光栅盘狭缝切割成断续光线,并被接收元件接收产生初始信号。该信号经后继电路处理后,输出脉冲或代码信号。旋转编码器的特点是体积小,重量轻,品种多,功能全,频响高,分辨能力高,力矩小,耗能低,性能稳定,可靠使用寿命长等特点。其主要种类有增量式编码器、绝对值编码器、正弦波编码器。 输出电路图解 1、NPN电压输出和NPN集电极开路输出线路 PNP开路集电极输出

电压输出 此线路仅有一个NPN型晶体管和一个上拉电阻组成,因此当晶体管处于静态时,输出电压是电源电压,它在电路上类似于TTL逻辑,因而可以与之兼容。在有输出时,晶体管饱和,输出转为0VDC的低电平,反之由零跳向正电压。 随着电缆长度、传递的脉冲频率、及负载的增加,这种线路形式所受的影响随之增加。因此要达到理想的使用效果,应该对这些影响加以考虑。集电极开路的线路取消了上拉电阻。这种方式晶体管的集电极与编码器电源的反馈线是互不相干的,因而可以获得与编码器电压不同的电流输出信号。 2、PNP和PNP集电极开路线路 该线路与NPN线路是相同,主要的差别是晶体管,它是PNP型,其发射极强制接到正电压,如果有电阻的话,电阻是下拉型的,连接到输出与零伏之间。 3、推挽式线路 这种线路用于提高线路的性能,使之高于前述各种线路。事实上,NPN电压输出线路的主要局限性是因为它们使用了电阻,在晶体管关闭时表现出比晶体管高得多的阻抗,为克服些这缺点,在推挽式线路中额外接入了另一个晶体管,这样无论是正方向还是零方向变换,输出都是低阻抗。推挽式线路提高了频率与特性,有利于更长的线路数据传输,即使是高速率时也是如此。信号饱和的电平仍然保持较低,但与上述的逻辑相比,有时较高。任何情况下推挽式线路也都可应用于NPN或PNP线路的接收器。

编码器应用技术

编码器应用技术 编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备,是集光、机、电技术于一体的数字化传感器,可以高精度测量被测物的转角或直线位移量。 1、编码器的定义: 中文名称:编码器 英文名称:coder; encoder 定义:一种按照给定的代码产生信息表达形式的器件。 2、编码器的分类: (1)根据检测原理,编码器可分为光学式、磁式、感应式和电容式。 (2)按测量方式的分类,编码器可分为旋转编码器、直尺编码器 (3)根据读出方式,编码器可以分为接触式和非接触式两种。接触式采用电刷输出,用电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 (4)根据其刻度方法及信号输出形式或者信号原理或者编码方式,可分为增量式、绝对式以及混合式三种。 我们常用这种分类方法区别编码器,并且混合式的编码器也是由增量型和绝对值型的组合而成的,增量型和绝对型一般都应用于速度控制或位置控制系统的检测元件,以下将重点讲述。

编码器控制转速的原理: ΔN=ND1(测量)-ND2(理论),N为电机转速 当测出的脉冲个数与计算出的理论值有偏差时,可根据电压与脉冲个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减去。当运行时间越长路线越长,离我们预制的路线偏离就多了。这时系统起动位置环,通过不断测量光电编码器每秒钟输出的脉冲个数,并与标准值PD(理想值)进行比较,计算出增量△P并将之转换成对应的D/A输出数字量,通过控制器减少输个电机的脉冲个数,在原来输出电压的基础上减去增量,迫使电机转速降下来,当测出的△P近似为零时停止调节,这样可将电机转速始终控制在允许的范围内。 编码器的常规工作电压有以下几种:5V、12V、24V、5-24V(通用型)、5-30V 编码器常规防护性能:防油、防尘、抗震型。 弹性联接器:编码器轴与用户轴联接时,存在同轴误差,严重时将损坏编码器。要求采用弹性联接器(编码器厂家提供选件),解决偏心问题,一般可以做到允许扭矩<1N.m, 不同轴度<0.2mm,轴向偏角<1.5度。 弹性联轴器常用规格为: 3、增量式编码器 增量式编码器(其中增量脉冲编码器简称SPC)是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。

译码器和编码器实验

实验三译码器和编码器 一实验目的 1.掌握译码器、编码器的工作原理和特点。 2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。 二、实验原理和电路 按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。通常,组合逻辑电路由门电路组成。 组合逻辑电路的分析方法:根据逻辑图进行二步工作: a.根据逻辑图,逐级写出函数表达式。 b.进行化简:用公式法、图形法或真值表进行化简、归纳。 组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。一般分四步进行。 a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。 b.列真值表。 c.进行化简:变量比较少时,用图形法。变量多时,可用公式化简。 d.画逻辑图:按函数要求画逻辑图。 进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。 值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。 1.译码器 译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。译码器分成三类: a.二进制译码器:如中规模2—4线译码器74LS139。,3—8线译码器74LS138等。 b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。 c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。 2.编码器 编码器也是组合电路的一部分。编码器就是实现编码操作的电路,编码实际上是译码相反的过程。按照被编码信号的不同特点和要求,编码器也分成三类: a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。 b.二—十进制编码器:将十进制的0~9编成BCD码,如:10线十进制—4线BCD码编码器74LS147等。 c.优先编码器:如8—3线优先编码器74LS148等。 三、实验内容及步骤 1.译码器实验 (1)将二进制2-4线译码器74LS139,及二进制3-8译码器74LS138分别插入实验系统IC 空插座中。 按图1.3.1接线,输入G、A、B信号(开关开为“1”、关为“0”),观察LED输出Yo、Y1、Y2、Y3的状态(亮为“1”,灭为“0”),并将结果填入表1.3.1中。

编码器基础知识大全

编码器 科技名词定义 中文名称: 编码器 英文名称: coder;encoder 定义: 一种按照给定的代码产生信息表达形式的器件。 应用学科: 通信科技(一级学科);通信原理与基本技术(二级学科)以上内容由全国科学技术名词审定委员会审定公布 编码器 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电

刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 作用 设计图纸 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组

的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1 和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。 分类 按照工作原理编码器可分为增量式和绝对式两类。 增量式 增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 绝对式

光电编码器的特性及应用

光电编码器的特性及应用 2009-04-09 15:31 1.光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感 器, 光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动 机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电 动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1增量式编码器 增 量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相; A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于 基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信 息。 1.2绝对式编码器 绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透 光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏 元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形

成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。 绝对式编码器是利用自然二进制或循环二进制(葛 莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测 绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点是: 1.2.1可以直接读出角度坐标的绝对值; 1.2.2没有累积误差; 1.2.3电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。 1.3混合式绝对值编码器 混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电转换原理 转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。 2. 光电编码器的应用电路 2.1 EPC-755A光电编码器的应用 EPC-755A 光电编码器具备良好的使用性能,在角度测量、位移测量时抗干扰能力很强,并具有稳定可靠的输出脉冲信号,且该脉冲信号经计数后可得到被测量的数字信号。因 此,我们在研制汽车驾驶模拟器时,对方向盘旋转角度的测量选用EPC-755A光电编码器作为传感器,其输出电路选用集电极开路型,输出分辨率选用360 个脉冲/圈,考虑到汽车方向盘转动是双向的,既可顺时针旋转,也可逆时针旋转,需要对编码器的输出信号鉴相后才能计数。图2给出了光电编码器实际使用的鉴 相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成。

编码器、译码器及应用电路设计

实验六编码器、译码器及应用电路设计 一、实验目的: 1、掌握中规模集成编码器、译码器的逻辑功能测试和使用方法; 1、学会编码器、译码器应用电路设计的方法; 3、熟悉译码显示电路的工作原理。 二、实验原理: 编码是用文字、符号或者数字表示特定对象的过程,在数字电路中是用二进制数进行编码的,相应的二进制数叫二进制代码。编码器就是实现编码操作的电路。本实验使用的是优先编码器74LS147,当输入端有两个或两个以上为低电平时,将对输入信号级别相对高的优先编码,其引脚排列如图6—1所示。 图6—1 74LS147引脚排列图图6—2 74LS138引脚排列图译码是编码的逆过程,是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配和组合控制信号等。不同的功能可选用不同种类的译码器。 译码器按照功能的不同,一般分为三类: 1、变量译码器(二进制译码器):用以表示输入变量的状态,如2—4线、3—8线、4—16线译码器。以3—8线译码器74LS138为例介绍: 图6—2为74LS138的引脚图,其中,A2A1A0为地址输入端,为译码器输出端,为使能端(只有当时,才能进行译码)。 图6—3 74LS42引脚排列图图6—5为CC4511引脚排列图 2、码制变换译码器:用于同一个数据的不同代码之间的相互变换。这种译码器的代表是4—10线译码器,它的功能是将8421BCD码译为十个对象,如74LS42等。它的原理与 74LS138译码器类同,只不过它有四个输入端,十个输出端。4位输入代码共有0000—1111

编码器和译码器实验报告

译码器、编码器及其应用 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验内容 (1) 74LS138译码器逻辑功能的测试。将74LS138输出??接数字实验箱LED 管,地址输入接实验箱开关,使能端接固定电平(或GND)。电路图如Figure 1所示: Figure 2 ??????????????时,任意拨动开关,观察LED显示状态,记录观察结果。 ??????????????时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。 用Multisim进行仿真,电路如Figure 3所示。将结果与上面实验结果对照。

Figure 4 (2) 利用3-8译码器74LS138和与非门74LS20实现函数: ?? 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: ?? ?? A ? ??????????? ???? 按Figure 5所示的电路连接。并用Multisim进行仿真,将结果对比。 Figure 6

(3) 用两片74LS138组成4-16线译码器。 因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。 而输入端只有 A、、三个,故要另用使能端进行片选使两片138译码器 进行分时工作。而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试?,在各端子上移动即可。在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED): Figure 8 四、实验结果 (1) 74LS138译码器逻辑功能的测试。 当输入 A时,应该是输出低电平,故应该第一个小灯亮。实际用实验台测试时,LE0灯显示如Figure 9所示。当输入 A时,应该是输出低电平,故理论上应该第二个小灯亮。实际用实验台测试时,LE0灯显示如Figure 6所示。 Figure 10

编码器和译码器的设计

目录 1设计目的与要求 (1) 1.1 设计的目的 (1) 1.2 设计要求 (1) 2 VHDL的简单介绍 (2) 2.1 VHDL的简介 (2) 2.2 VHDL的特点 (2) 2.3 VHDL的优势 (3) 2.4 VHDL的设计步骤 (4) 3 EDA的简单介绍 (5) 3.1 EDA的简介 (5) 3.2 EDA设计方法与技巧 (5) 4 设计过程 (7) 4.1编码器的原理 (7) 4.2译码器的原理 (7) 4.3课程设计中各部分的设计 (7) 5 仿真 (10) 5.1八-三优先编码器仿真及分析 (10) 5.2三-八译码器仿真及分析 (11) 5.3二-四译码器仿真及分析 (14) 心得体会 (13) 参考文献 (16) 附录 (17)

摘要 随着社会的发展,科学技术也在不断的进步。计算机从先前的采用半导体技术实现的计算器到现在广泛应用的采用高集成度芯片实现的多功能计算器。计算机电路是计算机的重要组成部分,了解计算机电路的知识是促进计算机的发展的先决条件。而编码器和译码器是计算机电路中的基本器件,对它们的了解可以为以后的进一步深化研究打下一个良好的基础。本设计主要介绍的是一个基于超高速硬件描述语言VHDL对计算机电路中编码器和译码器进行编程实现。 关键字:计算机编码器译码器

编码器和译码器的设计 1 设计目的与要求 随着社会的进一步发展,我们的生活各个地方都需要计算机的参与,有了计算机,我们的生活有了很大的便利,很多事情都不需要我们人为的参与了,只需要通过计算机就可以实现自动控制。由此,计算机对我们的社会对我们每个人都是很重要的。所以我们要了解计算机得组成,内部各种硬件,只有了解了计算机基本器件已经相应的软件,才能促进社会的发展。编码器和译码器的设计是计算机的一些很基础的知识,通过本次对于编码器和译码器的设计,可以让我知道究竟这种设计是如何实现的,这种设计对我们的生活有什么帮助,这种设计可以用到我们生活的哪些方面,对我们的各种生活有什么重大的意义。 1.1 设计的目的 本次设计的目的是通过简单的编码器和译码器的设计掌握基本的计算机的一些有关的知识,通过查资料已经自己的动手设计去掌握EDA技术的基本原理已经设计方法,并掌握VHDL硬件描述语言的设计方法和思想。以计算机组成原理为指导,通过将理论知识,各种原理方法与实际结合起来,切实的亲手设计,才能掌握这些非常有用的知识。通过对编码器和译码器的设计,巩固和综合运用所学知识,提高IC设计能力,提高分析、解决计算机技术实际问题的独立工作能力。也能通过这种自主设计,增强自己的动手能力,将理论知识切实应用的能力,这对我们将来的发展是很有帮助的。 1.2 设计要求 根据计算机组成原理中组合逻辑电路设计的原理,利用VHDL设计计算机电路中编码器和译码器的各个模块,并使用EDA 工具对各模块进行仿真验证和分析。编码器由八-三优先编码器作为实例代表,而译码器则包含三-八译码器和二-四译码器两个实例

编码器的作用

编码器 编码器是把角位移或直线位移转换成电信号的一种装置。前者称为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式 和绝对式两类。增量式编码器是将位 移转换成周期性的电信号,再把这个 电信号转变成计数脉冲,用脉冲的个 数表示位移的大小。绝对式编码器的 每一个位置对应一个确定的数字码, 因此它的示值只与测量的起始和终 止位置有关,而与测量的中间过程无 关。 从接近开关、光电开关到旋转编码器DEEGS编码器DG38S 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个μ到几十几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。 如上所述优点,旋转编码器已经越来越广泛地被应用于各种工控场合。 从增量式编码器到绝对式编码器

实验二编码器和译码器的应用

实验二编码器和译码器的应用 一.实验目的: 1.学会正确使用中规模集成组合逻辑电路。掌握编码器、译码器、BCD七段 译码器、数码显示器的工作原理和使用方法。 2.掌握译码器及其应用, 学会测试其逻辑功能。 二.实验仪器及器件: 1. TPE—D6Ⅲ型数字电路实验箱 1台 2.数字万用表 1块 3.器件:74LS20 二4输入与非门 1片 74LS04 六反相器 1片 74LS147 10线—4线优先编码器 1片 74LS138 3线—8线译码器 1片 74LS139 双2线—4线译码器 1片 74LS47 七段显示译码器 1片 三.实验预习: 1.复习编码器、译码器、BCD七段译码器、数码显示器的工作原理。 2.熟悉编码器74LS147及译码器74LS138、74LS139各引脚功能和使用方法, 列出74LS138、74LS139的真值表,画出所要求的具体实验线路图。四.实验原理: 在数字系统中,常常需要将某一信息变换为特定的代码,有时又需要在一定的条件下将代码翻译出来作为控制信号,这分别由编码器和译码器来实现。 1.编码:用一定位数的二进制数来表示十进制数码、字母、符号等信息的过 程。编码器:实现编码功能的电路。 编码器功能:从m个输入中选中一个,编成一组n位二进制代码并行输出。 编码器特点:(1)多输入、多输出组合逻辑电路。 (2)在任何时候m个输入中只有一个输入端有效(高电平或 低电平)对应有一组二进制代码输出。 编码器分类:二进制、二─十进制、优先编码器。2.译码:是编码的反过程,是将给定的二进制代码翻译成编码时赋予的原意。 译码器:实现译码功能的电路。译码器特点:(1)多输入、多输出组合逻辑电路。 (2)输入是以n位二进制代码形式出现,输出是与之对应的 电位信息。

编码器编程

我用的是三菱PLC的FX2N,这里有A、B、Z相的HK38系列的增量式旋转编码器,将PLC 的X0,X1,X2分别接编码器的A相和B相及Z相,用PLC的双相计数器C252计数,虽然我知道A相超过B相90°为顺时针转,滞后就逆时针转,但不知道如何具体编程,我的目的是达到测旋转轴的角度,从-135°~-30°~-10°~10°~+30°~-135°,正反转旋转 多谢各位,我改了一下,但仍旧没找到问题原因,但测试中发现,接X2和X5都能使C252复位,尽管手册上说只有X2复位,但由于以上提到的Z相接入任何一个输入端都使之ON,所以我就避开了接X2和X5端子,改接其他的端子,比如X3,这并不是因为它是高速输入端的一种才选,其他端也一样,因此我采用了软件复位,也没办法了,效果倒是达到了想要的,

DHSZ D200 K8 C235 M8130 HSZ是高速区间比较指令,前面加D是32位的。运作如下: D200 > C235 M8130 ON D200<=C235>=k8 M8131 ON D200 < C235 M8132 ON

将旋转编码器的A相或B相的输出信号连接至X0~X5,(使用不同的计数器,接不同的输入点)然后用高速计数器对编码器的脉冲信号进行计数。以C235为例,只进行加计数,脉冲编码器的A相或B相需要接入PLC的X0,当设备带动编码器旋转,则X0就有信号输入,C235就会进行计数。使用很简单。 需求一段三菱PLC+旋转编码器+变频器实行多段距离控制,例如:上升总距离为50cm,0-15cm 实行20hz运行、16-25 cm 实行35HZ运行、26-35cm实行40HZ 运行、36-46cm实行20HZ 运行、47-50cm实行10HZ运行;下降反之! 程序中的数字,是按每厘米100个脉冲设计的,在实际中还要经过计算。

编码器的分类、特点及其应用详解

编码器的分类、特点及其应用详解 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 二、光电编码器的应用增量型编码器与绝对型编码器区别 1、角度测量

编码器和译码器

编码器和译码器 07级23系 马运聪PB07210249 肖阳辉 实验目的: 1掌握编码器、译码器的逻辑功能和分析方法、设计方法。 2熟悉中规模集成电路编码器、译码器的电路结构和功能工作原理。 实验原理: 1优先编码器 输入输出均以低频信号为有效信号。 功能表如下: 输入 输出 S I'0 I'1 I'2 I'3 I'4 I'5 I'6 I'7 Y'2 Y'1 Y'0 Y's Y'ex 1 X X X X X X X X 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 X X X X X X X 0 0 0 0 1 0 0 X X X X X X 0 1 0 0 1 1 0 0 X X X X X 0 1 1 0 1 0 1 0 0 X X X X 0 1 1 1 0 1 1 1 0 0 X X X 0 1 1 1 1 1 0 0 1 0 0 X X 0 1 1 1 1 1 1 0 1 1 0 0 X 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 扩展端: 1=S 编码器工作,0=S 编码器关闭。 1''==EX S Y Y 编码器关闭。 1',0'==EX S Y Y 编码器工作,没有有效输入信号。 0',1'==EX S Y Y 编码器工作,有有效输入信号。

2译码器 输入高电平有效,输出低电平有效真值表如下: 序号 输入输出 A3 A2 A1 A0 Y'0 Y'1 Y'2 Y'3 Y'4 Y'5 Y'6 Y'7 Y'8 Y'9 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 2 0 0 1 0 1 1 0 1 1 1 1 1 1 1 3 0 0 1 1 1 1 1 0 1 1 1 1 1 1 4 0 1 0 0 1 1 1 1 0 1 1 1 1 1 5 0 1 0 1 1 1 1 1 1 0 1 1 1 1 6 0 1 1 0 1 1 1 1 1 1 0 1 1 1 7 0 1 1 1 1 1 1 1 1 1 1 0 1 1 8 1 0 0 0 1 1 1 1 1 1 1 1 0 1 9 1 0 0 1 1 1 1 1 1 1 1 1 1 0 伪码1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

编码器及其应用

实验四编码器及其应用 一、实验目的 1、加深理解编码器的逻辑功能。 2、掌握EWB中的数字集成电路的使用方法。 3、练习虚拟数字仪器的使用。 4、练习EWB中的指示元件的使用。 二、实验内容 1、 8线—3线二进制编码器功能测试 (1) 表4.6.3是8线—3线二进制编码器的真值表,根据此真值表写出各输出逻辑函数的表达式,在EWB的电路设计区创建用“或门”实现的逻辑图。 表4.6.3 8线—3线二进制编码器真值表 (2) 从仪器库中选择字信号发生器,将图标下沿的输出端口连接到电路的输入端,打开面板,按照真值表中输入的要求,编辑字信号并进行其它参数的设置。 (3)从仪器库中选择逻辑分析仪,将图标左边的输入端口连接到电路的输出端,打开面板,进行必要合理的设置。 (4)从指示元件库中选择彩色指示灯,接至电路输出端。 (5)单击字信号发生器“Step”(单步)输出方式,记录彩色指示灯的状态(亮代表“1”,暗代表“0”)。记录逻辑分析仪所示波形与真值表比较。 2、集成编码器74LS147的功能测试及应用 (1)输入端0---7分别加低电平以及均为低电平或高电平时,观察并记录输出端A、B、C、D的逻辑状态,功能表格自拟。

(2)74147优先编码器的应用 74147优先编码器、74LS248显示译码及七段字型显示器组成的优先编码器译码器实验电路如下图所示。当输入端1—9分别为低电平以及均为低电平或高电平时,观察显示器的数字。 三、实验报告 1、整理8线—3线二进制编码器的测试结果,说明电路的功能。 2、画出用74LS148构成的呼叫系统的电路图,说明设计原理。 3、回答思考题。 四、思考题 1、 74LS148优先编码器的优先权是如何设置的,结合真值表分析其逻辑关系。 2、译码数码管的管脚有四个,74SL148的输出代码仅有三位,多余的管脚

编码器、译码器的功能测试及应用

学生实验报告 学院: 课程名称:数字电路实验与设计 专业班级: 姓名: 学号:

学生实验报告(一) 一、实验综述 1. 实验目的: (1)了解编码器、译码器和数码管的管脚排列和管脚功能。 (2)掌握编码器、译码器和数码管的性能和使用方法。 2. 实验所用仪器及元器件: (1)示波器、信号源、万用表、数字实验箱和电脑。 (2)集成电路TTL74LS147、TTL74LS148、TTL74LS47、TTL74LS04、电阻和电位器等。3. 实验原理: (1) 10- 4线优先编码器74HC147 74HC147外引线排列如图1所示,逻辑符号如图2所示。 图1 74HC147外引脚排列图图2 74HC147逻辑符号如图74HC147有9路输入信号,4位BCD码输出,因输出端带圈,所以输入输出均为低电平有效。他将0—9十个十进制数编成4位BCD码,可把输入端的9路输入信号和隐含的不变信号按优先级进行编码,且优先级别高的排斥级别低的。当输入端都无效时,隐含着对0路信号进行编码(输出采用反码输出)。74HC147的功能见表1。 表1 10- 4线优先编码器74HC147

(2) 8-3线优先编码器74LS148 74LS148是8-3线优先编码器逻辑符号如图3,外引线排列如图4所示。共有8个输入信号,且输入低电平有效。三位代码输出端(反码输出)。 图3 逻辑符号如图图4外引线排列图 Y为优先扩展输出端。74LS148功能见表2。 其中,ST为选通输入端,YS为选通输出端,EX 表2 74LS148功能表 (3) 3-8线二进制译码器74LS138 74LS138是3-8线二进制译码器,其逻辑符号如图5,外引线排列如图6所示。

相关文档
相关文档 最新文档