文档库 最新最全的文档下载
当前位置:文档库 › 低分子量聚乙烯熔融接枝马来酸酐的研究

低分子量聚乙烯熔融接枝马来酸酐的研究

低分子量聚乙烯熔融接枝马来酸酐的研究
低分子量聚乙烯熔融接枝马来酸酐的研究

聚乙烯亚胺产品介绍

EPOMIN 简介 日本触媒株式会社自从1969年乙烯亚胺产品工业化生产以来,就一直致力于乙烯亚胺衍生物产品的开发、生产和销售。 EPOMIN是我司聚乙烯亚胺的注册商标,它包括一系列的乙烯亚胺衍生物产品,是由乙烯亚胺开环聚合而成。 EPOMIN是一种水溶性聚合物,具有很强的反应性及高阳离子密度,广泛用于水处理剂、螯合剂、粘合剂、纤维处理剂等领域。 我们会依据所积累的经验,在EPOMIN的最终使用和产品开发方面,尽可能的向客户提供更多的信息和技术服务。 此外,生产EPOMIN的川崎工厂,于1997年7月通过了“乙烯亚胺衍生物生产”的ISO9002(JCQA)的认证,这确保我们向客户提供高品质的产品。同时,在2000年6月,通过了ISO14001的认证,确保环境维持/改善。 EPOMIN的生产方法 EPOMIN的原料--乙烯亚胺,以前的生产方法是将一乙醇胺先用硫酸酯化,然后在氢氧化钠中加热环化制得。 日本触媒公司开发了新的气相催化法,由一乙醇胺直接脱水环化生成乙烯亚胺,并于1990年成功的实现了工业化生产。 EPOMIN由乙烯亚胺在酸性催化剂下开环聚合而成。 EPOMIN不是完全的线形聚合物,而是含有部分支链的聚合物,包括伯、仲、叔胺。

EPOMIN的特征 EPOMIN是含有胺基的聚合物,具有以下特征: ●在现有材料中具有最高的阳离子密度 ●高反应性 ●水溶性 EPOMIN性状表 ○:溶解△:部分溶解X:不溶解 ※1:没有闪点 分析方法 1、分子量 (1)、SP系列:数平均分子量,采用沸点升高测定法(2)、P系列:数平均分子量,采用渗透压测定法 2、胺值:酸量滴定法(无水系统) 3、分解温度:在氮气中采用差示扫描测热法 4、闪点:克里弗兰开杯法 5、胺基比例:NMR(13C)

超高分子量聚乙烯纤维

超高分子量聚乙烯纤维 (1)原料的选择 包括分子量、分子量分布、颗粒大小、颗粒度分布及堆砌密度、色相等。选用UHMWPE 可以降低纤维中端基的浓度,增加大分子链之间的相互作用力,使成品纤维的力学性能得以大幅度提高。以不同分子量的UHMWPE 进行冻胶纺丝,所得纤维的强度随分子量的增大而提高,但分子量越大,分子链内缠结越严重,溶解越困难,溶液浓度越低。若以降低原液浓度制取高强度纤维无疑对工业化生产是不可取的。改善UHMWPE 溶解的均匀性可使Mw=106 的UHMWPE 用于冻胶纺丝。适当地控制分子量分布是必要的。分子量分布过宽,影响UHMWPE 的均匀溶解,由于分子量不同,具有不同的溶胀、溶解温度和速率,所以低分子量PE 易于溶胀和溶解,率先进人溶解阶段,引起溶液粘度剧增,并占据大量溶剂,阻碍了高分子量PE 的溶解。这种溶解不均匀性在制备较高粘度溶液时尤为突出。适当地控制UHMWPE 颗粒尺寸和堆砌密度也是十分必要的,不同颗粒尺寸和堆砌密度的UHMWPE溶胀和溶解程度不同。粗颗粒溶解时在其表层形成高粘度的溶胀层,阻止溶剂继续向内部渗透,并将未充分溶胀的颗粒粘接在其表层,使纺丝原液中含有未溶解的颗粒,造成原液不均匀。颗粒宜在80 目以下,堆砌密度则在0.4 g/cm3 以上为宜。 (2)均质冻胶溶液的制备 ①溶剂 UHMWPE 极难溶解,按常规的溶解方法需在较高温度下(170℃)长时间搅拌,分子量会急剧下降。将Mw 大于106 的粉状UHMWPE 聚合物在适当的溶剂中溶解,使超长分子链从初生态堆砌体,分子链间及分子链内部缠结等多层次的复杂形态结构转变成解缠大分子链。用于UHMWPE 冻胶纺丝的溶剂有十氢萘、石蜡油、石蜡和煤油,其中以十氢萘为最佳,可在较低温度下溶解UHMWPE,溶液均匀性好。十氢萘易于挥发,制得的冻胶原丝可以不经萃取而直接拉伸,获得性能优良的UHMWPE 纤维。以烷烃类(石蜡油、石蜡和煤油)溶剂取代十氢

聚丙烯接枝马来酸酐机理

马来酸酐接枝聚丙烯的机理研究 聚丙烯(PP)由于非极性,表面能低的特点,导致了它的染色性、粘结性、亲水性及与其他极性高分子或无机填料的相容性很差,从而使聚丙烯的的应用受到了很大限制。为了克服上述缺点,通常采用接枝的方法在PP链上引入带有官能团的单体来进行改善。其中以接枝马来酸酐(MAH)为最常用的方法。虽然MAH接枝PP已有很长的研究历史,但对其反应机理的研究,仍存在一些问题。 MAH接枝PP通常分为三个历程,即:(1)大分子自由基的形成;(2)与MAH接枝;(3)发生β-断裂。后两者哪个过程占优势,依赖于MAH的浓度和反应温度等实验条件。经过(2)(3)过程产生的中间体,一部分继续和MAH 反应,另一部分将发生各种自由基终止反应。整个过程如图1所示。最终产物包括:接枝加成产物(4)、(7);β断链后的端烯基产物(5)、(9)和断链后链端自由基的加成产物(10)、(11)。 图1 PP接枝MAH的反应机理

De Roover等人以模型化合物的研究和红外光谱的分析为基础,提出一套机理。他们认为,在熔融接枝过程中,产生的大分子二级自由基数目很少,可以忽略。而三级自由基全部发生断裂,因此MAH只能接在PP断裂产生的大分子末端,即以(10)、(11)为主。产物中MAH的浓度大于由PP产生的末端自由基的浓度。因此,De Roover等人认为,在产物中MAH主要以5 ~6个单元的低聚物形式存在。 Henien等人通过对产物进行NMR分析后认为,经引发剂引发而产生的PP 三级自由基能够直接与MAH接枝,形成接在PP三级碳上的结构,即产物(4)、(7)。并且通过对MAH官能化后的聚乙烯(PE)、乙丙橡胶(EPM)的核磁共振谱进行研究,发现MAH在聚烯烃中的存在形式与聚烯烃本身的结构密切相关。MAH 在高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE)中既有单环形式也有低聚物存在,而在含有大量叔氢原子的交替共聚EPM和等规聚丙烯(iPP)中,MAH以单环的形式接入其中,说明在PP熔融接枝MAH的过程中,MAH不能发生自聚。这符合MAH 自聚的温度上限理论,即当实验温度超过MAH聚合上限温度T c 时,解聚速度大于聚合速度,MAH的均聚物不可能存在,即产物PP接枝产物以(11)为主。 总之,对于MAH接在PP末端的机理,人们一直比较关心PP是先发生断裂,再与MAH 接枝,还是先接枝后断裂。一般来说,如果PP 先发生断裂,那末MAH将以单键形式接在PP上;如果先接枝后断裂,得到的是MAH与PP 的末端以双键相连的结构。

聚乙烯亚胺产品介绍

聚乙烯亚胺产品介绍 聚乙烯亚胺的特征 聚乙烯亚胺是含有胺基的聚合物,具有以下特征: 1) 在现有材料中具有最高的阳离子密度 2) 高反应性 3) 水溶性 聚乙烯亚胺分析方法 1、分子量 (1)300-10000:数平均分子量,采用沸点升高测定法 (2)70000:数平均分子量,采用渗透压测定法 2、胺值:酸量滴定法(无水系统) 3、分解温度:在氮气中采用差示扫描测热法 4、闪点:克里弗兰开杯法 5、胺基比例:NMR(13C) 聚乙烯亚胺性状表

聚乙烯亚胺功能 1、高附着性、高吸附性 胺基能与羟基反应生成氢键,胺基能与羧基反应生成离子键,胺基也能与碳酰基反应生成共价键。同时,由于具有极性基团(胺基)和疏水基(乙烯基)构造,能够与不同的物质相结合。利用这些综合结合力,可广泛应用于接着、油墨、涂料、粘结剂等领域。 2、高阳离子性 聚乙烯亚胺在水中以聚阳离子的形态存在,能够中和和吸附所有阴离子物质。还能螯化重金属离子。利用其高度的阳离子性,可以应用于造纸、水处理、电镀液、分散剂等领域。 3、高反应性 聚乙烯亚胺由于具有反应性很强的伯胺和仲胺,能够很容易地与环氧、醛、异氰

酸酯化合物和酸性气体反应。利用其此种反应特性可作为环氧树脂改性剂、醛吸附剂和染料固定剂使用。 聚乙烯亚胺用途

聚乙烯亚胺注意事项 (1)储藏安定性 放置在低温阴暗场所,可保持约1年的稳定性。但是放置在高温(80度以上)下与空气(氧气)接触会发生着色,表面生成薄膜等品质恶化的情况。 吸湿性强,并且会吸收空气中二氧化碳,保存时请注意。 (2)可用材料 可用材料不锈钢 合成树脂(聚氯乙烯、聚乙烯、聚丙烯) 不可用材料软铁等铁材料---产品会被铁锈着色,水溶液的铁锈对产品有硬化作用。 含铜或黄铜的合金---会与产品反应,生成青绿色的化合物。 (3)保存 避免阳光直射和雨水。 请保存在无渗透性的地面上。 使用后请密封保存。 请尽量保存在低温阴暗处。

聚乙烯介绍

聚乙烯介绍 聚烯烃类塑料是石油化工主要产品之一,其产量在塑料工业占着最大的份额,是最重要的的通用塑料。聚烯烃的主要品种包括聚乙烯、聚丙烯、聚丁烯、聚异丁烯(主要用作橡胶用)、聚4-甲基-1-戊烯以及若干共聚物。聚烯烃货源广,价格廉,且有电性能、耐化学性、耐溶剂性等多种优异性能,兼有容易采用多种成型方法加工的优点,因而在塑料材料中用途最为广泛。 聚乙烯(PE)是由乙烯直接聚合得到聚合物。聚乙烯是化学组成和分子结构最为简单,生产量最大,应用最广的塑料品种。 聚乙烯最早是在1939年实现了用高压法的工业生产,50年代又相继出现了低压法和中压法工业化生产。 聚乙烯中的-c-c-是柔性链,且是线型长链,因而是柔性颇优的热塑性聚合物。无极性基团,分子链间引力小。聚合分子链空间排列呈平面锯齿型。由于分子链的规整和良好的柔性,使分子链可以反复并整齐堆砌排列形成结晶。 聚乙烯具有化学的惰性、良好的韧性和耐低温性优异的介电与电绝缘性、极优的耐溶剂性等一系列优异性能。但除了韧性以外的力学性能不是很高。 聚乙烯是一种非极性结晶型聚合物,内聚能密度在塑料材料中塑料属于较低者,溶解度参数约为16.5(J/cm3)1/2。由于它的结晶结构和非极性,在室温下没有任何溶剂可以使它溶解,仅可以在与之相近的溶剂中溶胀;随着温度的升高,可在与之相近的溶剂中溶解。 聚乙烯的吸水性极小,加工成型前不需要作干燥处理。比热容大,收缩率偏高 聚乙烯表面具有惰性的低能表面,粘附性很差,聚乙烯制品间,聚乙烯制品与其它材质制品之间的胶接比较困难。印刷性能不好,工业上常用电晕作表面处理。 高压聚乙烯 支化度大,分子量分布宽,结晶度低,密度小(约0.923,不同的熔融指数有差别),所得制品为低密度聚乙烯,各项力学性能较低,但韧性良好。 中压聚乙烯 支化度最小,分子量更高,分子量分布窄,密度在0.95`0.97g/cm3之间,属于高密度聚乙烯,结晶度可达95%-97%,各项力学性能较好,但韧性略差。 低压聚乙烯 LDPE 简称LDPE 俗称花料或筒料

马来酸酐接枝ABS及其应用(精)

马来酸酐接枝ABS 及其应用 陈玉胜张祥福张勇张隐西 (上海交通大学高分子材料研究所,上海200240 摘要 采用熔融法研究了马来酸酐(M AH 接枝ABS 。结果表明:马来酸酐接枝率随 M AH 添加量或引发剂过氧化二异丙苯(DCP 的添加量的增加而提高,但是添加量过多时,接技率增加速率变慢;ABS 接枝马来酸酐后,冲击性能明显下降,但拉伸性能变化不大;马来酸酐接枝改性ABS ,增容ABS/PC 合金共混物,可提高合金的缺口抗冲击强度达1.5~2.5倍。关键词:马来酸酐接枝丙烯睛/丁二烯/苯乙烯共聚物增容聚碳酸酯 0前言 收稿日期:2000201204 在共混中采用反应增容方法促进溶解度参数不匹配的聚合物共混,已越来越受到人们关注。这种方法的本质特性是在加工过程中使共混组分之间发生化学反应,生成接枝或嵌段聚合物,该聚合物作为共混增容剂使组分间良好地分散和增强界面结合[1]。因此这种方法最基本的要求是共混聚合物组分分子链中应含具有反应活性的功能基团,如环氧基团、酸酐基团、磺酸基团等。这些基团的特点是与氨基、羟基等基团的反应活性高,并且无低分子物生成。 ABS 是通用工程塑料,综合性能好,常与 其它聚合物共混制备合金。在与其它聚合物(如尼龙、聚碳酸酯共混过程 中,ABS 与它们之间的相容性是合金获得优良综合性能的关键。国内外已有报道采用马来酸酐接枝改性ABS 作为增容剂,用以改善ABS 系列合金间

的相容性[2,3]。本研究在H AAKE 转矩流变 仪上,采用马来酸酐熔融接枝改性ABS ,考察了影响接枝反应的主要因素、接枝产物力学性能变化以及接枝产物增容ABS/PC 合金的应用前景。 1实验部分 1.1原料 ABS 树脂,牌号PA -747S ,台湾奇美实 业股份有限公司产品; PC 树脂,Lexan141,美国GE 塑料树脂(中国公司产品, 马来酸酐(M AH ,化学纯,上海山海科技研究所; 过氧化二异丙苯(DCP :化学纯。其中PC 、ABS 树脂在使用前均在90℃干燥8h ,以除去吸收的水分1.2主要仪器和设备 转距流变仪,H AAKE RC -90型,德国H AAKE 公司; 双螺杆挤出机,SH L -35型,上海化工机械四厂; 红外光谱仪,Perkin -Elmer 1000型,美 第14卷第5期2000年5月 中国塑料 CHINA P LASTICS V ol14N o 5 May 2000

马来酸酐接枝氯化聚乙烯聚丙烯热塑性弹性体的制备及表征

马来酸酐接枝氯化聚乙烯/聚丙烯热塑性弹性体的制备及表征 陈尔凡1,李晓洋1,马驰1,高艳萍1,吴波1,王素菊2,白岩2、汪晓娟2 1. 辽宁省高分子材料工程技术研究中心(沈阳化工大学),110142; 2. 三橡集团,110148 摘要:以过氧化二异丙苯(DCP)为引发剂,在转矩流变仪中,对氯化聚乙烯/聚丙烯(CM/PP)进行顺丁烯二酸酐(马来酸酐,MAH)熔融接枝制备了热塑性弹性体。考察了DCP用量和MAH用量对其接枝率、力学性能的影响。并用红外光谱、差扫描量热法、热重分析法和电子扫描电镜对其进行组成结构、热行为和形态表征。结果表明:MAH成功接枝到CM/PP热塑性弹性体上。接枝后的CM/PP热塑性弹性体的力学性能和热性能明显改善,当MAH为4份时和DCP用量为3.2份时,接枝率达到0.66%,抗拉强度比未接枝CM/PP提升了78%,达到6.3MPa。 关键词:氯化聚乙烯;聚丙烯;热塑性弹性体;马来酸酐;熔融接枝 Preparation and characterization of CM/PP Thermoplastic Elastomer Grafted by Anhydride Maleic-Modified Chen Erfan1, Li Xiaoyang1, Ma Chi1, Gao Yanping1, Wu Bo1, Wang Suju2, Bai Yan2, Wang Xiaojuan2 (Liaoning Research Center of Engineering & Technology for Polymer Materials, Shenyang University of Chemical Technology, 110142; San Rubber Group, 110148) Abstract:Chlorinated Polyethylene (CM)/Polypropylene (PP) thermoplastic elastomer was prepared by melt grafting with maleic anhydride (MAH), as DCP is the initiator, in the torque rheometer. The influences of the percent grafting and mechanical properties were studied with the amounts of DCP and MAH. The composition structure, thermal behavior and morphology were characterized by FTIR, DSC, TG and SEM. The results showed that MAH was grafted to PP chain of CM/PP thermoplastic elastomer, and the mechanical properties and thermal performance has been improved significantly. The tensile strength of CM/PP Thermoplastic Elastomer Grafted by Anhydride Maleic-Modified was improved 78% compared with CM/PP which is not grafted, reached to 6.3MPa, as the grafting ratio is 0.66%, which as MAH and DCP are 4phr and 3.2phr respectively. Key words: Chlorinated Polyethylene; Polypropylene; Dynamic Vulcanization; Maleic Anhydride; Melt Grafting 前言 橡胶型氯化聚乙烯(CM)具有优良的耐候、耐臭氧、耐热老化性等性能,同时其生产原料来源丰富、制造工艺简单,成本低廉,因此CM及其制品广泛应用于电线 沈阳市科技基金(F11-239-1-00) 本文联系人:陈尔凡,男,博士,博士生导师,教授,主要从事高分子复合材料研究。发表论文200余篇,近年来获省部级科技进步奖十项。E-mail:cef5556@https://www.wendangku.net/doc/0a13168454.html,

聚多巴胺-聚乙烯亚胺改性反渗透膜制备与表征

聚多巴胺-聚乙烯亚胺改性反渗透膜制备与表征 聚多巴胺-聚乙烯亚胺改性反渗透膜制备与表征聚多巴胺-聚乙烯亚胺改性反渗透膜制备与表征谷金钰1,李昊2,许文盛2,张平仓2 (1.水利部科技推广中心,北京100038;2.长江科学院水土保持研究所,湖北武汉430010) 摘要:饮用水短缺和水污染问题严重影响着人类和社会的发展。反渗透技术提供了一种高效经济的方法来生产纯水和处理废水,以缓解这个问题。但是,反渗透膜的污染尤其是生物污染严重制约着其高效应用。膜表面改性技术是提升膜抗污染性能的最常用手段,通过多巴胺盐酸盐(DA)在聚酰胺反渗透膜表面自聚,生成超薄聚多巴胺涂层(PDA),进一步利用PDA涂层上的活性基团将聚乙烯亚胺(PEI)接枝到反渗透膜表面,得到稳定持久的PDA-PEI改性反渗透膜。通过对改性膜的XPS测试,亲水性和抗菌性试验,得到以下结论:PDA成功涂层于反渗透膜表面,且PEI成功接枝于PDA涂层表面;PDA-PEI改性增大了膜表面的亲水性,提升了反渗透膜抗污染的能力,使其具有了一定的抗菌能力。关键词:反渗透膜;净水技术;表面改性;抗污染性;抗菌性1 研究背景随着全球人口的快速增长和水污染的 加剧,淡水资源短缺问题严重影响了人类健康、工业生产和农业灌溉等[1-2]。我国水资源短缺已成为制约社会经济发展

的一个重要因素[3-5]。而自反渗透技术诞生以来,已经取得了蓬勃发展,在海水淡化、苦咸水脱盐、纯水/超纯水生产等方面显示出巨大优势,广泛应用于生物、医药、食品、化工等行业[6-7]。但其在广泛应用的同时,也受到膜污染问题的困扰,反渗透膜的污染,尤其是生物污染,会造成反渗透膜通量和截留率下降,严重影响着反渗透膜的使用[8-10]。为了解决这个问题,研究者们做了大量工作,其中对现有反渗透膜进行表面改性是目前研究的热点[11-13]。通过表面改性可改变膜表面性质进而提升其抗污染性能,但现有改性技术大多只提升其抗有机污染的能力,而对其抗生物污染能力的影响效果不明显。本研究以陶氏化学生产的XLE超低压反渗透膜为原始膜,通过多巴胺在其表面的自聚,进一步接枝聚乙烯亚胺,以期同时提升其抗有机污染与生物污染的性能。 2 试验材料与试验方法2.1 试验材料反渗透膜选用陶氏化学(DOW)生产的XLE超低压反渗透膜。改性剂多巴胺盐酸盐(DA,生物级)与聚乙烯亚胺(PEI,纯度>99%)购自阿拉丁化学试剂有限公司。其他试剂次氯酸钠(分析纯)、氯化钠(分析纯)、异丙醇(分析纯)、三羟甲基氨基甲烷(超级纯)、盐酸(分析纯)、十二烷基三甲基溴化胺(分析纯)均购自国药集团化学试剂有限公司。2.2 PDA-PEI改性膜的制备本试验通过多巴胺在商业反渗透膜表面的自聚在反渗透膜表面形成超薄 聚多巴胺涂层(PDA),再利用PDA涂层上的活性基团与PEI

各类聚乙烯的性能特点

各类聚乙烯的性能特点 聚乙烯是塑料包装制品使用量最大的一类包装原料,由于它是由石油加工过程中产生的裂介气体中的乙烯为原料聚合而成的,乙烯单体无毒,因而各类聚乙烯原料中,即使含有200~300ppm的乙烯单体,仍旧是无毒的聚合物,可使用于同各种食品及药品直接接触的包装场合。各类聚乙烯的熔融温度和热分介温度(315℃以上)之间相差较大;熔融流动性较好,因而各类聚乙烯的熔融可加工成型性较好,可以使用塑料成型的挤压、注射、压缩、吹塑等方法来生产各种包装制品。各类聚乙烯都是非极性聚合物,它们之间有良好的相容性,可以互相间以任何比例组合成共混物,以改善性能。由于各类聚乙烯的熔融温度都比较低,且有高度的热粘合性,因此,在软塑包装中,常使用聚乙烯作包装的热封材料。 聚乙烯有很多种,通常按工业化出现的年代来分有1939年工业化的第一代聚乙烯,即:高压法聚乙烯(低密度聚乙烯)、1953年工业化的第二代聚乙烯,即:低压法聚乙烯(高密度聚乙烯)、1977年工业化的第三代聚乙烯,即:线性低密度聚乙烯(LLDPE)、1984年工业化的第四代聚乙烯,超低密度聚乙烯(VLDPE),以及1958年工业化的超高分子量聚乙烯(UHMWPE)和20世纪90年代出现的茂金属聚乙烯(MPE)。严格说来上述聚乙烯在生产过程中,有的添加了少量的4碳或8碳的α烯烃作为共聚单体,但由于α烯烃使用量很少,所以还保持了聚乙烯的不少特性。 (一)低密度聚乙烯(LDPE)(高压聚乙烯) LDPE的特性是:(1)LDPE是密度为0.91~0.925g/cm3的白色蜡状颗粒状固体,无味无嗅无毒;(2)LDPE是典型的结晶型聚合物,结晶度为55%~65%,熔点为105~126℃;(3)LDPE是非极性材料,易带静电,表面能低,因而在印刷、复合前应进行电晕处理,以提高表面能,加工过程中,应注意防静电,避免静电积累影响制品质量或电火花放电,引起火灾;(4)LDPE透明性优良,热封性优良,可广泛用于透明低温冷冻包装制品的生产;(5)LDPE 阻湿性优良,是制作干燥食品或需要良好防潮物品包装的优质原料。但LDPE阻气性大,易透过各类气体;(6)LDPE虽有一定的耐油脂性,但其耐油脂性和耐有机溶剂性不如聚丙烯,因此,当厚度小时,不适宜长期放置汽油、酒精、油脂等。使用LDPE时,最好厚度应超过50mm;(7)LDPE具有易燃性,燃烧时,火焰无烟无色,且有烧滴现象并有蜡烛气,是鉴别的一个特点。 LDPE挤出吹膜时应选择熔融指数(MI)为2~6g/10min的吹膜级粒子,不仅有良好开口性,还有良好热封性。挤出机均化段温度在150~180℃,吹胀比2~3。牵引比应与吹胀比平衡。挤吹或注吹中空容器时,选择MI小于2g/10min的挤吹级或注吹级的LDPE粒子,大于2g/10min的粒子易产生瓶子的厚薄不均或根本吹不出好的容器。挤出流涎LDPE膜时,一般选用8~15g/10min的MI,太高的MI膜强度太低,挤出温度视流涎膜用途而定,如果为热封用,则温度不要超过200℃,如果为复合用,为了提高PE同其它基材的挤复牢度,可提高到300℃甚至更高的温度,但超过315℃以上时,时间不能太长,避免分介加大,性能降低。 (二)中密度聚乙烯(MDPE) 中密度聚乙烯是密度为0.926~0.94g/cm3,与LDPE有相同性能的一种聚乙烯,由于密度的提高,MDPE的结晶度高达70%~80%,而密度和结晶度的提高,则提高了MDPE 熔融温度、制品的硬度和强度。MDPE处于LDPE和HDPE之间。应当指出PE也有用压延方法成型成片材和薄膜的,但是由于LDPE熔融流动性太好,因此,压延加工都用于PE 的填充改性材料中,如:片材用于真空吸塑包装制品时。

v端羟基聚丁二烯的应用_合成方法与表征手段

专论 综述 弹性体,2003-06-25,13(3):53~60 CHINA EL AST OM ERICS 收稿日期:2003-02-08 作者简介:董松(1972-),女,辽宁鞍山人,硕士,主要从事阴离子聚合的研究工作。*蓝星化工科技总院科研项目 端羟基聚丁二烯的应用、合成方法与表征手段* 董 松,王 新,高丽萍,刘宇辉,王海军,李 艳,姜东升,蒋剑雄 (蓝星化工科技总院,北京 101300) 摘 要:论述了近年来端羟基聚丁二烯的研究进展及其应用,主要是对阴离子法合成端羟基聚丁二烯的合成方法及其表征手段进行了评述,指出民用丁羟胶的应用前景广泛。 关键词:端羟基聚丁二烯;阴离子法;丁羟胶的应用;表征;综述 中图分类号:T Q 331.4 文献标识码:A 文章编号:1005-3174(2003)03-0053-08 端羟基聚丁二烯(Hy drox yl Terminated Polybutadiene)简称丁羟胶(HTPB),是遥爪液体橡胶的一种,丁羟胶作为液体橡胶中的重要品种,本身的透明度好、粘度低、耐油耐老化、低温性能和加工性能好;它与扩链剂、交链剂在室温或高温下反应可以生成三维网状结构的固化物,该固化物具有优异的力学性能良好的耐油和耐水性能,特别是耐酸碱、耐磨、耐低温和电绝缘性能好。 丁羟胶应用范围广泛,可用于生产浇注型弹性体,汽车和飞机轮胎的结构材料、建筑材料、鞋业材料橡胶制品、保温材料、涂料、胶粘剂、灌封材料、电绝缘材料、防水防腐材料、体育跑道、耐磨运输带、橡塑及环氧树脂改性等。在我国丁羟胶主要被应用在军事上,作为固体火箭推进剂的粘合剂 [1] 。 丁羟胶的主要合成方法大都采用自由基聚合 法,目前美国、英国、日本、德国等都已经有大规模工业化生产。目前国内丁羟胶的生产厂有黎明化工研究院等9家,但是生产能力小(20t/a 左右)。另外还有阴离子聚合法,由聚丁二烯溶液与环氧化合物、醛类或酮类试剂反应而得,日本曹达、美国菲力浦和通用轮胎等公司,采用阴离子法聚合生产丁羟胶。另外,采用保护性基团引发剂法生产丁羟胶,解决了阴离子法生产丁羟胶的假凝胶化的问题,美国FM C 公司在引发剂的合成及遥爪聚合物的合成上作了大量的研究工作并申请了多篇专利 [2~13] 。 1 丁羟胶的国内外研究现状 表1为已工业化生产的几种端羟基聚丁二烯的研究状况及典型性能。 表1 端羟基聚丁二烯的研究状况及性能[14~16] 生产公司商品名聚合方法单体粘度(30 )/(Pa S )数均分子量 官能度出光石化、大西洋富田公司Poly BD R -45M H 2O 2引发自由基聚合丁二烯 2700~3000 2.2~2.4 出光石化、大西洋富田公司Poly BD R -45H T H 2O 2引发自由基聚合丁二烯 2700~3000 2.2~2.3 出光石化、大西洋富田公司Poly BD R -45M H 2O 2引发 自由基聚合丁二烯22+/-53100~3500 2.2~2.4 出光石化、大西洋富田公司 Poly BD CS15M H 2O 2引发自由基聚合 丁二烯与苯乙烯 22.5+/-5 2800~3300 2.5~2.8

什么是聚乙烯

什么是聚乙烯 聚乙烯是最结构简单的高分子,也是应用最广泛的高分子材料。 它是由重复的–CH2–单元连接而成的。聚乙烯是通过乙烯(CH2=CH2 )的加成聚合而成的。 聚乙烯的性能取决于它的聚合方式。在中等压力(15-30大气压),有机化合物催化条件下进行Ziegler-Natta聚合而成的是高密度聚乙烯(HDPE)。这种条件下聚合的聚乙烯分子是线性的,且分子链很长,分子量高达几十万。如果是在高压力(100-300MPa),高温(190–210°C),过氧化物催化条件下自由基聚合,生产出的则是低密度聚乙烯(LDPE),它是支化结构的。 聚合压力大小:高压、中压、低压; 聚合实施方法:淤浆法、溶液法、气相法; 产品密度大小:高密度、中密度、低密度、线性低密度; 产品分子量:低分子量、普通分子量、超高分子量。 聚乙烯特性 聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的,耐热老化性差。 聚乙烯的性质因品种而异,主要取决于分子结构和密度。 聚乙烯的种类 (1)LDPE:低密度聚乙烯、高压聚乙烯 (2)LLDPE:线形低密度聚乙烯 (3)MDPE:中密度聚乙烯、双峰树脂 (4)HDPE:高密度聚乙烯、低压聚乙烯 (5)UHMWPE:超高分子量聚乙烯 (6)改性聚乙烯:CPE、交联聚乙烯(PEX) (7)乙烯共聚物:乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其它烯烃(如辛烯POE、环烯烃)的共聚物、乙烯-不饱和酯共聚物(EAA、EMAA 、EEA、EMA、EMMA、EMAH) 分子量达到3,000,000-6,000,000的线性聚乙烯称为超高分子量聚乙烯(UHMWPE)。超高分子量聚乙烯的强度非常高,可以用来做防弹衣。 主要方法: 液相法(又分为溶液法和淤浆法)和气相法(物料在反应器中的相态类型)。我国主要采用齐格勒催化剂的淤浆法。 条件与过程描述:纯度99%以上的乙烯在催化剂四氯化钛和一氯二乙基铝存在下,在压力0.1-0.5MPa和温度65-75℃的汽油中聚合得到HDPE的淤浆。经醇解破坏残余的催化剂、中和、水洗,并回收汽油和未聚合的乙烯,经干燥、造粒得到产品。 HDPE (1)淤浆法HDPE的生产流程 (2)HDPE的特性 基本性能:无臭、无味、无毒的不透明的白色粉末,造粒后为乳白色颗粒;玻璃化温度:-78℃; 熔点:比低密度聚乙烯高,约126~136℃;

马来酸酐化聚丁二烯(MLPB)对天然橡胶硫化胶抗撕裂性能的影响

马来酸酐化聚丁二烯(MLPB )对天然橡胶 硫化胶抗撕裂性能的影响 朱闰平,杨军 (株洲时代新材料科技股份有限公司,湖南株洲 412007) 关键词:MLPB 天然橡胶 撕裂强度 改性 本文介绍了在天然橡胶减振类制品配方中应用马来酸酐化聚丁二烯(MLPB )改性炭黑、白炭黑、短纤维等后对胶料抗撕裂强度的增强作用。 表1 MLPB 对炭黑填充NR 胶料性能的影响 基本配方:NR 100,ZnO/SA 4/2,防老剂5,槽法炭黑50,芳烃油5,S 1.5,促进剂2。 表2 MLPB 对白炭黑填充NR 胶料性能的影响 Si69 MLPB Si69 3.5 改性剂名称 和用量/份 3.5 3.5 MLPB 3.5 T10/min T90/min 邵尔A 型硬度/度 100%定伸应力/ MPa 300%定伸应力/ MPa 拉伸强度 / MPa 扯断伸长率/% 直角无割口撕裂强 度/kN.M -1 裤形撕裂强度/kN.M -1 2:27 4:25 73 3.4 15.2 21.3 430 75 20.4 2:52 6:04 75 3.2 13.6 22.0 458 105 23.8 2:24 6:48 73 3.9 14.8 23.4 455 99.3 21.6 基本配方:NR 100,ZnO/SA 4/2,防老剂5,白炭黑30,N234 30,芳烃油2.5,S 1.5,促进剂2,HVA-2 2。 表1结果表明,使用MLPB 改性炭黑后,随着其用量的增加,胶料焦烧时间 MLPB 用量 3 5 8 T10/min T90/min 邵尔A 型硬度/度 100%定伸应力/ MPa 300%定伸应力/ MPa 拉伸强度 / MPa 扯断伸长率/% 直角无割口撕裂强 度/kN.M -1 裤形撕裂强度/kN.M -1 2:54 4:54 62 2.5 12 24.4 521 71 21.7 3:32 7:15 63 2.3 10.7 26.3 560 87.4 26.2 3:40 7:26 63 2.2 9.9 24.5 555 84 25.6 3:46 9:06 64 1.8 8.5 22.6 626 82 23.1

马来酸酐接枝PP_PE共混物及其木塑复合材料_图文.

第46卷第1期2010年1月 林业科 学 SC I E NTI A SI L VAE SI N I CAE Vol 146,No 11 Jan .,2010 马来酸酐接枝PP /PE 共混物及其木塑复合材料 3 高华王清文王海刚宋永明 (东北林业大学生物质材料科学与技术教育部重点实验室哈尔滨150040 摘要:通过聚丙烯(PP 与聚乙烯(PE 机械混合来模拟废旧塑料混合物,利用马来酸酐(MAH 对PP /PE 混合物进行接枝改性,然后以接枝共混物作为基体与木纤维复合制备木塑复合材料。通过对比接枝前后的红外光谱图,证明MAH 已成功接枝在PP /PE 共混物上。力学测试结果显示:基体经过接枝改性后,复合材料的弯曲强度和无缺口冲击强度均大幅度升高,当MAH 用量为1%时,弯曲强度提高了5014%,无缺口冲击强度提高了9018%,而以废旧塑料为原料制备的复合材料的弯曲强度和无缺口冲击强度分别提高4012%和5314%。微观相形态分析表明:通过接枝改性不仅改善了PP /PE 共混体系的相容性,同时也显著改善了木纤维与PP /PE 共混物之间的界面结合状况,因而宏观上表现为力学性能提高。这表明,共混接枝改性方法可能是利用混合废旧塑料制备高性能木塑复合材料的一条可行途径。

关键词:马来酸酐;接枝;PP /PE 共混物;木纤维;木塑复合材料 中图分类号:T Q32115文献标识码:A 文章编号:1001-7488(201001-0107-05 收稿日期:2008-06-05。 基金项目:“863”项目(2002AA245141;国家农业科技成果转化资金项目(2006G B23600450。3王清文为通讯作者。 M a le i c Anhydr i de Grafted PP /PE Blend and The i r Co m posites w ith W ood F i ber Gao Hua W ang Q ing wen W ang Haigang Song Yong m ing (Key L aboratory of B io 2B ased M aterial Science and Technology of M inistry of Education,N ortheast Forestry U niversity Harbin 150040 Abstract:In this paper,the waste p lastic m ixture was si mulated by mechanically m ixing polyp ropylene (PP and polyethylene (PE ,the PP /PE m ixture was blended and at the same ti me grafted with maleic anhydride (MAH by reactive extruding,and the wood p lastic composites was p repared with the grafted blend,which was used as matrix,and wood fiber .By comparing the infrared spectrogram of the grafted PP /PE blend with that of the unmodified blend,it p roved that MAH was grafted onto PP /PE blend .Mechanical testing results showed that the flexural strength and un 2notched i mpact strength of the composites were both significantly enhanced by the blending 2grafting modificati on of p lastic m ixture .W hen MAH dosage was 1%,the flexural strength increased 5014%and the un 2notched i m pact strength increased 9018%,and the flexural strength and the un 2notched i mpact strength of the composite p repared fr om waste p lastic increased 4012%and 5314%respectively . The m icr o 2mor phol ogical analysis indicated that with modification the

聚乙烯的特性及发展空间

聚乙烯是最结构简单的高分子,也是应用最广泛的高分子材料。它是由重复的–CH2–单元连接而成的。聚乙烯是通过乙烯( CH2=CH2 )的加成聚合而成的。 聚乙烯的性能取决于它的聚合方式。在中等压力(15-30大气压)有机化合物催化条件下进行Ziegler-Natta聚合而成的是高密度聚乙烯(HDPE)。这种条件下聚合的聚乙烯分子是线性的,且分子链很长,分子量高达几十万。如果是在高压力(100-300MPa),高温(190–210C),过氧化物催化条件下自由基聚合,生产出的则是低密度聚乙烯(LDPE),它是支化结构的。 聚合压力大小:高压、中压、低压; 聚合实施方法:淤浆法、溶液法、气相法; 产品密度大小:高密度、中密度、低密度、线性低密度; 产品分子量:低分子量、普通分子量、超高分子量。 聚乙烯特性: 聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的,耐热老化性差。 聚乙烯的性质因品种而异,主要取决于分子结构和密度。 聚乙烯的种类 (1) LDPE:低密度聚乙烯、高压聚乙烯 (2) LLDPE:线形低密度聚乙烯 (3) MDPE:中密度聚乙烯、双峰树脂 (4) HDPE:高密度聚乙烯、低压聚乙烯 (5) UHMWPE:超高分子量聚乙烯 (6)改性聚乙烯:CPE、交联聚乙烯(PEX) (7)乙烯共聚物:乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其它烯烃(如辛烯POE、环烯烃)的共聚物、乙烯-不饱和酯共聚物(EAA、 EMAA 、

北京化工大学高分子基础理论习题答案

第一章 1写出下列聚合物的英文缩写及结构式,并按主链结构进行分类 聚乙烯聚丙烯聚氯乙烯聚苯乙烯 聚甲基丙烯酸甲酯尼龙66 聚对苯二甲酸乙二醇酯聚碳酸酯聚异戊二烯聚丁二烯 聚合物英文缩写结构式分类 聚乙烯PE碳链高分子 聚丙烯PP碳链高分子 聚氯乙烯PVC碳链高分子 聚苯乙烯PS碳链高分子 PMMA碳链高分子 聚甲基丙 烯酸甲酯 杂链高分子 尼龙66PA66或 Nylon66 聚对苯二 PET杂链高分子 甲酸乙二 醇酯 聚碳酸酯PC杂链高分子 PIP碳链高分子 聚异戊二 烯 聚丁二烯PB碳链高分子 第二章 1 简述自由基聚合的基元反应及自由基聚合的特征。 自由基聚合的基元反应:链引发、链增长和链终止。

自由基聚合的特征:慢引发、快增长、速终止。在自由基聚合的三步基元反应中,链引发是控制整个聚合速率的关键,链增长和链终止是一对竞争反应,受反应速率常数和反应物浓度的影响。 2 简述聚合度增大的高分子化学反应主要有哪些?并分别举例说明其在工业上的应用。 聚合度增大的高分子化学反应主要有:交联反应、接枝反应、扩链反应。 交联反应是指:聚合物分子链间通过化学键连接成一个整体网络结构的过程,如:用硫或硫化物使橡胶交联硫化;用过氧化物使聚乙烯交联提高聚乙烯管材的耐压等级及耐热性。 接枝反应是指:在高分子主链上接上结构、组成不同支链的化学反应,如将马来酸酐接枝聚丙烯用作PA/PP共混物的相容剂。 扩链反应是指:通过链末端功能基反应形成聚合度增大了的线形高分子链的过程。如将回收PET树脂经扩链反应制备高粘度PET。 第三章 1根据链结构,将下列聚合物按柔顺性大小排序并说明原因: (1)PE,PP,PS,聚二甲基硅氧烷 柔顺性从大到小顺序为:聚二甲基硅氧烷>聚乙烯>聚丙烯>聚苯乙烯 原因:聚乙烯、聚丙烯、聚苯乙烯均为碳链聚合物,而聚二甲基硅氧烷为杂链高分子,Si-O键键长、键角比C-C大,且O原子上没有取代基,因此单键内旋转受到的阻碍少,分子链柔顺性最高,另外聚乙烯、聚丙烯、聚苯乙烯三种碳链聚合物相比,取代基(或侧基)体积依次增大,对C-C单键内选择阻碍增加,大分子链柔顺性依次降低。 (2)PP, PVC,PAN 柔顺性从大到小依次为:PP>PVC>PAN 原因:以上三种聚合物均为碳链聚合物,取代基的极性-CH3,-Cl,-

聚丙烯熔融接枝马来酸酐和苯乙烯的研究

2006 年 2 月 Journal of Chemical Engineering of Chinese Universities Feb. 2006文章编号:1003-9015(2006)01-0109-06 聚丙烯熔融接枝马来酸酐和苯乙烯的研究 张心亚, 傅和青, 黄洪, 陈焕钦 (华南理工大学化工与能源学院化学工程研究所, 广东广州 510640) 摘要:用双螺杆挤出机研究了加入助剂和不加助剂的马来酸酐(MAH))和苯乙烯(St)对聚丙烯(PP)的熔融接枝改性。 采用正交试验优化了熔融接枝工艺条件。系统研究了单体MAH、St,引发剂过氧化二异丙苯(DCP)和助剂??一种 硫代酸酯(AB)用量对MAH接枝率的影响,并对其影响因素作了分析。用FTIR表征了产物结构。分析了助剂AB抑制 PP降解的机理。研究表明AB助剂不仅能降低PP降解,同时也提高了MAH的接枝率。得出较佳的工艺条件为:反 应挤出温度T1= 190℃,T2 =190℃,停留时间t = 2.5 min,转速r = 100r?min?1,较佳的原料质量配比为m(PP):m(MAH): m(St):m(DCP):m(AB)=100:8:3:0.5:0.5。 关键词:聚丙烯;马来酸酐;苯乙烯; AB助剂;降解机理;熔融接枝 中图分类号: TQ325.14;TQ316.343 文献标识码:A Melt-grafting of Maleic Anhydride and Styrene onto Polypropylene ZHANG Xin-ya, FU He-qing, HUANG Hong, CHEN Huan-qin (Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 510640, China) Abstract: Polypropylene (PP) modified by means of melt grafting with maleic anhydride (MAH) and styrene (St) was studied by a double-screw extruder under the conditions of adding the assistant and without any assistant respectively. The conditions for melt-grafting MAH and St onto PP were optimized by orthogonal experiments. The influences of amounts of MAH, St, DCP and a kind of assistant sulfo-acid ester (AB) on the grafting ratio were investigated and other influential factors were analyzed. Structure of the products was characterized by FTIR. The degradation mechanism of PP restrained by the assistant AB was analyzed. The experimental results show that the assistant AB could reduce the degradation of PP and improve the grafting ratio of MAH. The optimized process conditions obtained by orthogonal experiments are as following: extrusion temperature T1= 190℃, T2 =190℃, residence time t=2.5 min, rotational speed r=100r?min?1, and mass ratio m(PP):m(MAH):m(St):m(DCP): m(AB)=100:8:3:0.5:0.5. Key words: polypropylene; maleic anhydride; styrene; assistant AB; degradation mechanism; melt-grafting 1前言 聚丙烯(PP)是当今最具发展前途的热塑性高分子材料之一,但非极性限制了其进一步应用。为了提高其性能,需要对它进行改性。改性方法主要是熔融法和溶液法[1,2],有关PP改性的研究报道较多[3~5]。溶液法对环境污染较大,熔融接枝的方法是一种绿色环保法,该方法操作简便,是目前制备改性PP所采用的主要方法之一。但是PP在熔融接枝过程中,由于反应温度较高,PP大分子自由基很容易发生β链断裂,导致PP的降解严重,且接枝率低。本试验将一种新型助剂硫代酸酯(AB)加入到双单体MAH和St 熔融接枝改性PP中,不但可以降低PP降解,而且提高了MAH的接枝率。 收稿日期:2004-09-05;修订日期:2005-01-06。 作者简介:张心亚(1974-),男,湖北黄梅人,华南理工大学讲师,博士。通讯联系人:张心亚,E-mail:cexyzh@https://www.wendangku.net/doc/0a13168454.html,

相关文档