文档库 最新最全的文档下载
当前位置:文档库 › SS400热轧带钢表面麻点缺陷攻关

SS400热轧带钢表面麻点缺陷攻关

SS400热轧带钢表面麻点缺陷攻关
SS400热轧带钢表面麻点缺陷攻关

SS400热轧带钢表面麻点缺陷攻关

郭秀莉 杨大军(鞍钢集团新钢铁公司)

高晓龙 钟莉莉(鞍钢集团技术中心)

摘要 针对SS400热轧带钢表面麻点缺陷的特征,分析研究了麻点缺陷产生的实质,同时根据已有的研究成果,提出了SS400表面麻点缺陷的解决措施,效果显著。

关键词 热轧带钢 表面麻点 缺陷

Study on M ottling Fault at the Surface of SS400H ot R olled Strip Steel

G uo Xiuli Yang Dajun (Angang New Iron and Steel C o.)G ao Xiaolong Zhong Lili (Angang T echnology Center)

Abstract This paper analyzes the substance of m ottling fault forming at the surface of SS400hot rolled strip steel according to the characteristics of this fault.The measurement to s olve m ottling fault is ad2 vanced on the basis of the known research outcome and the results are remarkable.

K ey Words hot rolled strip steel surface m ottling fault

1 概述

热轧带钢产品质量指标主要包括尺寸与形状精度、表面质量、力学性能三个方面。随着厚度自动控制系统、宽度自动控制系统和板形控制系统的实用化,尺寸与形状精度日益提高;在力学性能方面,通过炼钢的成分控制和热轧控轧工艺的研究,其各项性能指标也已得到很大提高。目前,困扰热轧带钢产品质量进一步提高的问题之一是表面质量问题,特别是随着热轧带钢产品直接应用于结构件外表面,如轿车的外覆件等,对其表面质量提出了更为苛刻的要求。从鞍钢热轧带钢厂的情况看,1780机组的钢卷封锁量有80%以上是由于带钢表面质量问题造成的。其存在的主要问题有翘皮、辊压痕、麻点、划伤等,其中表面麻点缺陷是1780机组投产以来始终未解决的质量问题之一。为此,鞍钢新钢铁公司2001年成立了课题组,对热轧带钢表面麻点缺陷进行攻关。

2 麻点缺陷的分布规律及检验分析2.1 麻点缺陷的分布规律

大量数据表明,1780机组产品的麻点缺陷主要与钢质和规格有关。从钢质上看,96%的麻点缺陷分布在铝脱氧的SS400和SPHC中,4%的麻点缺陷分布在09CuPT iRe中;从规格上看,76%为310mm以下的薄规格产品。

为了弄清麻点缺陷为何物,对116mmSS400的麻点缺陷进行了取样分析。

2.2 扫描电镜成分分析

扫描电镜成分分析结果见图1。

用SE M505扫描电镜观察麻点的微观形貌,并应用SIG M AX射线分析仪分析钢板表面成分,结果麻点和基体成分相同,主要是Fe和O。

2.3 X光衍射仪组织分析

X光衍射仪组织分析结果见图2。

对麻点和基体进行比较,其表面相组成没有明显差别,均由α2Fe(基体)(主要相)、Fe2O3(次要相)和极少量的FeO组成。

2.4 金相分析

郭秀莉,工程师,1991年毕业于东北大学金属压力加工专业,现在鞍钢新钢铁公司质检中心检查处工作(114021)。

?

9

4

?

 

2003年第5期 鞍钢技术

ANG ANG TECHNO LOGY

元素

重量百分比,%

计数率,次/s

原子百分比,%

O 2.2130.577.32Fe

97.79

700.84

92.68

图1 扫描电镜麻点成分分析

图2 X 光衍射仪对麻点相分析

麻点样未发现异常夹杂物,说明该缺陷与钢坯质量无关,在光学显微镜下观察其横断面,可以

看到麻点覆盖在均匀的氧化层上。

3 麻点缺陷产生的机理及解决措施

通过对SS400带钢表面麻点缺陷的检验分析,确定麻点缺陷为氧化铁皮(Fe 3O 4)压入到钢板表面造成的。对此更进一步地开展研究工作。3.1 麻点缺陷产生的机理

通过查阅日本关于热轧带钢表面质量的文献“轧制条件和轧制成分对由热轧工作辊造成的带钢表面缺陷的影响”发现,文中所说的缺陷与SS400带钢表面缺陷完全吻合,此缺陷在热连轧机组是由轧制铁皮引起的带钢表面缺陷;在半连轧机组,用带有表面缺陷的工作辊轧制带钢时,常常会出现这种表面缺陷,工作辊的这种表面缺陷与由轧制铁皮引起的带钢表面缺陷有关。工作辊的表面缺陷是一种表观现象,它是由于工作辊表面的部分区域落入了氧化物碎片造成的。轧辊的表面缺陷是在大的负荷和高的轧制温度下产生的,

带钢越薄,由于薄钢带在每个轧机上的压下量大,

那么轧制负荷就高,工作辊表面受损就越严重。受损轧辊表面的凸凹不平状态直接刻印在带钢表面上,在带钢表面凸起部分形成的铁皮,在下道次轧制时被压入到带钢内,因而产生缺陷的比例就越高。实验数据还表明,粗轧机出口温度愈高,带钢愈薄,那么带钢表面缺陷发生的频率也愈高。也就是说,当带钢在高温大负荷下轧制时,容易造成工作辊表面损坏,带钢表面也易产生缺陷。另外,轧制力与工作辊表面的强度比值和带钢表面缺陷的发生有一个很好的对应关系,当这个比值超过一个临界值时,带钢的表面缺陷就易发生,这个临界值是由所轧带钢的化学成分决定的。在铝镇静钢中添加少量的Si ,就能明显减少带钢表面缺陷。3.2 解决麻点缺陷的措施

大量的实验数据表明,带钢表面缺陷产生的多少随所轧带材的化学成分不同而不同。轧制铁皮引起的带钢表面缺陷与轧制毛坯的化学成分之间存在一定的相互关系,尤其是Al 2Si 镇静钢,Si 含量大于0104%时,几乎看不到表面缺陷,Si 含量超过0105%时,带钢表面形成的2FeO ?SiO 2层对防止钢的氧化起明显作用。

通过对SS400带钢化学成分统计分析发现,有麻点缺陷的SS400带钢,其Si 含量几乎都在0103%以下。为此,课题组提出,将SS400带钢Si 含量控制在0104%以上进行大生产试验。

4 麻点缺陷的大生产攻关试验

根据上述情况,课题组于2001年5月下旬修改了SS400带钢的化学成分,将Si 含量由01000%~0.106%修改为01055%~01156%,Als 含量由01010%~01055%修改为01000%~01055%,冶炼了三炉钢进行试验,分别轧制214mm ×1250mm 、118mm ×1450mm 、118mm ×1350mm 三个规格的卷板,通过进分卷线检查,表面没有发现麻点缺陷。其后,依据这一成分生产的卷板没再出现麻点缺陷。

5 攻关取得的效果

对攻关前后SS400带钢麻点缺陷发生情况进行比较(见表1、表2),攻关前(2001年1~5月)

(下转第56页)

这些影响系数会随着高炉操作条件的不同而存在差异。但焦炭强度、焦炭反应性、理论燃烧温度的提高,以及风口前风速的降低,都可降低高炉死料柱中焦炭的粉化率,以上燃烧实验的结果和模型计算的是一致的。即,回旋区焦炭粉化是由化学反应导致的劣化和物理冲击力所致,采用高温或高反应性焦炭,可抑制焦炭内部劣化层的生成,用降低风口前风速或采用高强度焦炭的方法可防止劣化层崩落,这些都可以抑制焦粉的产生。

5 结论

进行了高炉回旋区条件下的模拟燃烧实验,考虑到回旋区中焦炭气化反应和回旋时机械冲击的焦炭粉化数学模型计算,调查了从实际高炉内采集的焦炭特性,明确了以下几点。

(1)焦炭燃烧实验的结果表明,焦炭强度越高,焦炭反应性越高,则焦炭燃烧中的微粉发生量越少。

(2)在使用高反应性焦炭的燃烧实验中,回旋区附近装入的焦炭中块焦比例高,焦炭表面发生磨损性破坏。

(3)回旋区焦炭气化反应和机械冲击破坏的数学模型计算结果表明,使用高温或高反应性焦炭,可抑制块焦内部劣化层的生成;降低风口前风速或使用高强度焦炭,可防止劣化层崩落,抑制微粉的发生。

(4)从千叶厂5号高炉采集的死料柱内的焦粉是由回旋区的焦炭粉化而生成的。焦炭强度的提高、风口前风速的降低、理论燃烧温度的提高和焦炭反应性的提高,可降低粉化率,从而证实了数学模型的研究结果。

全荣 摘译自《铁と钢》2002,N o.1

陈妍 校

(编辑 孙永方)

收稿日期:2003—02—26

(上接第50页)

表1 采取措施前质量情况

月份12345累计卷产量,t4021528903500103998213013172123横切产量,t730067017737163811170749826总产量,t4751535604577475636324720221949麻点量,卷0192472070麻点量,23t/卷04375521614601610百分率,%0 1.2270.9560.286 1.8610.725

表2 采取措施后质量情况

月份6

78910累计卷产量,t344573171219592765021795115206

横切产量,t9977582866855345545033285

总产量,t4443437540262771299527245148491

麻点量,卷000011

麻点量,23t/卷00002323

百分率,%00000.0840.015

SS400带钢表面麻点的封锁率为01725%,攻关后(2001年6~10月)SS400带钢表面麻点的封锁率为01015%,比攻关前降低0171%,可见通过攻关取得了显著效果。

2001年1~10月SS400表面麻点封锁率变化情况见图3。

图3 2001年1~10月SS400表面麻点封锁率变化情况

6 结论

(1)热轧带钢的表面麻点缺陷为工作辊表面缺陷所致,由轧制铁皮引起的热轧带钢表面缺陷与所轧带钢的化学成分有一定的对应关系。

(2)在铝镇静钢中添加少量Si,能明显减少带钢表面缺陷。当Si含量超过0105%时,钢表面形成的2FeO?SiO2层对防止钢的氧化起明显作用。

(编辑 袁晓青)

收稿日期:2003—04—23

船板表面麻坑缺陷成因及应对措施

船板表面麻坑缺陷成因及应对措施 齐慧滨钱余海刘福何国军鲁岩 (宝山钢铁股份有限公司,上海宝山,201900) 摘要:船板表面麻坑缺陷严重损害船板的表面质量,是影响船板外观和后序生产过程的重要表面缺陷 类别之一,长期以来一直困挠着钢厂和用户。本文通过对船板生产、用户的储存和使用进行跟踪走访, 总结了麻坑缺陷的特征;根据船板储存和锈蚀状态,结合实验室分析和模拟实验结果,确定了船板表 面麻坑缺陷系钢板堆垛存贮中板缝间长期存水遭受缝隙腐蚀所致;结合船板生产、储运和应用提出了 减轻缺陷形成的应对措施。 关键词:船板;表面缺陷;麻坑;缝隙腐蚀;应对措施 1、前言 船板是宽厚板的重要品种之一。2008年4季度以来,由于全球金融危机对世界经济发生的影响,钢铁及下游产业受到较大的冲击,主要表现为基础设施投资减少,钢铁需求量大幅下降,钢铁产品订单骤减。由此,船厂普遍遇到船东要求推迟交货,生产节奏放缓,船板库存量大幅增加和库存周期延长。2009年年初开始,用户对船板表面缺陷质量异议的数量激增,其中比例最大的为表面麻坑缺陷。由于该缺陷在钢板表面明显且分布广泛,造成表面状态不合,需手工打磨或者补焊后才能使用,甚至局部常出现深度较深的麻坑,打磨后尺寸不合,无法继续使用,从而造成整张钢板报废。此外,船东对造船原料的质量要求也日益提高,轻微的麻坑也不愿意接受。这些因素使得许多重要船板用户陆续就此类缺陷提出质量异议,以该缺陷系产品表面质量问题为由纷纷提出索赔或退货,使钢厂蒙受了较大的经济损失,承担了很大的产品质量压力。 由于缺乏对麻坑缺陷的本质及产生原因的深入认识,这类缺陷也是困挠生产单元的重要问题。因此,找出船板表面麻坑缺陷产生的原因,理清其与一般热轧氧化皮缺陷之间的关系,构成了解决此类问题的关键。 本文将通过对船板生产、用户储存和使用进行跟踪走访,结合实验室对缺陷的分析和模拟实验结果,确定船板表面麻坑缺陷的特征和形成机理,并进而提出应对措施。 2、麻坑缺陷的基本特征 船板表面麻坑缺陷主要出现于船板用户的抛丸除鳞除锈预处理后,肉眼明显可见,典型 198

热轧带钢缺陷图谱

热轧带钢外观缺陷 Visual Defects in Hot Rolled Strip 不规则表面夹杂(夹层)(Irregular Shells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 带状表面夹杂(夹层)(Seams) 【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。 【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 气泡(Blisters) 【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护

渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 结疤(重皮)(Scabs) 【定义与特征】 以不规则的舌状、鱼鳞状、条状或M状的金属薄片分布于带钢表面。一种与带钢基体相连;另一种与带钢基体不相连,但粘合到表面上,易于脱落,脱落后形成较光滑的凹坑。 【产生原因】 由于板坯表面有结疤、毛刺,轧后残留在带钢表面。或板坯经火焰清理后留有残渣,在轧制中压入表面。 【预防与纠正】 加强板坯切口熔渣的清理,合理调整中间坯的切头、切尾量,避免毛刺残留。 【鉴别与判定】 肉眼检查,钢板和钢带不得有结疤。 分层(Split layer) 【定义与特征】 带钢断面上呈现未焊合的缝隙,有时在离层的缝隙中有肉眼可见的夹杂物,严重的分层使钢板局部劈裂,分层产生的部位无规律。 【产生原因】 板坯内局部聚集过多气体或非金属夹杂物,在轧制过程中不能焊合;化学成分偏析严重,也能形成分层。 【预防与纠正】 优化炼钢工艺,提高钢质纯净度;保证吹氩时间,钢水搅拌均匀,避免气体残留;。 【鉴别与判定】 肉眼检查,钢板和钢带不得有分层。 翘皮(Spills) 【定义与特征】 翘皮常呈舌状、线状、层状或M状折叠(不连续,薄材常出现翘起),常出现在带钢上表面边部。【产生原因】 铸坯内部近上表面的针孔、气泡、夹杂,在轧制过程中易在带钢上表面边部(薄弱处)暴露,在往返轧制过程中或卷取过程中部分表皮分层剥离翘起造成翘皮缺陷。 【预防与纠正】

砼表面裂缝原因分析

砼表面裂缝原因分析 The manuscript was revised on the evening of 2021

砼表面裂缝原因分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 1、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。 2、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。 3、原材料质量引起的裂缝

热轧带钢轧辊破坏原因分析

热轧带钢轧辊破坏原因分析 轧辊包括工作辊和支承辊,是轧机的关键零件之一,装在轧机牌坊窗口当中。在热轧带钢生产中,轧辊的消耗量很大,尤其是工作辊,它始终与红热钢坯直接接触。因此,找出轧辊的损坏原因并做出相应的解决措施,提高轧辊寿命,降低辊耗,是轧机制造商和用户都十分关注的问题。在实际生产过程中,轧辊的破坏形式主要有轧辊磨损、轧辊裂纹、轧辊剥落及轧辊断裂等。 轧辊磨损 轧辊磨损与其他磨损在形成机理上相同。从摩擦学角度来讲,可理解为轧辊宏观和微观尺寸的变化。一般讨论的轧辊磨损,包括宏观磨损和微观磨损,具体表现为轧辊直径的缩小。然而,轧辊磨损在几何和物理条件上与一般磨损又有差别,如轧辊上的某点与轧件周期性接触;轧件上的氧化铁皮作为磨粒进入辊缝;冷却液和润滑液的作用以及热的影响等。因此,在实际工作条件下轧辊磨损的因素很复杂,根据其产生的原因可分为以下几种: (1)机械磨损或摩擦磨损。工作辊与轧件及支撑辊表面相互作用引起的摩擦形成的磨损。 (2)化学磨损。辊面与周围其他介质相互作用,造成表面膜的形成与破坏的结果。 (3)热磨损。在工作状态下,轧辊因高温作用其表面层温度剧烈变化引起的磨损。 1 工作辊磨损 工作辊磨损主要是由工作辊与轧件及工作辊与支撑辊之间的相互摩擦引起的,这种摩擦包括滑动摩擦和滚动摩擦,其磨损主要发生在与轧件相接触的部位。 在生产过程中,由于带钢在轧机间形成活套,以致增大了带钢对上辊的包角,增加了接触面积的压力;带钢上表面再生氧化铁皮的滞留也增加了上辊的磨损,因此,上辊比下辊的磨损量大。由于传动端与电机连接,因振动之故,传动侧的磨损量比换辊侧的大。 2 支承辊磨损 支撑辊磨损主要是与工作辊的相对滑动和滚动造成的。工作辊表面的炭化物颗粒将支撑辊表面的金属微粒磨削下来,使支撑辊产生磨损。其磨损量的大小与轧辊的材质、表面硬度及光洁度、辊间压力横向分布、相对滑动量和滚动距离等因素有关。 实践证明,由于夹带大量氧化铁皮的冷却水作用在辊面,致使下支撑辊工况条件差,从而加速了轧辊的磨损。另外,支承辊的磨损也与上、下支撑辊的辊面硬度有关。 轧辊裂纹 由于多次温度循环产生的热应力造成轧辊逐渐破裂,即裂纹,它是发生在轧辊表面薄层的一种微表面现象。轧制时,轧辊受冷热交替变化剧烈,从而在轧辊表面产生严重应变,逐

混凝土质量缺陷蜂窝麻面处理专项方案

********建筑工程有限公司 编制日期:2019年5月3日 混 凝 土 质 量缺 陷整 改专项方案

一、质量情况 我司承建的“**************”工程,经质监检查发现质量问题如下:H栋二层梁板B-E/SB-1轴,KL96(1)梁,H栋五层B-5/B-D 柱,五层B-K/B-8轴LL30梁底,H栋五层B1-1/B1-4梁侧面,B1-C/B1-1梁侧面,H栋六层B-8/B-H剪力墙,H栋七层B-M/B-17飘板,H 栋七层B-K/B-18卫生间梁侧面,七-八楼梯步级,九层楼梯起步(板底),H栋七层B-D/B-1轴KL45梁侧H栋七层B-D/B-5柱脚,H栋九层B-H/B-9柱角,H栋九层B-K/B-7柱角, H栋十层B1-F/B1-5柱角,H栋八层B-M/B-18柱脚,H栋八层B-H/B-18柱脚,等局部混凝土构件有麻面、蜂窝、漏浆、尺寸有偏差、胀模、H栋12层梁箍筋间距过大梁第二排钢筋与第一排间距过大、伸入柱部分绑扎不牢固等问题,经五方主体开会对成因分析并制定了的修补及预防措施,加强在日后的施工中各工序的质量保证,以及加强对施工班组质量管理意识教育。 二、编制依据 《混凝土质量控制标准》GB50164-2011 《混凝土结构工程施工质量验收规范》GB50204-2011 《混凝土泵送施工技术规程》JGJ/T 10-2011 《混凝土裂缝修补灌浆材料技术条件》JG/T 333-2011 《混凝土结构工程施工规范》GB50666-2011 工程涉及的主要国家或行业规范、标准、规程、图集、地方标准、法规图集 三、补强措施及施工方法 (一)麻面 检查发现麻面是在H栋五层B-5/B-D柱,H栋五层B1-1/B1-4梁

混凝土表面裂缝产生的原因及处理方法通用版

安全管理编号:YTO-FS-PD798 混凝土表面裂缝产生的原因及处理方 法通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

混凝土表面裂缝产生的原因及处理 方法通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混

灰铸铁件加工面麻点状小孔缺陷的分析及防止

灰铸铁件加工面麻点状小孔缺陷的分析及防止铸件加工面麻点状小孔缺陷的形貌、分布特征和产生原因进行了分析。认为:麻点是由许多尺寸在0.3 mm 以下的小孔组成,多产生在凝固过程中冷速较慢的厚壁部位,主要分布在石墨密集区域,特别是在石墨封闭或半封闭区域;铸件w(C)和w(Si)量偏高,凝固过程中局部冷速过慢,切削用量偏大都有可能引起这种缺陷。提出了预防这种缺陷的四条措施。 关键词:麻点状小孔缺陷;石墨剥落;预防措施 灰铸铁的切削加工表面时常出现麻点缺陷,肉眼观察为小黑点的缺陷,实际是形态各异的小孔,因而易被误认为是表面缩松或是非金属夹杂物。这种缺陷比较容易出现在HT300 以下的各种牌号铸件,产生部位多在凝固过程中冷速较慢的厚壁部位。 1 缺陷的形貌特征 1.1 宏观形貌 对切削加工后表面存在缺陷的铸件进行解剖,试样的材料牌号为FC300(相当于HT300),化学成分为w(C)2.72%,w(Si)2.05%,w(Mn)0.76%,w(P)0.056%,w(S)0.095%。对试样进行打磨抛光后观察,其宏观形貌如图1 所示,表面有大小不等的麻 点状小孔。 1.2 微观形貌 文献[1]把这种缺陷称为“麻点”,并认为是“切削加工面上存在大量的直径0.2 mm 左右的小孔”。对图1 试样金相观察,这种缺陷是尺寸小于0.3 mm 的小孔,且小孔形状各异,圆孔甚少,尚难以用直径表达;并且尺寸大于0.2 mm 的小

孔(图中左侧的小孔);图3(c)石墨呈近似n 形分布形成的小孔;图3(d)石墨呈△形(图左上)和V 形或Y 形(图右下)分布形成的小孔;图3(e)石墨呈竹叶状分布形成的小孔。图3 的共同特征是微区金属被一根或几根片状石墨所包围,成孤岛状或半岛状,在切削力作用下剥落形成小孔;当切削力较大时,切屑崩落,也会超越石墨边界。但相对而言,当微区金属被石墨包围成封闭或半封闭状态时,在切削力作用下,会优先于其他微区的金属剥落而形成小孔。实际情况中不仅存在以上几种小孔,因为灰铸铁在凝固和继续冷却过程中,情况复杂,有很大的随机性,石墨形状和分布也不尽相同。当石墨与所包围的金属呈封闭或半封闭状态时,在切削加工(车、铣、铇、磨)过程中,石墨及其所包围的金属容易剥落,形成相应的小孔,如图4 所示。孔也较多。麻点状小孔缺陷的分布特征如下。 (1)缺陷多发生在石墨密集分布的区域,如图2 所示。图2(a)是0.2~0.3 mm 的小孔;图2(b)是0.1~0.2 mm 的小孔;图2(c)是0.05~0.10mm 的小孔。图2(d)是≤0.05mm 的小孔;图2(e)是长宽比≥5 的小孔。这些小孔的共同特点是周围片状石墨密集分布,石墨面积率为10%~15%,孔的边缘隐约可见片状石墨的痕迹,孔内呈灰色或黑色,并非块状石墨或其他。 (2)当石墨呈封闭或半封闭状态时,在切削力作用下,容易形成“麻点”。如当石墨分布呈多角形、C 形、O 形、n 形、△形、□形、V 形、U 形、竹叶状等形状时都有可能形成与上述形状相吻合的小孔,如图3 所示。图3(a)石墨呈多角形分布形成的小孔;图3(b)石墨呈C 形分布形成的小石墨密布区要比非密布区割裂基体严重,在切削力作用下,容易使石墨及其所包围的金属剥落而形成小孔,如图5 所示。图5(a)为尚未形成小孔的初始态,中心部位有2 处(1 区和2 区)可能出现剥落形成小孔;图5(b)为经第1 次打磨抛光后,1 区石墨上部开始连通;图5(c)为经第2 次打磨抛

热轧带钢缺陷图谱

热轧带钢缺陷图谱

————————————————————————————————作者: ————————————————————————————————日期: ?

热轧带钢外观缺陷 Visual Defects inHot Rolled Strip 2.1 不规则表面夹杂(夹层)(IrregularShells) 【定义与特征】 板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。【产生原因】 板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.2 带状表面夹杂(夹层)(Seams)

【定义与特征】 板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。【产生原因】 板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。 【预防与纠正】 优化炼钢、精炼工艺,提高钢质纯净度。 【鉴别与判定】 肉眼检查,钢板和钢带不得有夹层。 2.3 气泡(Blisters)

【定义与特征】 板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。 【产生原因】 板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。 【预防与纠正】 优化精炼工艺,保证吹氩时间,使钢水搅拌均匀,避免气体残留;保证中间包烘烤时间;保护渣要符合工艺要求,避免受潮。 【鉴别与判定】 肉眼检查,钢板和钢带不得有气泡。 2.4 结疤(重皮)(Scabs)

抹灰裂缝产生原因及防治措施

引言 抹灰工程是用胶凝材料及其砂浆以薄层涂抹在建筑物表面上直接做成饰面层的装饰工程。抹灰工程分一般抹灰和装饰抹灰,一般抹灰工程在普通等级的装饰工程上应用非常广泛。本文主要讨论室内一般抹灰的施工要点及产生室内抹灰裂缝的主要原因和控制措施。 1 施工要点 1.1 抹灰层的层次 为了保证抹灰层质量,抹灰必须分层操作,通常分为不同构造的三个层次。①底层,主要起与基层粘结作用,并对基层进行初步找平。 ②中层,主要起找平作用,使物面平整,并弥补因底层收缩出现的裂纹。③面层(罩面),主要起装饰作用。 底层灰的用料应根据基层材料种类的不同(如砖、混凝土或加气混凝土等)而选用不同的砂浆。一般底层灰砂浆较常用的是水泥砂浆、石灰砂浆、水泥石灰砂浆。底层灰厚度约为6.8mm。 中层灰浆的种类一般参照底层灰的选择处理,即与底层灰选择同种砂浆,配比也大致相同。厚度略厚于底层灰,约为10mm。 面层灰浆多为麻刀灰、纸筋灰、玻璃丝灰(纤维材料起良好的止裂作用)以及石灰砂浆,高级墙面用石膏灰浆。若用砂浆,配比中砂的用量要略为减少,细度要更细,以保证面层平整细腻。厚度约为2.5mm。 抹灰要分层进行的原因:①抹灰层分作用和用料不同的底层、中

层和面层,当然不能一次完成。②即使各层材料相同,若要一次完成,也有不易压实的操作困难。③厚厚的一层抹灰层自重大,当它超过砂浆与基层的粘结力时,抹灰层会掉落下来。采用分层抹灰,每层薄一些,并且后一层是在前一层6-7成干后抹上,此时前一层与前物面的粘结力已相当大,而后一层与前一层的粘结力只要承受薄薄的后一层自重。④使用含石灰膏的抹灰砂浆时,由于石灰膏的硬化是其主要成分Ca(OH)2 吸收空气中的CO2。生成CaCO3和H2O(水分要蒸发)。而空气中CO2含量很少,所以石灰膏硬化很缓慢。若不分层抹灰,在厚厚的抹灰层深处,石灰膏长时间不能结硬。采用分层抹灰,每层薄一些,各层之间有一定的施工间歇,就能使各层的石灰膏有充分硬化的环境条件。 1.2 抹灰层厚度控制 内墙抹灰层平均总厚度应不大于下列规定:普通抹灰—l8mm;中级抹灰—20mm;高级抹灰—25mm。抹灰层平均总厚度大于质量标准规定,不仅要增加造价,而且会影响质量。当抹灰层过厚时:①灰浆层自重大,易产生下垂现象,拉松灰浆与基层的粘结,导致出现空鼓。②抹灰层自重超过灰浆与基层的粘结力时,抹灰层脱落。③灰浆干燥收缩量大,所产生的收缩应力超过灰浆强度时,抹灰层开裂。另外,高级抹灰控制厚度要比普通抹灰大些,这是由于高级抹灰的表面平整度要求比普通抹灰要高些,即表面平整允许偏差要小些,抹灰层的表面平整是靠砂浆层厚度来调整的,表面平整度越高用以调整的砂浆层厚度应越宽裕些。

SPHC钢板卷边裂原因分析

第32卷第4期2010年8月 山东冶金 Shandong Metallurgy Vol.32No.4August 2010 摘要:利用金相和扫描电镜等分析手段,对SPHC 钢出现边裂的板卷进行了分析。结果表明,铸坯的加热不当造成铸坯过 热、过烧,使边部晶粒异常长大,并且局部晶界产生缩孔是导致边裂的主要原因,铸坯近表层的夹杂物富集,促进了轧制过程中裂纹的扩展,造成严重边裂。建议轧制过程中加强对坯料加热制度的管理,避免铸坯过热、过烧。关键词:SPHC 热轧板卷;边裂;过烧;夹杂物图分类:TG335.11 文献标识码:A 文章编号:1004-4620(2010)04-0031-03 1前言 某热轧厂生产的SPHC 板卷出现边部裂纹,造成了很大损失。本研究对生产中出现的SPHC 边裂问题进行试验、分析,对缺陷的形成机理及原因进行探讨,以期为问题的解决提供依据。 2检验设备与方法 用砂轮切割机从钢板缺陷部位截取两块试样,一块经研磨和抛光处理后,用4%硝酸酒精溶液腐蚀,在LEICA 正置式光学显微镜上观察显微组织;另一块经超声清洗后,在FEI X30扫描电子显微镜上进行形貌分析,并利用EDX 分析技术对缺陷部位化学成分进行了检测分析。 3检验结果与分析 3.1边裂宏观形貌及工艺参数 边裂轻的,在SPHC 卷板某一单圈出现;严重的,在边部全长范围内均出现。距边裂部位10~15mm 内伴随有细小纵裂和舌状裂纹。根据出现边裂的炉号,对炼钢工艺进行了检查,发现出现边裂的炉号冶炼成分正常,均为恒速拉钢,结晶器液面波动在±3mm 以内,没有明显的异常。分析加热时间,发现板坯加热时间与板卷是否出现裂纹无明显联系,部分炉号的前、中、后位置均有裂纹情况。3.2断口及纵裂分析 图1~6为边裂位置扫描电镜及光学显微镜下能谱分析及微观组织照片。从图中可以看出,断口处的形貌主要分为两类:第一类断口处存在大量凹凸悬浮状物质,断口底部圆滑,附近轧制面上的微裂纹处有大量与基体明显不同的颗粒状物质。能 谱分析显示,裂纹处的颗粒状物质为含Na、K 等元素的夹杂物,同时存在S 元素的偏析现象(见图1、图2)。金相观察可看到裂纹附近的组织与正常组织明显不同,具有较明显的变形特征,晶粒沿轧制方向变形明显(见图3)。可以推断,此类裂纹在结晶器中形成,在轧制过程中进一步扩展。从数量上来看,此类缺陷所占比例较少,占试验数量的1/3左右。第二类断口处没有发现明显异物,断口呈层石状,周围的裂纹表面平滑,无夹杂物,经能谱分析显示,此类断口处裂纹主要为铁的氧化产物(见图4、图5)。仅就形貌分析很难判断这些氧化物是钢浇注时氧化或卷入的渣液造成的,还是铸坯裂纹或轧制开裂后的氧化造成的。金相分析表明,裂纹处晶粒形貌与周围晶粒无明显区别,没有发现明显的氧化圆点(见图6)。可以推断,此类裂纹在轧制过程中出现, 是造成小纵裂的原因之一。 F Mn Fe Ti Ca Mg Ca Ca Ti Ti S Mn Fe Mn Fe 图1第一类裂纹断口形貌及对应能谱分析 3.3组织结构分析 在出现边裂缺陷的卷板及合格卷板的边部分别取样,并沿纵向、横向截面及轧制面分别取试样,采用光学显微镜、SEM 进行显微组织形貌及成分分析。 SPHC 钢板卷边裂原因分析 李波涛 (济南钢铁股份有限公司第一小型轧钢厂,山东济南250101) 收稿日期:2010-02-24 作者简介:李波涛,男,1981年生,2004年毕业于东北大学材料成型及控制工程专业。现为济钢第一小型轧钢厂助理工程师,从事型钢生产管理工作。 31

产品常见缺陷及原因

一、产品常见缺陷及原因 1、铁水常见质量缺陷 成分不合格,主要是S出格。 标准要求,炼钢生铁S≤0.070%,Si≤1.25%,;铸造生铁S≤0.050% ,Si>1.25%。 炼钢生铁牌号:L04、L08、L10。 铸造生铁牌号:Z14、Z18、Z22、Z26、Z30、Z34。 S出格的主要原因:入炉原料及熔剂质量波动造成炉渣碱度低;炉缸物理热不足;炉渣MgO、Al2O3含量高,炉渣流动性差;炉况不顺,座料、塌料多。 2、连铸坯常见质量缺陷 表面缺陷:纵裂纹、横裂纹、角部裂纹、夹杂、重接、飜皮、结疤、凹坑、划痕、压痕、气孔、凸块、缩孔。 内部缺陷:中间裂纹、三角区裂纹、中心疏松、中心偏析、内部夹杂、皮下气泡 形状缺陷:鼓肚、对角线长度差(脱方)、切斜、不平度(板坯)、镰刀弯(板坯)、弯曲、边长超差、长度超差

2、中板、连轧钢带常见缺陷

3、棒材、高线、中型材常见缺陷

二、质量事故分类及管理 1、炼钢一整炉废品:小转炉按出钢量42吨、大转炉按出钢量120吨计算;若出钢钢包(大包)为准时,当废品重量大于或等于出钢量的75%时为一整炉。 2、炼铁一整炉废品:小于或等于400m3高炉每次出铁量大于或等于30吨为一整炉,大于400m3高炉每次出铁量大于或等于50吨为一整炉。 3、《冶金工业部钢铁产品质量事故管理制度》规定:钢铁产品质量事故分为三级,其中一级质量事故为重大质量事故。结合本公司生产实际,我公司质量事故级别分类按附录《质量事故分类表》进行。

4、质量事故发生后,责任单位对事故分析要做到“三不放过”,即不查明事故原因不放过,不分清责任不放过,不订出纠正和预防措施不放过。 5、发生一、二级质量事故,质量部开具《不合格报告》,责任单位填写纠正措施,质量部对纠正措施进行跟踪验证。发生三级质量事故,责任单位在《柳钢质量事故报告单》上填写纠正措施自行跟踪验证。

混凝土表面裂缝产生的原因及处理方法

1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz’no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混凝土初凝到未终凝前这段时间内,如果遇到钢筋或模板的连接螺栓等物体时,这种沉降现象就会受到阻挠产生裂缝。特别是当模板存在不平整或粉刷的脱膜剂不均匀时,模板的摩擦力也会阻止沉降,以至在混凝土的垂直表面产生裂缝。水泥混凝土在硬化过程中会产生并释放大量的水化热,使混凝土内部温度不断升高,在大体积混凝土内,水化热使温度升高的现象更加明显,致使在混凝土表面与内部形成很高的温差,特别是在桥梁大体积承台混凝土浇筑中,

现场实测内外温差有时会达到50℃以上。当表层混凝土收缩时受到阻碍,混凝土的受拉一旦超过混凝土的应变力将产生裂缝。为尽量减少收缩约束以使混凝土能有足够强度抵抗所引起的应力反应,就必须采取措施控制混凝土内部温度升温的速率。在混凝土中掺加适量的矿粉及煤灰,能使水化热释放速度减缓;控制原材料的温度,即在混凝土内部采用冷却管道以循环水也能阻止混凝土内部升温的速率。 在拌制水泥混凝土时,同一混凝土使用不同品牌的水泥也会使昆凝土产生裂缝。在混凝土施工时,应严禁不同品牌、不同标高的水泥混在一起使用。碱性骨料也会引起混凝土表面产生裂缝。由于硅酸盐水泥中会有碱性金属成份(钠和钾),因此,混凝土内的孔隙液体中氢氧根离子的含量较高,这种高碱溶液和某些骨料中的活性二氧化硅发生反应,产生碱硅胶,碱硅胶吸收水份膨胀后产生的膨胀力会使混凝土产生裂缝。 对于混凝土浅层裂缝的修补通常是采用涂刷水泥浆或低粘度聚合物封堵以防止水份侵入;对于较深或较宽的裂缝,就必须采用压力灌浆技术修补,修补工作要及时,使混凝土达到内实外光的质量要求。 2 混凝土表面产生破损的原因及处理方法 混凝土表面破损包括:表面产生蜂窝,麻面、表面产生气孔,表面冲蚀等。对于表面蜂窝,主要原因是振捣不到位引起,在施工中只要加强责任心,振捣到位就能避免,现针对表面麻面,气

GT炉玻璃麻点缺陷分析

内部资料注意保密第1页共5页 主题:GT炉玻璃麻点缺陷分析 报告人:郑明生、龚国峰、杨贤珠 日期:2011年1月5日 报告内容: 一、综述 钢化玻璃出现麻点是个普遍现象,炉子温度越高麻点越严重。不同类型的钢化炉因结构和成型方式不同,产生麻点的原因也不尽相同。钢化玻璃上出现麻点的原因很多,就GT钢化炉来说,主要有四个方面的原因:GT炉设备问题、前处理传输辊道问题、玻璃磨边质量问题、玻璃洗涤质量问题。 1、GT炉设备问题 上片传输橡胶辊、炉体传输陶瓷辊、炉子内壁和压缩空气是GT炉造成玻璃麻点的主要原因。 ①上片传输橡胶辊 分析:上片台传输辊上积尘或粘有其它颗粒物(如玻璃小碎片等),或因橡胶辊硫化质量差而脱胶,造成部分颗粒物粘到玻璃的下表面并带入炉内加热。这些颗粒物小部分被直接压入热 玻璃表面,形成麻点;其余部分被粘到陶瓷辊上,成为陶瓷辊形成麻点的原因。 措施:保持上片台传输辊面清洁。 建议:当玻璃在上片台破碎时,需要及时清理橡胶辊面;当更换上片台橡胶辊时,需要确认传输辊的质量(劣质的橡胶辊可能有硫化物析出)。 ②炉体传输陶瓷辊 分析:除陶瓷辊面被粘上颗粒物外,陶瓷辊的本身质量问题也可能造成陶瓷辊面的颗粒状凸起或凹点。这些颗粒物或凹凸点将会给在热玻璃表面留下麻点。 措施:定期清洗陶瓷辊。 建议:用废玻璃洗炉时,需要确保玻璃下表面的干净;最好每个月冷炉清洗陶瓷辊一次(先用细砂纸均匀砂磨,再用湿纱布擦洗);尽量不要选用劣质陶瓷辊(一旦发生质量事故将得不 偿失)。 ③炉子内壁 分析:上炉体升降时,炉体端部分陶瓷隔板(影子墙)相互磨擦,造成陶瓷粉末掉落在陶瓷辊面上(新快速DB4炉子已经将前面6节炉体整合成两组升降,并在升降最为频繁的弯曲区炉 体端部增加了金属隔板设计,相对于旧炉来说,新炉因这种情况造成玻璃麻点的概率已经 是很低了);平衡气流、热吹起和真空射流等将在炉内形成空气流动,如果炉壁卫生状态 较差或炉壁陶瓷块间隙太大,壁上的污垢和保温棉絮将会被吹落到陶瓷辊面上;这些落在 陶瓷辊面上的粉末、污垢和棉絮将成为陶瓷辊形成麻点的原因。 措施:保持炉子内壁清洁,必要时适当陶瓷块间隙(如果保温棉在炉内可见,说明保温棉或陶瓷块间隙有问题)。

混凝土表面裂缝产生的原因及处理方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 混凝土表面裂缝产生的原因及处理方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8880-97 混凝土表面裂缝产生的原因及处理 方法(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混

小孔腐蚀论述

案例论述小孔腐蚀的特征机理与防腐蚀方法孔蚀又叫坑蚀,俗称点蚀、小孔腐蚀,它只发生在金属表面的局部地区。粗糙表面往往不容易形成连续而完整的保护膜,在膜缺陷处,更易产生孔蚀;加工过程中的锤击坑或表面机械擦伤部位将优先发生和发展孔蚀。一旦形成了孔蚀,如果存在力学因素的作用,就会诱发应力腐蚀或疲劳腐蚀裂纹。除此之外,孔蚀的发生不一定需要表面初始状态存在机械伤痕或缺陷,尤其对于孔蚀敏感的材料,即使表面非常光滑同样也会发生。孔蚀时,虽然金属失重不大,但是由于腐蚀集中在某些点、坑上,阳极面积很小,因而有很高的腐蚀速度,加上检查蚀孔比较困难,因为多数蚀孔很小,通常又被腐蚀产物所遮盖,直至设备腐蚀穿孔后才被发现,所以孔蚀是隐患性很大的腐蚀形态之一。 下面是一则案例事故,案情介绍:1990年12月9日,上海自来水公司某水厂,一只1000公斤的液氯瓶在近瓶体中部处突然穿了一个6-8毫米的小孔,从瓶内喷出大量酱油状液体和氯气。幸亏及时发现,消防队和有关工厂的专门技术人员赶到现场采取了有效的封堵和消毒措施,受损的液氯瓶立即被送往某化工厂,在处理池内加入10吨烧碱吸收氯气,从而避免了一起重大事故。那么这场事故有事如何酿成的呢?首先,要了解下孔蚀的机理。易钝化的金属在含有活性阴离子(最常见的是Cl-)的介质中,最容易发生孔蚀。孔蚀的过程大体上有蚀孔的形成与成长两个阶段,例如不锈钢在充气的NaCl溶液中的腐蚀过程。 第一种叫做孔蚀核。不锈钢是钝化能力比较强的金属,在无活性阴离子介质中,其钝化膜的溶解和修复(再钝化)处于动态平衡状态中。而在NaCl溶液中,由于存在Cl-将使平衡受到破坏,因为氯离子能在某些活性点上由于氧原子吸附在金属表面,冰河金属离子结合成可溶性氯化物,形成孔径很小(约为

带钢常见缺陷及其图谱

结疤(重皮) 图1 图2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;

②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害:导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。气泡 图1 开口气泡 图2 开口气泡 1.缺陷特征

钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氮不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害:可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。

压入氧化铁皮 图1 一次(炉生)氧化铁皮(压入) 图2 二次氧化铁皮(轧制过程产生)

图3 二次氧化铁皮(轧辊氧化膜脱落) 1.缺陷特征 热轧过程中氧化铁皮压入钢带表面形成的一种表面缺陷称压入氧化铁皮。按其产生原因不同可分为炉生(一次)氧化铁皮、轧制过程中产生的(二次)氧化铁皮或轧辊氧化膜脱落压入带钢表面形成的(二次)氧化铁皮。 2.产生原因及危害 产生原因: ①钢坯表面存在严重纵裂纹; ②钢坯加热工艺或加热操作不当,导致炉生铁皮难以除尽; ③高压除鳞水压力低、喷嘴堵塞等导致轧制过程中产生的氧化铁皮压入带钢表面; ④轧制节奏过快、轧辊冷却不良等导致轧辊表面氧化膜脱落压入带钢表面。 危害:影响钢带表面质量和涂装效果。 3.预防及消除方法 ①加强钢坯质量验收,表面存在严重纵裂纹的板坯应清理合格后使用; ②合理制订钢坯加热工艺,按规程要求加热板坯; ③定期检查高压除鳞水系统设备,保证除鳞水压力,避免喷嘴堵塞;

热轧卷缺陷图谱

热轧板卷缺陷图谱 缺陷名称辊印 1.缺陷特征: 是一组具有周期性(其周期长度即为产生辊印的辊子的周长及其后再加工的延伸量,大小形状基本一致的凸凹缺陷,并且外观形状不规则。 2.产生原因:一方面由于辊子疲劳或硬度不够,使辊面掉肉呈凹形,另一方面由于辊子表面粘有异物,经轧制或精整加工的钢材表面形成凸凹缺陷。 3.预防及消除方法: (1)正确选择轧辊材质及其热处理工艺,调整轧辊冷却水,使辊身冷却均匀,预防轧辊掉肉; (2)定期检查轧辊表面质量,禁止违章轧钢或异物进入轧辊,预防伤害轧辊表面; (3)定期更换疲劳的轧辊、夹送辊、助卷辊等; (4)如轧钢发现异常如冷卷、卡钢、甩尾等情况时,应及时检查轧辊表面是否损伤; (5)定期检查精整加工线平整辊、矫直辊等表面质量。

缺陷名称氧化铁皮 缺陷图片 1.缺陷特征: 氧化铁皮一般粘附在钢板表面上,分布于板面局部或全部,铁皮有的疏松易脱落;有的压入板面不易脱落。根据其外观形态不同可分为:红铁皮、线条状铁皮、木纹状铁皮、流线状铁皮、纺锤状铁皮、拖曳状铁皮或散沙状铁皮等。 2.产生原因: (1)板坯加热制度不合理或加热操作不当生成较厚且较致密的铁皮,除鳞时难以除尽,轧制时被压入钢板表面上; (2)由于高压除鳞水压力低、水咀堵塞、水咀角度安装不合理或操作不当等原因,使钢坯上的铁皮未除尽,轧制时被压入到钢板表面上。 (3)氧化铁皮在沸腾钢中发生较多,含硅较高的钢中易产生红铁皮。 (4)轧辊表面粗糙也是产生氧化铁皮的一个重要原因。

缺陷名称波浪 缺陷图片 1.缺陷特征: 沿钢板的轧制方向呈现高低起伏的波浪形的弯曲。根据分布的部位不同,分为中间浪、单边浪和双边浪。 2.产生原因: (1)辊形曲线不合理,轧辊磨损不均匀; (2)压下量分配不合理; (3)轧辊辊缝调整不良或轧件跑偏; (4)轧辊冷却不均; (5)轧件温度不均; (6)卷取机前的侧导板开口度过小等。

水泥混凝土路面表面裂缝产生的原因及处理措施(1)

水泥混凝土路面表面裂缝产生的原因及 处理措施 水泥混凝土路面是一种刚度大、扩散荷摘载能力强、稳定性强的路面结构。但由于在施工中水泥混凝土的原材料及配合比的控制未达到设计标准,施工工艺不规范。使得水泥混凝土路面道板出现了早期损坏,导致路面出现裂缝与断板,这就降低了路面使用性能,不能确保水泥混凝土路面的正常使用年限,不能发挥道路建设的投资效益。因此,需要对路面出现的裂缝与断板进行认真观测、分析、确定裂缝原因,制定切实可行的修补方案。 一、裂缝分类与产生的原因 水泥混凝土道面的裂缝,可分为表面裂缝和贯穿板全厚度的裂缝(简称贯穿裂缝)。 (一)、表面裂缝 水泥混凝土道面表面裂缝主要是由混凝土混合料的早期过快失水干缩和碳化收缩引起的。 混凝土混合料是一种多相不均匀材料。由于构成混合料的各种固体颗粒大小、密度不同,混合料不可避免地会发生分层离析。 1、泌水裂缝 在路面水泥混凝土道面施工中混合料发生分层离析大

多是由于粗骨料在混合料中下沉,水分向上迁移,从而形成表层泌水。泌水的结果,使水泥混凝土道面表面含水量增加,经蒸发后混凝土表面形成凹面,此时混合料颗粒间产生较强的表面张力。当混凝土表面尚未充分硬化,不能抵御这一张力时,混凝土表面则发生裂缝。在混凝土浇筑后数小时,混凝土表面将出现大面积细微的龟裂。 2、碳化裂缝 当混凝土的水泥用量较低、水灰比较大时,空气中的二氧化碳易渗透到混凝土中,混凝土的碳化反应在空气相对湿度为30%-50%时最为激烈,此时混凝土的碳化收缩将引起混凝土表面龟裂。 根治这类病害的方法是:在混凝土路面的混合料铺筑、振捣后,立即采用真空吸水工艺,此方法可以将混凝土中富裕的水分和空气一并吸出。这样既提高了混凝土强度又可控制混凝土表面的网裂病害。 (二)、贯穿裂缝 水泥混凝土路面贯穿裂缝为贯穿板全厚度的横向裂缝、纵向裂缝、交叉裂缝和板交裂缝。 1、横向裂缝 垂直与行车方向的不规则裂缝称为横向裂缝,导致水泥混凝土路面出现横向裂缝的原因较多,其主要原因有以下三方面。

混凝土表面裂缝及蜂窝麻面等缺陷的形成原因和预防措施

混凝土表面裂缝及蜂窝麻面等缺陷的形成原因和预防措施 随着现代施工水平的不断提高,建筑工程对混凝土的各种性能要求越来越高,不仅要求混凝土工作性能好、强度指标高、耐久性长等,而且还要求混凝土有较高的观感质量和平整度,在后期装饰工程施工时,可省掉常规的混合砂浆找平层施工工序,在混凝土构件表面直接批腻子找平,从而节约大量的人工、材料和工期。 但是在混凝土工程实际施工过程中,不论现场条件和管理水平如何,混凝土都不可能在非常理想的条件下进行,往往会由于种种原因,在混凝土的浇筑过程中或刚刚施工完不久产生表面裂缝、孔洞、蜂窝、麻面、露筋等表面缺陷。不管是哪一种表面缺陷,都会对混凝土的外观质量带来不利影响。因此,分析混凝土表面缺陷的形成原因,并在施工中有针对性的采取预防措施,是减少表面缺陷、提高混凝土外观质量的重要途径。在混凝土常见表面质量缺陷中,孔洞、露筋等的形成原因比较直观且相对容易控制,本文不再进行赘述,下面对表面裂缝和蜂窝麻面的形成原因和预防措施作重点分析与阐述。 一、混凝土土表面裂缝的形成原因及预防措施 混凝土表面的裂缝大都是因为混凝土的收缩引起的,混凝土的收缩主要分为两类情况,一类是刚刚浇筑完成的混凝土因表面水分蒸发引起的混凝土干缩,另一类是因为水泥水化热使混凝土内外产生温度差而引起的表面收缩。 刚刚浇筑完成的混凝土,表面因失水蒸发而收缩,因受到内部混凝土的约束而产生收缩应力,当收缩应力大于表层混凝土抗拉强度时就会产生裂缝。这类裂缝通常不连续,且很少发展到边缘,一般呈对角斜线状,长度不超过30cm,较严重时裂缝之间也会相互贯通。对这类裂缝最有效的预防措施是在混凝土浇筑时保护好混凝土浇筑面,避免风吹日晒,混凝土浇筑完毕后要立即将表面加以覆盖,并及时洒水养护。另外,在混凝土中掺加适量的引气剂也有助于减少收缩裂缝。 混凝土在硬化过程中,会释放大量的水化热,使混凝土内部温度不断上升,在大体积混凝土中,水化热使温度上升更加明显,在混凝土表面与内部之间形成很高的温度差和相对变形。表层混凝土收缩时受到阻碍,混凝土受到拉应力作用,一旦超过混凝土的抗拉强度即产生裂缝。为了尽可能减少收缩约束以使混凝土能有足够强度抵抗所引起的应力,就必须有效控制混凝土内部升温速率。相应的预防措施有:采用低水化热水泥,降低水泥用量,在混凝土中掺加适量的矿粉煤灰,能使水化热释放速度减缓;控制原材料的温度,在混凝土结构内部采用冷却管通以循环水也能及时释放水化热能。 二、混凝土表面蜂窝麻面的形成原因及预防措施 (一)内部原因

相关文档