文档库 最新最全的文档下载
当前位置:文档库 › 杂多酸催化剂在烷基化反应中的研究进展

杂多酸催化剂在烷基化反应中的研究进展

杂多酸催化剂在烷基化反应中的研究进展
杂多酸催化剂在烷基化反应中的研究进展

第22卷第1期分子科学学报Vo l.22No.1 2006年2月JO U RN A L O F M O L ECU L A R SCIENCE February2006

[文章编号]10009035(2006)01002804

杂多酸催化剂在烷基化反应中的研究进展

申凤善*,1,彭军2,孔育梅2,李丽2

(1.延边大学农学院,吉林龙井133400;

2.东北师范大学化学学院,吉林长春130024)

[摘要]介绍了杂多酸的结构性能,着重综述了近年来负载型杂多酸催化剂在烷基化

反应中的应用和研究进展,并提出了几点展望.

[关键词]杂多酸;负载;载体;催化剂;烷基化反应

[中图分类号]O614[学科代码]150#15[文献标识码]A

20世纪90年代在国际化学领域兴起了绿色化学研究和开发的新潮流.绿色化学要求以/原子经济型0为基本原则,从源头上消除污染,因此,研究和开发环境友好的催化剂成为绿色化学的重要环节.烷基化是重要的精细化工单元操作.传统的烷基化反应一般采用浓硫酸、氢氟酸及无水三氯化铝催化,这些液体酸腐蚀性强,污染严重,对操作人员的安全存在着潜在的威胁.多年来人们致力于烷基化催化剂,特别是非污染的固体催化剂的研究和开发,如固体超强酸催化剂、分子筛催化剂、杂多酸催化剂等.其中杂多酸催化剂具有酸性强、活性高、反应条件温和、对设备腐蚀小、均相和多相体系均可使用等特点,是有着很广泛的应用前景的绿色催化剂.

1杂多酸的结构性能

杂多酸是两种或两种以上无机含氧酸盐缩合而成的多元酸的总称,是一类含氧桥的多酸配合物.目前用作催化剂的主要有H n AB12O40#x H2O结构的Keg gin型杂多酸,如十二磷钨酸(H3PW12O40# x H2O)、十二硅钨酸(H4SiW12O40#x H2O)、十二磷钼酸(H3PM o12O40#x H2O)等.在Keg gin结构中,杂多阴离子的结构[AB12O40]n-为一级结构,是由12个BO6八面体围绕1个中心AO4四面体构成;杂阴离子与反荷阴离子组成二级结构[1].这些杂多酸可溶于水、乙醇、丙酮等极性较强的小分子溶剂,但不溶于极性较强的大分子溶剂和非极性溶剂.由于杂多阴离子体积大、对称性好、电荷密度低的缘故,使其表现出比传统的无机含氧酸(硫酸、硝酸)更强的B酸性.不同杂多酸酸型大小顺序为H3PW12O40> H3PM o12O40>~H4SiW12O40m H Cl,H2SO4,H NO3[2].杂多酸作为催化剂,环境友好,并具有低温高活性、热稳定性好等优点及其独特的/假液相0行为,从而具有更强的生命力.

2杂多酸催化烷基化反应

随着当今世界各国对环保的要求日趋严格,迫切需要汽油升级换代的形势下,烷基化反应工艺越来收稿日期:20050607

基金项目:国家自然科学基金资助项目(20271001)

联系人简介:申凤善(1964),女,副教授,主要从事多酸化学研究.

E-mail:sh enfen gshan@https://www.wendangku.net/doc/0d12561764.html,

越受到重视.目前,以工业化的烷基化工艺仅有硫酸法和氢氟酸法两种工艺.但由于液体酸的腐蚀性及对环境的危害性等原因,限制了该工艺的进一步推广使用.杂多酸化合物由于具有优良的催化性能,在烷基化反应中表现出较好的活性和选择性.有关杂多酸催化的烷基化反应主要集中在非均相体系中.不同的几种Kegg in 结构杂多酸催化活性顺序为PM o 12>PW 12>SiO 12>SiW 12.中心原子和配位原子对这类反应活性均有影响,其活性顺序与酸强度顺序不一致.通常杂多酸比离子交换树脂、Al 2O 3-SiO 2等其他固体酸催化剂的活性高几十倍.

苯酚与长碳链烯烃的烷基化反应制得的长链烷基苯酚是重要的非离子性表面活性剂.对于苯酚与十二烯的烷基化反应,磷钨酸的活性比浓H 2SO 4高17倍.采用T iO 2固载杂多酸催化即用于催化苯酚和壬烯的烷基化反应,在LH SV(原料流速)为1h -1

,苯酚与壬烯物质的量比为1.34,反应温度为180e 的绝热反应器中反应,壬烯转化率为91%,对位产物与间位产物的物质的量比大于11.2[3].苯与烯烃的烷基化反应可制得各种烷基苯,日本专利[4]采用SiO 2硅钨酸及其酸式铯盐为催化剂,进行苯与乙烯液相烷基化合成乙苯,在180e 和m 苯B m 乙烯B m 催化剂=25B 2B 0.65的条件下,反应2h ,苯的转化率为20%,乙苯的选择性为92.0%,催化剂再次使用活性不变.楚文玲等[5]用活性炭负载硅钨酸催化苯与丙

烯气相烷基化合成异丙苯,在230e 、LH SV =2h -1、苯烯物质的量比为8.6的条件下,丙烯转化率为

98.9%,异丙苯的选择性高达92.0%.于清跃等[6]以无水乙醇为溶剂,C -Al 2O 3为载体,采用过量浸渍法制备了一系列磷钨杂多酸(PW)催化剂,考察了该类催化剂在萘与异丙醇的烷基化反应中的性能,结果表明PW 负载质量分数达到40%仍高度分散于C -Al 2O 3表面,且催化剂酸量最大,萘的最大转化率为71.1%,PW/Al 2O 3催化剂质量分数为40%,活化温度和反应温度分别为573K 和473K.刘亚杰等[7]采用负载性杂多酸催化剂合成二十四烷基苯,适合的反应条件为:反应温度120e ,催化剂浓度0.02g/m L,苯烯物质的量比为20,反应时间2h 时转化率接近100%,单烷基苯选择性99%,且重复使用20次,其活性和选择性均无明显变化.Okuhar a 等[8]采用Cs 2.5H 0.5PW 12O 40为催化剂进行异丁烷与丁烯的

烷基化反应,催化活性和C 8烷烃的选择性的顺序是Cs 2.5H 0.5PW 12O 40>H 3PW 12O 40>SO 2-4/ZrO 2.采用Cs 2.5H 0.5PW 12O 40为催化剂,产物收率和选择性分别达到79.4%和73.3%.Blasco 等[9]以SiO 2、中孔硅酸铝(SiO 2-A l 2O 3)、全硅(M CM -4)为载体负载磷钨酸(H PW)制备的烷基化催化剂在较低温度下对异丁烷与丁烯烷基化反应具有较高的活性和选择性,而以SiO 2为载体时活性最高.当负载量为40%时丁烯转化率为98.8%,C 8烷烃占液体产物的59.5%,TM P 占C 8的85.3%.Izum i 等人[10]发现,对于苯与1-辛烯的烷基化反应,二氧化硅负载的H 3[PW 12O 40]是一种非常活泼的催化剂,其催化性能优于其他杂多酸.在35e 的低温下,以过量苯为原料,主产物是2-苯基辛烷(摩尔分数为50%~80%),同时还生成3-苯基辛烷4-苯基辛烷.催化剂的催化活性取决于预处理温度和H PA 负载量.相反,用氯化苄对芳烃的烷基化反应最有效的催化剂是H 3[PMo 12O 40]/SiO 2.Soeda 等人还发现[11],对二甲苯用异丁烯在30e 进行选择性烷基化制备叔丁基对二甲苯时,体相H 3[PW 12O 40]比传统液体催化剂(H 2SO 4,CF 3COOH )或固体催化剂(Amber lyst -15,SiO 2-A lO 3)显示出更好的催化性能,选择性为75%,叔丁基对二甲苯是制备液晶聚合物的前提.温朗友等[12]对比研究了磷钨酸、SiO 2负载磷钨酸催化剂的酸性对苯与1-十二烯的烷基化反应的催化性能.结果在80e 下反应30m in,达到完全转化时,PW/SiO 2催化剂的量仅为PW 催化剂用量的1/5,PW 负载于SiO 2载体上之后,活性提高了17倍之多,PW 具有超强的酸性,可以提高烷基化反应的失活,但也容易引起烯烃的聚合结炭而使催化剂失活.PW 负载于SiO 2上之后,酸强度减弱,但比表面积增大,增加催化剂的活性,可以减慢催化剂的失活,增加稳定性.

由于杂多酸比表面积小,价格高及在液相反应中难以回收的问题,目前的研究工作主要是寻找可支撑的载体,提高杂多酸酸强度,增加其表面积,提高其活性.负载杂多酸催化剂的酸度和催化活性取决于载体的类型、H PA 的负载量和预处理的条件等.SiO 2、活性炭、Al 2O 3、酸性离子交换树脂等酸性或中型物质适于用作载体,最常用的是SiO 2.碱性固体(例如M gO)会导致杂多酸的分解[13].杜泽学等[14]研究了不同载体(SiO 2、Al 2O 3、活性炭)负载的磷钨酸催化剂在苯与丙烯合成异丙苯的催化性能,发现在反应条件:温度为70e ,压力为0.3M pa,反应时间为20min,PW 负载量为30%的条件下,硅胶和活性炭29第1期 申凤善等:杂多酸催化剂在烷基化反应中的研究进展

30分子科学学报第22卷

作为载体时催化剂的活性高于A l2O3载体,尤其是硅胶作为载体时活性最好.根据氨的热解析数据[15],负载H3[PW12O40]的酸强度按下列载体的顺序递减:SiO2>A-Al2O3>活性炭.Satito K等人[16]将H PW分别负载在ZrO2,TiO2,SiO2上进行烷基化实验,考察3种催化剂寿命依次为13.0,3.1,2.3h.通过XPS和1H-NM R谱分析得出,H PW在3种载体上分散度的顺序为:T iO2>ZrO2>SiO2,3种催化剂的H+含量顺序为:SiO2>ZrO2>TiO2.由此可得出分散度和H+含量是影响催化剂寿命的关键.因为H PA的分散度与载体的亲水性成正比应关系,H+含量和载体的碱性大小有关.所以具有高亲水性而无碱性的载体最适用于烷基化催化剂.院宇红等[17]采用浸渍法制备了二氧化硅负载的磷钨酸催化剂,考察了催化剂在已丁烷与丁烯烷基化反应中催化剂活性组分、制备方法和反应条件对催化性能的影响,分析了催化剂的失活机理.结果表明当负载量不大于50%时,磷钨酸以单分子层形式均匀分散于载体表面,催化剂表面存在大量的强B酸中心,不存在L酸中心;经160e活化后的催化剂具有最大的酸量和最强的酸性;催化剂对烷基化反应具有较高的初活性,但随着反应的进行催化剂迅速失活;催化剂的失活原因为积炭.

目前制备负载型杂多酸催化剂常用的方法有浸渍法、吸附法、熔胶-凝胶法等.浸渍法是取一定量的杂多酸溶于水中,加入一定量的载体于定温下搅拌一定时间,再静置一定时间,使杂多酸浸入载体中然后通过水浴将多余的H2O蒸去,样品于一定温度下烘干.吸附法是将一定量的载体放入烧瓶中,向其中加入一定量的杂多酸水溶液,然后加热回流,并不断搅拌,反应一段时间后放置隔夜,滤去液体,样品于一定温度下烘干.熔胶-凝胶法是取一定量的正硅酸乙脂、乙醇、杂多酸等,经搅拌、加热形成胶状物,静置一定时间老化,样品在一定温度下真空烘干.潘海水等人证明用吸附法制得的催化剂的稳定性比浸渍法好,杂多酸不易流失.用溶胶-凝胶法制得的H PW/SiO2催化剂失活后,采用简单烧焦再生法可以进行再生,且活性得到很好的恢复,稳定性也较好[18].

固体杂多酸催化剂存在的严重问题是它们在有机反应中因表面积炭而导致的减活现象.传统的再生方法是在500e~550e烧去焦炭,这种方法通常用于硅铝酸盐和沸石的再生,但不适用于杂多酸的再生,因为它们的热稳定性不够高.因此,为了使杂多酸广泛地应用于非均相催化反应,开发出一种有效可靠的杂多酸再生方法将是十分有意义的.据报道,负载在硫酸化的二氧化锆载体上,掺杂铁(ó)的H3[PW12O40],可用苯与丙烯烷基化的催化剂,可在空气流中,于350e处理2h进行再生.通常,阻止催化剂的减活,比催化剂的再生更好,因为后者往往比较困难且费用高.

3结语

综上所述,可以看出,近年来负载型杂多酸催化剂的应用研究进展很快.负载杂多酸催化剂在避免腐蚀和污染问题的同时,又能保持较低温活性高的优点,因而是新一代固体酸催化材料.但由于此类催化剂活性、稳定性不很高,使用寿命短,制备工序复杂等方面的问题,实现工业化规模的应用并不多见,有待于化学、化工同行的共同努力,使负载型杂多酸催化早日实现工业化生产,在我国的炼油、化工和精细化学品合成中带来很大的经济效益及社会效益.

[参考文献]

[1]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1990.14-16.

[2]胡长文,高丽娟,王恩波.[J].化学研究与应用,1995,7(4):341-349.

[3]Knifton J F.Alkylphen ol S ynthes is Using H eteropoly Acid Catalysts[P].U S Patent:5300703,1994,04-0.5.

[4]长谷部,连奥田,曲正.乙苯的制备方法[P]JP Patent:平525062,1993,02-0.2.

[5]楚文玲,杨向光,叶兴凯,等.[J].催化学报,1995,16(6):431-432.

[6]于清跃,武文良,王军,等.[J].南京大学学报,2004,26(2):24-27.

[7]刘亚杰,温朗友,吴跃,等.[J].石油炼制与化工,2002,33(12):18-21.

[8] Kyutae Na,M akoto M isono.[J ].Chem Lett,1994,1451-1454.

[9] Blasco T ,Corm a A,M ART INEZ Y P,et al.[J].J Catal,1998,177:306-313.[10] Izum i Y,Urabe K,Onaka Zeolite M .Clay and Heteropoly Acid in Organic Reactions[M ].Tokyo:Kodans ha/VC H,1991.

99-161.

[11] S oeda H ,Oku hara T,M is on o M.[J].Chem Lett,1994,5:909-912.

[12] 温朗友,沈师孔,闵恩泽.[J].催化学报,2000,21(6):529-532.

[13] Kozh evnik ov I V.[J].Rus s Chem Rev,1987,56(9):811-825.

[14] 杜泽学,凌云,闵恩泽.[J].石油化工,2003,32(1):1-4.

[16] S atito K,Nomura M ,Ohgosh i S ,et al.[J].Preprints,1997,4:719-721.

[17] 院宇红,刘耀芳,刘植昌.[J].催化学报,2004,25(12):948-954.

[18] Ch arles N Satterlield.H eterogenou s Catalysis in Practice(实用多相催化)[M ].北京:北京大学出版社,1990.106.

The research progress of heteropolyacid in alkylation .s reaction

SH EN Feng -shan *,1,PENG Jun 2,KONG Yu -m ei 2,LI Li 2

(1.Ins titu te of Agricultur e,Yanbian University,Longjing 133400,China;

2.Department of Ch emis try,Northeas t Normal University,Changchu n 130024,Ch ina)

Abstract:Structures and pr operties of hetero po lyacid w ere introduced,the applicatio n and resear ch pro gress of POMs as catalyst in alkylation's reaction w ere review ed in this paper and ex pect to pros -pect a new directio n of the investig ation about POM s.

Keywords:heteropoly acid;localization;carrier;cataly st;alky lation 31

第1期 申凤善等:杂多酸催化剂在烷基化反应中的研究进展

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

固体酸催化剂

固体酸催化剂 酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 中文名固体酸催化剂 功能来源催化活性的酸性部位特点一类重要催化剂 性质酸中心、酸强度和酸度 与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。 ①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: 红外光谱研究表明,800℃焙烧过的γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。 SiO2-Al2O3的酸中心模型 (见图)有多种模式。 ②酸强度,可用哈梅特酸强度函数 0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。 2应用 在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO2-Al2O3、 B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为0≤3.3, 0≤1.5,0≤-3,-3< 0<+1.5。在同类型的催化剂上进行同一反应时, 催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,

负载型杂多酸钒催化剂浅析

负载型杂多酸钒催化剂浅析 开封市三丰催化剂有限责任公司 耿雨 张智勇 杜保强 [摘 要] 本研究主要对用于硫酸生产的固体负载杂多酸钒催化剂主要成份、杂多酸与载体的相互作用等问题进行初步探索,针对现有硫酸催化剂的生产工艺作出改进,提高催化剂的活性以及选择更适宜的物化性质(孔容积、孔径分布、比表面、强度、颗粒度和形状等)。 [关键词] 硫酸催化剂 杂多酸 催化剂选择活性 我国钒催化剂品种有中温型、低温型、宽温区型,也有特种耐砷型,外形有条形、环形和异形等。生产工艺有混碾工艺和后期浸渍处理,尽管很多厂家进行了许多改良,但品种基本在这些范畴内,并没有实质性的突破。未从本质上解决催化剂存在的问题,本研究是从催化剂生产原料硅藻土的研究入手,探索杂多酸催化成份在多孔二氧化硅上的分布状态,从而解决硫酸催化剂具体微观组分热稳定性,改善其相应物化性能。 1.二氧化硅载体 目前世界上所有的硫酸生产用钒催化剂载体的有效成份均为硅藻土所含的无定型SiO2,它决定了催化剂的最初强度,理论上认为无定型SiO2不参与反应,但从实际应用情况判断无定型SiO2直接影响有效催化剂成份、SO2与O2的传递(微观反应的扩散过程)。通常在320-610℃下,催化剂的活性组分在二氧化硅载体表面形成了很薄的液膜(100-1000 ?),SO2穿过液膜时与一个独立的钒位表面氧化成SO3时造成了V-O-M键的变化(M为K或P或Cs或Mn或Li或Ti 等),由于M氧化物具有多变性,SO2在多变的负载钒催化剂上的催化活性也呈现多变性,这就需要稳定的SiO2载体来提高硫酸催化剂的稳定性。 1.1载体塑性 硅藻土孔隙中所含的是由吸附水和结合水组成,其中结合水是在双电层范围内的被土颗粒吸引在其周围的水,它分为强结合水和弱结合水;吸附水是处于土颗粒引力范围之外的水,它分为重力水和毛细水,自由水在硫酸催化剂中需110℃干燥1.5h才能逸出,而结合水需在450℃下连续焙烧1.5小时。 I p来表示。 固态 半固态 可塑态 液态 图1-1 硅藻土的界限含水量 137

固体酸催化剂的分类以及研究近况

固体酸催化剂的分类以及研究近况 刘庆辉,詹宏昌,汤敏擘 (广东省安全科学技术研究所评价中心,广州510620) 摘 要:固体酸作为一种新型绿色环保型催化剂引起了人们的广泛关注。到目前为止,已经开发出固载化液体酸、简单氧化物、硫化物、金属盐、沸石固体酸、杂多酸固体酸、阳离子交换树脂、粘土矿、固体超强酸等九类固体酸。笔者在综合国内外的研究近况的基础上,提出了对固体酸催化剂研究的展望。 关键词:固体酸;催化剂;近况 Classif ication and R esearch Development of Solid Acid C atalyst L IU Qi ng2hui,ZHA N Hong2chang,TA N G M i ng2bo (Safety Assessment Center,Guangdong Institute of Safety Science&Technology,Guangzhou510620,China) Abstract:Recently,solid acids as new green catalysts have attracted considerable attention.By far,nine kinds of solid acids,such as solid2supported liquid acid,ordinary oxid,sulfide,salt,zeolite solid acid,cation ex2 change resin,clunch and solid superacid had been developed.The prospects for solid acids were proposed on the base of colligating recent domestic and abroad researching. K ey w ords:solid acids;catalyst;research development 固体酸是近年来研究与开发的一种新型酸催化剂,也是具有广泛的工业应用前景的环境友好的催化剂之一,因而对固体酸的研究具有十分重要的意义,成为当前催化研究的热点之一[1]。根据固体酸催化剂的特点进行分类,讨论了各种固体酸的研究近况,并在此基础上提出了对固体酸催化剂研究展望。1 固体酸催化剂的分类 1979年日本科学家Hino等人首次合成出SO42-/Fe2O3固体酸,引起了人们的广泛重视,人们便对固体酸进行了大量研究,并合成了一系列SO42-/WxOy固体酸体系催化剂。到目前为止,开发出的固体酸大致可分为九类[2],见表1。 表1 固体酸的分类 序号酸类型实例 1固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 2氧化物简单:Al2O3,SiO2,B2O3,Nb2O5 复合:Al2O3-SiO2,Al2O3/B2O3 3硫化物CdS,ZnS 4金属盐磷酸盐:AlPO4,BPO4 硫酸盐:Fe2(SO4)3,Al2(SO4)3,CuSO4 5沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石 丝光沸石,非沸石分子筛:AlPO SAPO系列 6杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40 7阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H 8天然粘土矿高岭土,膨润土,蒙脱土 9固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3/ZrO2 作者简介:刘庆辉,男,湖南人,硕士研究生,2006年毕业于华南理工大学化工学院,师从博士生导师,彭峰教授,同年5月进入广东省安全科学技术研究所工作,主要从事于化工企业管理,安全评价,危险化学品从业单位安全标准化考评等工作。目前发表或接收的论文4篇,其中1篇被SCI(网络版)收录。

杂多酸

液体催化剂制备技术及应用 赵毓璋

1. 研发杂多酸催化剂的意义 催化剂的应用历史很长,特别在石油化工、精细化工、有机化工和生物化工中,可以说催化技术已成为化学工业最关键的核心技术之一。据统计,到目前为止,人类所掌握的化学反应80%以上必须在催化剂存在下才能实现。在化学工业生产中,最常用的催化剂是无机酸和无机碱,一般是液体溶液,用于均相或非均相反应。酸碱催化剂适用于水合反应、分解反应、酯化反应、芳烃烷基化反应、脱水反应、胺化反应、加氢反应、不饱和化合物的双键转移反应、氧化还原反应等。但是由于传统的酸碱催化剂过于注重生产的实效性和经济性,而忽略环境效应和生态效应,以至于目前所使用的催化剂绝大多数都对环境造成或多或少的污染。如今有害化学物质的处理和环境保护受到特别关注,世界各国都在积极进行绿色化学研究与开发,提倡清洁生产,特别是化学化工中的清洁生产更为世人瞩目,它已成为主要的研究方向。绿色化学是更高层次的化学,它的主要特点是原子经济,即在获取新物质的转化过程中充分利用每个原料原子,实现“零排放”,既可充分利用资源,又不产生污染,实现清洁生产。而催化技术是清洁生产的重要技术,因此,研究和开发新的环境友好型催化剂是摆在科学工作者面前的一个比较迫切的课题。目前,这方面的研究有固体超强碱催化剂、杂多酸催化剂、夹层式催化剂等的开发。 杂多酸(Heteropoly Acid,简称HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构

通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有强酸性,而且具有氧化还原性,是一种多功能的新型催化剂。杂多酸稳定性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。因杂多酸独特的酸性、“准液相”行为、多功能等优点在催化反应领域已有许多出色的应用实例。如丙烯液相水合制异丙醇、甲基丙烯醛氧化制甲基丙烯酸、四氢呋哺(THF)开环聚合加水合制聚氧四甲撑二醇(PTMG)它是合成聚氨酯的主要原料。杂多酸在均相、多相酸催化反应、氧化还原反应中都有许多别于其它催化材料的特性,概括有如下几点: (1)杂多酸结构组成简单、性能稳定,其催化性能容易用杂多酸阴离子的分子水平表征。 (2)杂多酸的表面结构和体相结构差别很小,具有所谓“准液相”的特征。催化反应不仅在表面上进行,同时在体相内进行。 (3)杂多酸不仅同时具有多元酸如多电子还原能力,而且它的酸性和氧化还原性还可以在较大的范围内调变。因此,杂多酸即可作为酸性催化剂又可作为氧化还原催化剂,是一种双功能催化剂。 (4)杂多酸具有较好的热稳定性和可溶性,因此它既可作为多相催化剂,也可作为均相催化剂。 (5)杂多酸的酸强度远远高于通常的无机酸,但是由于质子不游离出来,腐蚀性很小。

固体酸催化剂的研究进展

炭基固体酸催化剂的研究进展 摘要 酸催化反应在化工工业生产中广泛应用,目前工业上硫酸、盐酸等液体酸催化剂使用较普遍,液体酸存在一次性消耗大、对设备腐蚀严重、后处理困难,对环境污染较大等缺点。固体酸催化剂作为一种新型的环保材料,在化工生产中的应用变得越来越广泛,主要用于缩酮缩醛反应、水解反应、烷基化反应、酯化反应等。其中,炭基固体酸催化剂是近年来较为热门的研究课题,以葡萄糖、淀粉、蔗糖、纤维素作为原料在一定条件下制备新型固体酸催化剂。炭基固体酸催化剂酸量高、催化活性和选择性好、易回收再生使用和对设备腐蚀性小等优点。本文简单介绍生物质炭基固体酸催化剂的制备原料、分类及制备方法,分析其作为催化剂的作用机理,简述炭基固体酸催化剂的现状并展望其发展前景及方向。 (正文部分) 碳基固体磺酸作为一种新型的固体酸催化剂,具有催化活性高、酸密度大、后处理简单、价格低廉等优点。目前碳材料种类繁多且存储量巨大,其中木纤维原料作为碳材料的一种,是可再生能源,在环境、能源状况日渐恶化的今天具有重要利用价值。炭基固体酸催化剂指的是以炭材料为载体,在其表面上负载一些酸性基团或者固体酸,使其具备液体的B 酸及L 酸活性中心。由于炭材料具有疏水性的特点,使得反应后的分离操作变得简单且催化剂易于回收,其巨大的比表面积能够提高其催化活性,近年来,有关炭基固体酸的研究在国内外均有报道。 1.炭基固体酸分类 以炭基固体酸载体的不同可将其分为两类:一类为以碳材料为载体,在其表面键合上 -SO3H 基团的磺化碳固体酸;另一类为以活性炭为载体,在其表面负载上杂多阴离子的活性炭载杂多酸催化剂。 根据结构不同可以将磺化碳基固体酸分为普通碳基固体酸、多孔碳基固体酸和有序中孔碳基固体酸三种。普通碳基固体酸的孔道结构为大孔,比表面积一般小于5 m2/g,这种材料以无定型炭的形式存在,孔道无序排列;多孔碳基固体酸的孔道大部分都为中孔,比表面积可达到1000m2/g以上,孔道无序排列,孔径分布和比表面积的大小由制备方法决定;有序中孔碳基固体酸的孔道为中孔,比表面积一般高于400 m2/g,这些孔道以一定的形状有序排列,孔道形状、孔径大小和比表面积由模板剂类型和制备方法决定。 2.炭基固体酸原料及制备方法 2.1炭基固体酸催化剂的原料 炭基固体酸催化剂的原料与其他固体酸催化剂相比,成本较低、原料来源广泛。杂多酸

固体碱催化剂的研究进展

固体碱催化剂的研究进展 摘要:介绍了固体碱催化剂的种类及其特点,综述了固体碱催化剂的一些应用,着重介绍了固体碱催化剂在利用油脂酯交换反应生产生物柴油过程中的应用,并对固体碱催化剂的发展及应用作了展望。 关键词:固体碱催化剂种类及其特点油脂酯交换反应应用 前言 催化科学在国民经济中具有十分重要的意义,每种新催化剂和新催化工艺的研制成功都会引起包括化工、石油加工等重大工业在内的生产工艺上的改革,生产成本可以大幅度降低,并为改变人类生活习惯提供一系列新产品和新材料,其中对固体碱的应用较为突出。固体碱催化剂作为环境友好型催化剂,除对酯交换反应有良好的催化活性,与均相碱相比,固体碱有后处理简单,产物、催化剂、溶荆的分离同收比较容易,环保经济等优点,因此,在石油化工领域引起了人们越来越多的重视。 1 固体碱的定义、分类及特点 按照Bronsted和Lewis的定义,固体碱是指能够接受质子或给出电子对的固体物质,作为催化剂其碱位中心应具有极强提供电子或接受电子能力。一般可理解为足能够化学吸附酸的固体,也可理解为能够使酸性指示剂改变颜色的固体物质【1】。固体碱主要包括碱金属、碱土金属氧化物、阴离子交换树脂、水滑石及类水滑石固体碱、负载型固体碱、有机固体碱等。 1.1 碱金属、碱土金属氧化物 金属氧化物碱位主要来源于表面吸附水后产生的羟基和带负电的晶格氧。碱土金属化合物的催化活性与它们的碱性强弱有关,碱性越强催化活性越高,但碱性并不是唯一决定其催化活性的因素,作为非均相催化剂,它们在反应体系中的分散程度也对其催化活性有重要影响。碱土金属氧化物的比表面积较低;机 械强度较差;且易吸收H 2O和CO 2 ;催化剂均为粉状易使反应混和物形成淤浆, 不易分离;必须在高温和高真空条件下预处理才能表现出高催化活性,其碱强度与煅烧温度的高低有很大的关系,一般煅烧温度越高,越有利于得到强的碱性位。但温度过高催化剂晶跫改变也会影响催化效果。 1.2阴离子交换树脂 离子交换树脂是固体催化剂研究的一个重要分支。阴、阳离子交换树脂均可作为制备生物柴油的催化剂。在固体强碱性阴离子交换树脂为催化剂进行油脂的酯交换的过程中,催化剂具有易分离回收、可重复利用、不污染最终产品和反应条件温和等优点。使用强碱性阴离子交换树脂作催化荆虽然有诸多优点,但仍存在许多不足之处,如阴离子交换树脂为催化剂,反应一段时间后,树脂容易失活,这是因为阴离子交换树脂必须具有S(OH-)才具有活性,它的前处理过程需要用酸碱反复浸泡以使其活化;作为催化剂,树脂用量较难定,这主要与树脂碱性有关;树脂的再生步骤还有待改进;阴离子树脂只能在低温(60℃以下)

固体酸催化剂

辽宁石油化工大学设计(论文) 题目固体酸催化剂的研究进展 学院化学化工与环境学部 专业班级研2016 姓名张健 学号01201608170432 2016 年11 月6日

摘要 固体酸催化剂具有对多种化学反应有较高活性与选择性、回收重复利用和效率较高等优点,作为绿色环境友好型催化材料备受人们关注。以往单纯追求眼前效益、不顾对环境所造成的危害的做法近年来越来越受到人们的批判。随着环保意识的增强,以及“绿色化学”的提出,越来越多的学者致力于开发效益兼顾环境、促使化学工业转向开发可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化剂领域中得到了广泛的研究及应用。相比液体酸催化剂而言,固体酸催化剂具有广泛的工业应用前景,是一种无毒、不易腐蚀设备、可循环使用、环境友好型新型催化剂。本文着重介绍固体酸催化剂以及发展前景。 关键词:固体酸催化剂;活性;选择性;环保

1 绪论 1.1固体酸催化剂 固体酸催化剂是一种性能独特的酸性催化剂,它的出现使酸催化反应迈入了新的时代。首先固体酸催化剂的使用在一定程度上缓解和避免了均相反应所带来的不利因素的出现,其次由于其使用温度范围广,适用于700~800 K 进行的反应,这就将研究对象扩大到热力学上可进行的反应范围内。基于此,从19 世纪40年代开始,化学工作者们从未间断过对固体酸的研究。目前,已有大量应用于酸催化反应的固体酸[1-2],见表1。 1.2 几类重要的固体酸催化剂 1.2.1 负载型催化剂 负载试剂于无机载体中即成负载试剂催化剂亦称负载型催化剂。1989 年负载试剂催化剂就已经实现了工业化,取得了良好的经济和环境效益,引领催化研究进入了崭新的阶段。采用一定的方法(如下表2)将活性物质固定在载体上即制成了负载型催化剂,按照负载物质的性质不同,可将其分为负载碱型催化剂、负载酸型催化剂和负载氧化物型催化剂。在负载型催化剂中,催化活性高于载体活性和试剂活性的简单组合,可以理解为,在负载过程中活性物质与载体的共同作用强化了催化作用,进而表现出高的催化活性与环境友好性。 1.2.2 蒙脱土负载试剂固体酸催化剂 蒙脱土又称微晶高岭石,是由两层Si—O 四面体和一层Al-O八面体,组成的层状硅酸盐晶体,有一定的微孔结构。蒙脱土很早就应用在有机反应中,但是涉及其对负载Lewis

杂多酸催化剂

题目杂多酸催化剂 姓名与学号张凌烽 1108010236 指导教师孟锦宏 年级与专业2011级化学工程与工艺 所在学院环境与化学工程学院

摘要 杂多酸是固体酸的一种,具有着独特的氧化还原性,酸性以及双功能性,在许多化学反应中能够表现出很强的催化活性。杂多酸这种绿色、无毒、无腐蚀性的环保型催化剂己在多种有机反应中实现了成功应用,如:酯化醚化、缩合反应、酰基化、烷基化、水合脱水和聚合反应等,反应中呈现出反应活性高、腐蚀性小、污染率低等诸多优点,但由于杂多酸比表面积小、热稳定性低、回收困难等问题使得杂多酸在催化领域的应用受到了一定的限制。 关键词:

1 绪论 1.1前言 绿色化学是近十年来在化学领域内提出的新名词,绿色化学又被称为“环境友好化学“、“清洁化学”、“环境无害化学”。这种发展趋势已涉及到分子合成、生物技术、化学分析等许多领域,内容丰富,应用广泛。绿色化学的最大优势在于通过科学的手段在化学反应的起始与末端进行有效的防控干预,使反应中无副产物,真正实现零排放,彻底无污染,化学绿色化是新时代里化学发展的主要研究方向。 无机酸是许多化工产品生产中必不可少的、非常重要的常规催化剂,传统无机酸类催化剂主要有浓硫酸、三氯化招、浓憐酸等。这类酸催化剂在反应中有许多优势,如工艺成熟、催化效率高、价格低廉,但此类催化剂最大的缺陷在于:副反应多、腐烛性强、设备要求高、后处理繁杂,无法满足环保技术的要求,为了克服诸多缺点,人们开发、研制了许多新型催化剂,如固体酸、杂多酸和离子交换树脂等。 杂多酸是一类含有氧桥的多核高分子化合物,无论是均相反应体系,还是非匀相反应体系,杂多酸均可作为酸催化剂,氧化还原型催化剂及双功能型催化剂,广泛应用于各类有机反应催化当中,如:酯化酸化、缩合反应、酰基化、烧基化、水合脱水、聚合反应等,反应中呈现出腐烛性小,活性高,污染率低等诸多优点。二十世纪七十年代,憐鹤酸催化丙稀水合制备异丙醇在R本成功投入工业生产。目前,以杂多酸为催化媒介并实现工业化生产的的重要有机合成反应已达十几种随着科学研究的不断开拓深入,杂多酸类化合物在工业催化领域的开发将越来越深入。 1.2多酸化学简介 时至今日,多酸化学的发展己有200年的历史,进入新世纪后,多酸化学走进了一个薪新的发展时代“?”。多酸分子中的金属离子通常具有d"电子构型,最具代表性的是鹤原子和销原子,也是构成多酸的主要元素。多酸的立体结构中,八面体

固体酸催化剂研究近况综述

试卷( A 卷) 专业: 课程代码: 19060071 学号: 姓名: 作文题(任选一题,写一篇综述论文,每题 100 分) 自拟题目,写一篇关于工业上绿色环保催化剂进展的综述论文 [能力层次: 综合运用和创见 ];[难易度: 较难 ] 要求: 1、查阅文献至少在20篇以上,并且外文文献引用2篇以上; 2、论文字数3000字以上; 3、论文格式严格按照综述论文要求书写; 绿色固体酸催化剂研究近况综述 摘 要:催化剂的研究和发展是现代化学工业的核心问题之一,现代化学工业的巨大成就是同使用催化剂联系在一起的。目前90%以上的化工产品,是借助催化剂生产出来的。工业催化的发展是紧随化学工业的演变而发展的。 催化剂和催化技术的研究与应用,对国名经济的许多重要部门是至关重要的。但就化工工艺过程来说,催化剂的应用可以具体概括为以下几个方面:更新原料路线,采用更廉价的原料;革新工艺流程,促进工艺过程的开发;缓和工艺操作条件,达到节能降耗的目的;开发新产品,提高产品收率,改善产品的质量;消除环境污染或开发从原来到产品的整个化工品过程,对资源的有效利用以及污染控制的环境友好的“绿色催化工艺”等。 引言:固体酸催化剂因其具有对多种化学反应有较高活性与选择性、回收重复利用效率较高等优点,已作为绿色环境友好型催化材料备受人们关注。本文主要综述了近年来国内外对各类型固体超强酸、杂多酸固体酸、离子交换树脂的研究近况,并提出了对今后固体酸催化剂发展的展望。 关键词:固体酸;催化剂 【正文】以往单纯追求眼前效益、罔顾环境所造成的危害近年来逐渐得到人们的重视。随着环保意识的增强,以及绿色化学的提出,越来越多的学者致力于开发效益兼顾环境、使化学工业促可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化领域中得到了广

杂多酸的研究进展1108010224李轶凡

摘要 杂多酸(Heteropoly Acid,简写为HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有酸性,而且具有氧化还原性,是一种多功能的新型催化剂,杂多酸稳定性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。因杂多酸独特的酸性、“准夜相”行为、多功能(酸、氧化、光电催化)等优点在催化研究领域中受到研究者们的广泛重视。 关键词:杂多酸催化多功能

目录 杂多酸催化剂 (3) 一、定义 (3) 二、制备 (4) 2.1Dawson杂多酸制备 (4) 2.1.1 Dawson型磷钼钒杂多酸的合成 (4) 2 .2 Keggin型杂多酸的合成 (4) 2.2.1 Keggin型Ni—Mo—Zr杂多酸盐的合成 (4) 2.3 负载型 P—no—W 杂多酸催化剂的制备 (5) 2.3.1直接负载法 (5) 2.3.2接枝法 (5) 2.3.3密封法 (5) 三.应用 (6) 3.1铈钼锆杂多酸盐的制备及超声降解性能 (6) 3.2二氧化硅负载杂多酸铵催化苯液相硝化反应的研究 (6) 四.负载型杂多酸催化剂的研究进展 (7) 4.1活性炭负载杂多酸催化合成没食子酸甲酯的研究 (7) 4.2介孔材料负载杂多酸催化剂催化乙醇脱水制乙烯 (8) 4.3磷钨杂多酸季铵盐催化脂肪酸甲酯环氧化 (8) 4.4纳米复合杂多酸催化合成草莓酯 (9) 4.5杂多酸(盐) 掺杂TiO2 制备新型复合光催化剂的研究进展 (9) 4.6杂多酸催化合成磷酸单双辛酯的研究 (10) 参考文献 (11)

固体超强碱催化剂研究进展论文

毕业设计(论文)任务书 系(院)化学与化工系专业应用化工技术班级1班 学生姓名李刚学号1023100520 指导教师王芳职称讲师 论文题目固体超强碱催化剂研究进展 起止时间自2012年9月18日起至2013年5月14日 一、毕业设计(论文)题目来源: 学生自拟题目 二、毕业设计(论文)的基本要求: 高度重视毕业设计(论文)工作,并明确其目的及意义。在毕业设计(论文)工作过程中,要尊重教师、团结互助、虚心学习、勤于思考、勇于创新,按照指导教师的要求,按时并保质保量地完成毕业设计(论文)任务。毕业设计(论文)期间,要严格遵守学校、系(院)、实验室的各项规章制度,在校外进行毕业设计(论文)工作的要遵守所在单位的有关规章制度。要严格按照《毕业设计(论文)手册》的要求,认真填写《毕业设计(论文)手册》所规定的内容。 在完成毕业设计(论文)的同时,要完成5000汉字以上的专业读书报告 三、毕业设计(论文)的主要内容: 环氧树脂室温快速固化体系,以其优异性能广泛应用于国民经济和军事等各个领域。本文主要讲述了以下主要内容: 一、环氧树脂的概述、类型、性质与特性指标、应用领域以及环氧树脂固化物的性能特点。 二、环氧树脂的反应、几种固化剂的详细情况以及促进剂。 三、环氧树脂的合成原理和工艺。 四、现如今国内外环氧树脂固化剂的发展现状以及前景展望。

四、进度安排: 2012.9.18-9.20 学生选题 9.21-9.24 指导教师填写任务书 9.25-11.20 查阅相关文献开题 11.21-12.27 认真研读文献拟定论文提纲 12.28-12.31 中期检查 2013.1.1-5.20 撰写论文 5.21-5.28 提交论文 5.29- 6.4 论文评阅论文答辩 五、主要参考文献资料: [1] 王亚红曲小姝祝波刘立业崔昌亿.新型固体超强碱催化剂的制备及其结 构表征[J].化学世界,2004,(11):563-565. [2]Suzukamo G, Fukao M, Minobe M, Sakamoto A. EP 0211 448. 1990. [3]丁无生罗志带王浔韩笑言.[J].精细石油化工,2004,21(1):31. [4]魏彤王谋华等.固体碱催化剂[J].化学通报,:. . 指导教师(签字): 教研室主任(签字):

固体超强酸制备

探究思路:两个要求:“保证活性高作为前提,以使用次数作为重要比较指标” 其实,一个固定酯化反应采用不同的固体超强酸(均以该酯化反应作为探究优化制备条件)作为催化剂,所得到的酯化效率差别不会大,只要肯花功夫、时间探究便可达到,所以探究重点摆在对比固体超强酸的稳定性上即提高其使用寿命,而使用寿命以催化活性高作为前提(不同催化剂间催化效用相差不大下,尽管催化效率较差点,但使用次数好,这也算是好催化剂),但在催化效用有一定情况下,探究使用寿命才有意义,随意首先需要探究出优化的固体超强酸的制备条件和酯化条件。 借助微波酯化反应探究最佳活性的催化剂制备条件,然后以活性最佳的催化剂探究微波酯化反应条件。 微波辐射酯化反应——“微波辐射催化合成乙酸正丁酯”: 用微波辐射技术以乙酸和正丁醇为原料,S2O2-8/M X O Y型固体超强酸为催化剂的酯化反应,最佳的微波合成条件为:催化剂用量2。0 g,酸醇物质的量的比为1。0∶2。0,微波功率为595 W,微波辐射时间为30 min,产率84。1%。 主要试剂和仪器:冰醋酸(CP),正丁醇(AR),微波炉,阿贝折光仪(或红外光谱波峰测试)实验过程: 在100 mL圆底烧瓶中加入5。7 mL(0。1 mol·L-1)的冰醋酸和9。1 mL(0。1 mol·L-1)的正丁醇(最适宜的酸醇比为1。0∶2。0),加入2。0 g催化剂,然后将圆底烧瓶装好回流冷凝管和搅拌装置,置于微波炉内。在搅拌下先以65 W的功率加热1 min,再以最适宜的微波功率是595 W,一定反应时间加热回流时间30 min。反应完毕取出圆底烧瓶,待反应物稍冷,过滤出催化剂,粗产品经提纯、干燥、蒸馏,收集124~126℃的馏分。称重,计算产率。 在合成反应中,有些反应是可逆反应生成水,为了提高转化率,常用带水剂把水从反应体系中分离出来。可作带水剂的物质必须要与水水作用产生共沸物使得水更易被蒸出,且在水中的溶解度很小.它可以是反应物或者产物,例如如:环已烯合成是利用产物与水形成共沸物;乙酸异戊酯合成中,反应初期利用原料异戊醇与水形成二元共沸物或原料,产物和水形成三元共沸物,并用分水器分水,同时将原料送回反应体系,随着反应的进行,原料减少,则利用产物乙酸异戊酯与水形成 二元共沸物. 带水剂也可以是外加的。反应物及产物沸点比水高但反应又产生水的,外加第三组分,但第三组分必需是对反应物和产物不起反应的物质,通常加入的第三组分有石油醚,苯甲苯,环已烷,氯仿,四氯化碳等。 在250mL单口平底烧瓶中加入10mL正丁醇、6mL乙酸,再加入适量的三氯化铁作催化剂,放入微波炉内,装上回流冷凝管及分水器,在一定功率微波连续辐射后停止反应。冷却至室温,用饱和食盐水洗涤,分出有机层,水洗至中性,用无水硫酸镁干燥,蒸馏,收集124℃~126℃的馏分,

固体酸催化剂的发展及应用文献综述

工业催化文献综述 固体酸催化剂的发展及应用 专业:化学工程与工艺 班级: 学生学号: 学生姓名: 完成时间: 1

一、引言 催化剂(catalyst):是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。:随着环境意识的加强以及环境保护要求的日益严格,,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。关键词:固体酸催化剂 摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题 1固体酸催化剂的定义及分类 1.1定义 一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。 固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 1.2固体酸的分类 (1)固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 (2)氧化物简单Al2O3,SiO2,B2O3,Nb2O5 复合Al2O3-SiO2,Al2O3/B2O3 (3)硫化物CdS ZnS 2 (4)金属磷酸盐AlPO4,BPO 硫酸盐Fe2(SO4)3,Al2(SO4)3,CuSO4

杂多酸催化剂

Heteropoly acids:a green and e?cient heterogeneous Br ?nsted acidic catalyst for the intermolecular hydroamination of ole?ns Lei Yang a ,Li-Wen Xu a,b,*,Chun-Gu Xia a,* a State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences,Lanzhou 730000,PR China b Department of Chemistry,National University of Singapore,3Science Drive 3,Singapore 117543,Republic of Singapore Received 8February 2008;revised 5March 2008;accepted 6March 2008 Available online 10March 2008 Abstract Intermolecular hydroamination of non-activated ole?ns with amides and benzyl carbamate proceeds e?ciently in the presence of environmentally benign silicotungstic acid (HSiW)catalyst under mild conditions in air to a?ord addition products in good to excellent yields. ó2008Elsevier Ltd.All rights reserved. Keywords:Heteropoly acids;Intermolecular hydroamination;Amides;Ole?ns In recent years,Keggin type heteropoly acids (HPAs)catalysts have received much attentions in both academic and industrial applications due to their unique properties,which o?ers several advantages in terms of catalytic perfor-mance,strong acidic,and redox site and selectivity to par-ticular reaction product by selective stabilization of reaction intermediate.1HPAs are non-corrosive,environ-mentally benign,and economically feasible solid acid cata-lysts compared to conventional homogeneous acids,such as H 2SO 4or TfOH.Furthermore,they can be reused and recycled easily in most cases after the reaction and hence they are regarded as green catalysts.As a consequence,a variety of synthetically useful transformations have been developed using HPAs as catalysts,such as oxidation of alcohols,2esteri?cation,3Friedel–Crafts reactions,4Man-nich reactions,5cyanosilylation,6ring-opening of epox-ides,7and dehydration.8 Hydroamination,the simple addition of an N–H bond across C–C unsaturated organic fragment,has attracted much attention in the past decades.Intermolecular hydro-amination of ole?ns is one of the most important and chal-lenging topics in this area.9Despite signi?cant e?orts that have been devoted into the intermolecular hydroamination of ole?ns with alkylamines and arylamines,only a few reports of the intermolecular hydroamination of non-acti-vated alkenes with weakly basic amine nucleophiles such as sulfonamides,carbamates,and carboxamides are known (Scheme 1). Recently,e?cient platinum(II),10gold(I),11Cu(II),12Fe(III),13and other metal salts 14catalyzed hydroamina-tions of amides and carbamates were reported.Along with the metal catalysts,there also have been examples using metal-free catalysts for the hydroaminations of ole?ns and amides.15Although some notable progress has been made on the hydroamination reactions of alkenes with 0040-4039/$-see front matter ó2008Elsevier Ltd.All rights reserved.doi:10.1016/j.tetlet.2008.03.034 * Corresponding authors.Tel.:+8609314968056;fax:+8609318277088(L.-W.X.). E-mail addresses:licpxulw@https://www.wendangku.net/doc/0d12561764.html, (L.-W.Xu),cgxia@https://www.wendangku.net/doc/0d12561764.html, (C.-G. Xia). Available online at https://www.wendangku.net/doc/0d12561764.html, Tetrahedron Letters 49(2008)2882–2885

固体超强酸系列催化剂制备

1. 稀土固体超强酸S2O82- / Sb2O3 / La3+催化剂制备: 将8g SbC13溶于40mL乙醇和20mL苯的混合液中,搅拌充分溶解后得透明锑醇液,再向溶液中加入10mL异丙醇,使醇化反应进行得更彻底,然后加入少量阴离子表面活性剂,并滴加氨水,使之发生水解反应,得到胶状沉淀,低温化12h左右,多次洗涤至无Cl-检出。滤饼于110℃烘干后,研磨过100目筛。搅拌下将Sb2O3浸渍在一定浓度的(NH4)2S2O8溶液中lh,用量为每克Sb2O3用15mL(NH4)2S2O8溶液,抽滤,烘干,置于马弗炉中焙烧,得S2O82-/ Sb203催化剂。将Sb2O3浸渍在一定浓度的(NH4)2S2O8和一定浓度的La(NO3)3的混合液1h,抽滤、烘干置于马弗炉在不同的温度和时间下焙烧,得一系列S2O82-/ Sb2O3 / La3+固体超强酸催化剂,置于干燥器中备用。以代号表示不同制备条件下所得催化剂。 参考文献:稀土固体超强酸S2O82- / Sb2O3 / La3+的制备及催化性能研究 舒华1,连亨池2,闫鹏2,文胜2,郭海福2 (1.学院生化系,554300;2.学院化学化工学院,526061) 稀土,2008.12(29卷第6期) 2. 稀土固体超强酸SO42-/TiO2-La2O3制备: 将一定量La203溶于浓度为3.0 mol·L-1的稀盐酸中,配成La3+溶液,再按一定量比量取TiC14与La3+溶液混合,用NH4·H 0[ w(NH3)=12%]水解至溶液呈碱性,控制pH值在8~9,沉淀完全,静置24 h后进行抽滤,并用蒸馏水不断洗涤至沉淀无Cl-存在(用0.1 mol·L-1的AgNO3检验),于105℃烘干后研细.再将该粉末浸泡于浓度为0.8 mol·L-1的稀H2SO4中24 h,然后抽滤,放入干燥箱中在110℃烘干,于一定的温度下焙烧活化3 h,冷却后置于干燥器中备用。 参考文献:稀土改性固体超强酸催化剂SO42-/TiO2-La2 O3的制备及其催化性能 水金,黄永葵,白爱民,赘,聚堂

相关文档