文档库 最新最全的文档下载
当前位置:文档库 › 变压器局部放电的特高频(UHF)在线监测

变压器局部放电的特高频(UHF)在线监测

变压器局部放电的特高频(UHF)在线监测
变压器局部放电的特高频(UHF)在线监测

变压器局部放电的特高频(UHF)在线监测

摘要:特高频(UHF)局部放电测量法与传统的脉冲电流法不同,它采集的信号是局部放电产生的特高频电磁波。利用UHF法进行电力变压器局部放电的在线监测具有很强的抗干扰性和高灵敏度。本文简单介绍了局部放电特高频在线监测的原理与装置,通过研究油中纸板沿面放电、油中纸板内部放电、油中悬浮放电、油中气泡放电及油中尖板放电5种典型局放模型的特高频放电信号,对局部放电信号的模式识别方法进行了分析。

关键词:变压器特高频局部放电

1、前言

局部放电是指绝缘结构中由于电场分布不均匀、局部场强过高而导致的绝缘介质中局部范围内的放电或击穿现象,是造成绝缘劣化的主要原因,也是劣化的重要征兆,与绝缘材料的劣化和击穿密切相关。因此,对局部放电的有效检测对于电力设备的安全运行具有重要意义。

局部放电的检测是以局部放电所产生的各种现象为依据,通过能表述该现象的物理量来表征局部放电的状态及特性。由于局部放电的过程中会产生电脉冲、电磁辐射、超声波、光以及一些化学生成物,并引起局部过热。相应地出现了脉冲电流法、特高频(UHF)法、超声波法、光测法、化学检测法等多种检测方法。

特高频检测技术通过接收电力变压器局部放电产生的特高频电磁波,实现局部放电的检测和定位。

2、特高频在线监测的原理与装置

2.1 UHF在线监测原理

变压器内发生局部放电时,其放电持续时间是很短暂的,大约10ns~100ns。放电脉冲的上升时间则更短,仅为0.35ns~3ns,脉宽1ns~5ns。所以局部放电产生的脉冲信号的频带是很宽的,应在数十至数百MHz,甚至更高。因此,局部放电所激发的信号,除了以脉冲电流的形式通过变压器绕组和电力线向外传播外,还会以电磁波的形式向外传播。这样就可以通过特高频传感器接收到局部放电的信号,然后对接收到的信号进行分析,达到检测和定位局部放电的目的。

2.2 UHF在线监测的抗干扰性

主变压器在线监测装置配置分析.

分析主变压器的油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损等五种在线监测,得出配置主变压器在线监测是安全,可靠、经济的结论。 1.前言 大型电力变压器的安全稳定运行日益受到各界的关注,尤其越来越多的大容量变压器进网运行,一旦造成变压器故障,将影响正常生产和人民的正常生活,而且大型变压器的停运和修复将带来很大的经济损失,在这种情况下实时监测变压器的绝缘数据,使变压器长期在受控状态下运行,避免造成变压器损坏,对变压器安全可靠运行具有一定现实意义。 主变压器在线监测主要包括:油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损监测。 2.变压器油色谱在线监测 变压器油中溶解气体分析是诊断充油电气设备最有效的方法之一,能够及早发现潜在性故障。由于试验室分析的取样周期较长,且脱气误差较大及耗时较多等问题,因此不能做到实时监测、及时发现潜伏性故障,很难满足安全生产和状态检修的要求。油色谱在线监测采用与实验室相同的气相色谱法。能够对变压器油中溶解故障气体进行实时持续色谱分析,可以监测预报变压器油中七种故障气体,包括氢气(H2),二氧化碳(CO2),一氧化碳(CO),甲烷(CH4),乙烯(C2H4),乙烷(C2H6)和乙炔(C2H2)。 该系统目前已广泛应用于变压器的在线故障诊断中,并且建立起模式识别系统可实现故障的自动识别,是当前在变压器局部放电检测领域非常有效的方法。 3.变压器光纤测温在线监测 变压器寿命的终结能力最主要因素是变压器运行时的绕组温度。传统的绕组温度指示仪(WTI)是利用"热像"原理间接测量绕组温度的仪表,安装在变压器油箱顶部感测顶层油温,WTI指示的温度是基于整个

局部放电缺陷检测典型案例和图谱库

电缆线路局部放电缺陷检测典型案例 (第一版) 案例1:高频局放检测发现10kV电缆终端局部放电 (1)案例经过 2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。 2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。 (2)检测分析方法 测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。 信号采集单元主要有高频检测通道、同步输入及通信接口。高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。 利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。 图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号 将传感器放置不同距离时耦合的脉冲信号如图1-3所示。距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

智能变压器状态在线监测技术方案

智能变压器状态监测系统技术方案 一、智能变压器状态监测系统 智能变压器作为智能变电站的核心组成部分,其建设获得了越来越多的关注。根据现行的标准,智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,实现与相邻变电站互动的变电站。智能变压器在线监测系统是保证变压器正常工作并预估设备的损耗以建立合理的检修计划,智能变压器在线监测系统是实现智能变电站的基础设备之一。 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。同时,客观上存在的部分工作人员素质不高、技术水平不够或违章作业等,也会造成变压器损坏而造成事故或导致事故的扩大,从而危及电力系统的安全运行。 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切的实用性和重要性。但是,变压器的故障诊断是个非常复杂的问题,许多因素如变压器容量、电压等级、绝缘性能、工作环境、运行历史甚至不同厂家的产品等等均会对诊断结果产生影响。 智能变压器状态监测系统构架如图1-1所示:

国内外几种电缆局部放电在线检测方法技术分析

国内外几种电缆局部放电在线检测方法技术分析 李华春周作春张文新从光 北京市电力公司 100031 [摘要]:本文简要的介绍国内外几种电缆局部放电在线检测方法的原理和特点,并进行了简单的分析比较。结合国内外电缆局部放电在线检测方法研究和应用情况提出当前XLPE电缆局部放电在线监测存在的问题以及在高压XLPE电缆附件局部放电在线检测研究方面今后还需要做的工作。 [关键词]:电缆、局部放电、在线检测、分析 前言 常规XLPE电缆局部放电测量多采用IEC60270法,但是其测量频带较低,通常在几十到几百kHz范围内,易受背景干扰的影响,抗干扰能力差。理论研究表明,XLPE电力电缆局部放电脉冲包含的频谱很宽,最高可达到GHz数量级。因此,选择在信噪比高的频段测量有可能有效地避免干扰的影响。目前国内外已把电缆局部放电测量的焦点转移到高频和超高频测量上。 [2][1]。 迄今为止,国内外用于XLPE电缆局部放电检测的方法有很多。但由于X LPE电缆局部放电信号微弱,波形复杂多变,极易被背景噪声和外界电磁干扰噪声淹没,所以研究开发电缆局部放电在线检测技术的难度在所有绝缘在线检测技术中是最高的。由于电缆中间接头绝缘结构复杂,影响其绝缘性能的原因很多,发生事故的概率大于电缆本体,同时在电缆中间接头处获取信号比从电缆本体获取信号灵敏度要高且容易实现,因

此通常电缆局部放电在线检测方法亦多注重于电缆附件局部放电的检测,或者在重点检测电缆中间接头和终端的同时兼顾两侧电缆局部放电的检测。电缆局部放电在线检测方法中主要的检测方法有差分法 耦合法[6、7、8、9][3、4]、方向耦合法、电磁[13、14、15、16][5]、电容分压法[10]、REDI局部放电测量法 [18][11、12]、超高频电容法、超高频电感法[17]、超声波检测法等。在众多检测方法中,差分法、方向耦合法、电 磁耦合法检测技术目前已成功应用到现场测量中。下面简要的介绍这些方法的原理和特点。 1. 电缆局部放电在线检测方法中主要的检测方法 1.1. 差分法(the differential method) 差分法是日本东京电力公司和日立电缆公司共同开发的一种方法。其基本原理见图1。将两块金属箔通过耦合剂分别贴在275kV XLPE电缆中间接头两侧的金属屏蔽筒上(此类中间接头含有将两端金属屏蔽筒连接隔断的绝缘垫圈),金属箔与金属屏蔽之间构成一个约为1500~2000pF 的等效电容。两金属箔之间连接50欧姆的检测阻抗。金属箔与电缆屏蔽筒的等效电容、两段电缆绝缘的等效电容(其电容值基本认为相等)与检测阻抗构成检测回路。当电缆接头一侧存在局部放电,另一侧电缆绝缘的等效电[3] 容起耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示信号。研究发现,频谱分析仪中心频率设在10~20MHz时,信噪比最高。差分法的检测回路

电气设备局部放电检测技术的思考

电气设备局部放电检测技术的思考 发表时间:2018-05-02T11:44:18.290Z 来源:《科技中国》2017年11期作者:安军红[导读] 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 关键词:电气设备;局部放电;检测技术;绝缘介质;高场强区域前言:局部放电与闪络和击穿不同,其属于绝缘部分区域的微小击穿。而电器设备中的绝缘材料通常都是由有机材料构成,如环氧、绝缘纸等等,由于其在运行过程时常出现杂质和气泡问题,进而使绝缘介质表面产生高场强区域,最终出现了局部放电的现象。 1电气设备局部放电检测技术局部放电测量工作通常都是在设备运行、现场试验以及设备出厂的过程中进行,借助局部放电定位、模式以及强度等因素,对测量结果的精准性进行判断。在此过程中,检测技术处于基础与核心的地位。结合上述几个重要因素,可对介质的绝缘状态进行精准、合理的评估。具体分析如下: 1.1脉冲电流法 目前,该方式是唯一具有国际认证标准的检测方法,其主要是借助设备的接地点和中性点,对局部放电所导致的脉冲电流进行测量,由此可精准获得放电频次、放电相位以及实际放电量等信息。在传统的测量方式中,通常可分为窄带测量和宽带测量2种。前者频带宽度较窄,通常保持在9~30KHz之内,具有强大的抗干扰能力和较高的灵敏度,但缺陷在于信息丰富度低和脉冲的分辨率低等等。后者在应用过程中,检测频率范围在30~100KHz之间,具有信息量丰富、脉冲分辨率高峰优势,但缺陷在于噪音比较低。 基于上述两种检测方式中存在的缺陷和不足,目前,相关学者尝试将更高检测频率应用于实践测量工作中,如测量阻抗,其宽带频率为30KHz,该方式主要借助了特殊的数据处理办法,对噪声加以剔除,并结合脉冲表现特征中局部脉冲和噪声脉冲之间的差别,实现了脉冲在频域和时域的变换,并对各脉冲的等效时间和宽带进行精准计算。该方式目前的应用十分广泛,其在局部放电识别、分离等领域也具有着十分突出的效果[1]。 1.2特高频检测法 设备在局部放电过程中,所产生的电磁波谱特性与放电间隙绝缘强度和电源的几何波形之间存在着十分密切的关系。若实际的放电间隙较小,则高频电磁波的辐射水平也就比较高。 特高频检测方式起初在气体组合电器(GIS)中应用较为广泛,据相关研究实验表明,在GIS中局部放电中,信号通常都是以横磁波、横电波以及横电磁波等形式传播。发生于变压器中的局部放电,由于绝缘结构具有一定的复杂性,进而导致电磁波在传播的过程中出现了衰减和折反射的现象,与此同时,变压器内箱壁同样也会影响电磁波传播,进而大幅度增加了局部放电测量工作的难度。基于上述情况,相关研究人员又开展了一系列的实验研究,如将特制的高频天线应用于变压器油阀中,使油箱内壁和天线保持在同一平面,并借助波导结构将所获取的信号导入到检测装置中,以此降低电磁波传播过程中产生的衰减,从而大幅度提升测量结果的精准性和测量过程的灵敏性。与此同时,研究人员还对变压器进行了深入分析和实验,即在其顶部开设介质窗,特高频天线便可借助该窗口对局部放电信号进行提取,该方式的实践应用效果尤为显著[2]。 1.3超声波检测法 GIS、变压器等设备在产生局部放电现象的过程中,通常都会经历电荷中和的过程,与此同时,也会产生一定的电流脉冲,最终产生类似于“爆炸”的现象,在结束放电之后,发生膨胀的区域才会慢慢恢复至原有体积。局部放电主要是脉冲形成,由此也会产生一系列的声波,另外,超声波检测法在具体应用的过程中,还可实现对机械波的检测,并以此判断颗粒实际的运动状态。 局部放电过程中,声波频率通常在10~107Hz,随着电气设备、环境条件、传播媒介、放电状态的不断变化,声波频率也会随之发生一定改变。在GIS中,局部放电不仅会产生声波,同时还伴有操作、机械振动、颗粒碰撞等产生的声波,但频率通常都比较低,在检测GIS局部放电的过程中,超声波传感器的谐振频率通常保持在25kHz左右,但在变压器中,则通常保持在150kHz左右。 相关研究人员借助超声传感器,实现了模型内部缺陷的检测,并通过超声符号的分量和幅值等因素,对缺陷类型进行精准定性,通过对超声信号进行分析,可对自由颗粒的实际移动方向进行精准推测。而变压器局部放电测量装置的诞生主要是依靠了LABVIEW平台,通过实验室研究,发现该装置在应用的过程中,可精准的获取局部放电量、模式以及放电位置等信息。 2局部放电检测技术存在的不足及未来发展途径电气设备局部放电检测技技术经常长时间的发展和应用,目前已经逐渐形成完善的检测流程和方法,其中,具有代表性的要数超声检测法和特高频检测法,其与常规的检测技术存在较大差别。在实际应用的过程中,可查找出很多绝缘缺陷问题,降低了事故问题的发生概率。但局部放电的故障和缺陷往往是针对于电气设备而言,若设备的电压等级较高,则一般无法从根本上解决顽疾问题。具体缺陷和发展途径分析如下:第一,在线监测和带电检测在具体应用的过程中,最显著的问题在于其自身存在的不可靠性,且缺乏完善的测试标准和准入机制,进而直接对监测低结果造成不良影响。解决该问题的办法,一方面要确保装置本身的灵敏性、精准性和可靠性,为此,需对信号分析技术、数据采集技术以及传感器技术等进行深入分析;另一方面,还应强化装置的检测力度,并对其质量加以控制[3]。 第二,GIS、变压器等设备在局部放电的过程中,最为常见的测量方式为超声波法和特高频法。但在实践应用的过程中,发现上述两种测量方式并不能发现设备内部的所有缺陷,可见,其仍存在较多缺陷问题。基于上述情况,相关研究人员已将检测技术的深入研究作为工作重点,且也开发出很多全新的检测方式,如光检测法、化学检测法等等,虽然这些技术目前均处于应用的初级阶段,存在一定的缺陷和不足之处,但随着科学技术的不断发展以及人员研究力度的不断加大,检测技术在未来发展过程中必定更加完善,其应用效果也会得到显著提升。

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

特高频局部放电测试仪的检测步骤

电力设备高频局部放电测试仪一般由高频电流传感器、相位信息传感器、信号采集单元、信号处理单元和数据处理终端和显示交互单元等构成。高频局部放电检测仪器应经具有资质的相关部门校验合格,并按规定粘贴合格标志。 a)按照设备接线图连接测试仪各部件,将传感器固定在盆式绝缘子非金属封闭处,传感器应与盆式绝缘子紧密接触并在测量过程保持相对静止,并避开紧固绝缘盆子螺栓,将检测仪相关部件正确接地,电脑、检测仪主机连接电源,开机。 b)开机后,运行检测软件,检查仪器通信状况、同步状态、相位偏移等参数。 c)进行系统自检,确认各检测通道工作正常。 d)设置变电站名称、检测位置并做好标注。对于GIS 设备,利用外露的盆式绝缘子处或内置式传感器,在断路器断口处、隔离开关、接地开关、电流互感器、电压互感器、避雷器、导体连接部件等处均应设置测试点。一般每个GIS间隔取2~3点,对于较长的母线气室,可5~10米左右取一点,应保持每次测试点的位置一致,以便于进行比较分析。e)将传感器放置在空气中,检测并记录为背景噪声,根据现场噪声水平设定各通道信号检测阈值。 f)打开连接传感器的检测通道,观察检测到的信号,测试时间不少于30秒。如果发现信号无异常,保存数据,退出并改变检测位置继续下一点检测。如果发现信号异常,则延长检测时间并记录多组数据,进入异常诊断流程。必要的情况下,可以接入信号放大器。测量时应尽可能保持传感器与盆式绝缘子的相对静止,避免因为传感器移动引起的信号而干扰正确判断。 g)记录三维检测图谱,在必要时进行二维图谱记录。每个位置检测时间要求30s,若存在异常,应出具检测报告(格式见附录A)。

h)如果特高频信号较大,影响GIS 本体的测试,则需采取干扰抑制措施,排除干扰信号,干扰信号的抑制可采用关闭干扰源、屏蔽外部干扰、软硬件滤波、避开干扰较大时间、抑制噪声、定位干扰源、比对典型干扰图谱等方法。

变压器局部放电试验方案

变压器局部放电试验方案批准:日期: 技术审核:日期: 安监审核:日期: 项目部审核:日期: 编写:日期: 2017年4月

1概述 变压器注油后已静置48小时以上并释放残余气体,且电气交接试验、油试验项目都已完成,并确认达到合格标准。 2试验地点 三明110kV双江变电站 3试验性质:交接试验 4试验依据 DL/T417-2006《电力设备局部放电现场测量导则》 GB1094.3-2003《电力变压器第三部分:绝缘水平绝缘试验和外绝缘空气间隙》GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T596-1996《电力设备预防性试验规程》 Q/FJG 10029.1-2004《电力设备交接和预防性试验规程》 合同及技术协议 5试验仪器仪表 6、人员组织 6.1、项目经理: 6.2、技术负责: 6.3、现场试验负责人及数据记录:黄诗钟 6.4二次负责人: 6.5、试验设备接线及实际加压操作负责人: 6.6、专责安全员: 6.7、工器具管理员: 6.8、试验技术人员共4人,辅助工若干人 6.9、外部协助人员:现场安装人员,监理,厂家及业主代表等人员

7试验过程 7.1试验接线图(根据现场实际情况采用不同的试验原理图) 7.2试验加压时序 图2中,当施加试验电压时,接通电压并增加至 U3,,持续5min ,读取放电量值;无异常则增加电压至U2,持续5min ,读取放电量值;无异常再增加电压至U1,进行耐压试验,耐压时间为(120×50/?)s ;然后,立即将电压从U1降低至U2,保持30min (330kV 以上变压器为60min ),进行局部放电观测,在此过程中,每5min 记录一次放电量值;30min 满,则降电压至U 3,持续5min 记录放电量值;降电压,当 图1变压器局部放电试验原理图 图2 局部放电试验加压时序图

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

电力变压器局部放电试验目的及基本方法

一变压器局部放电分类及试验目的 电力变压器是电力系统中很重要的设备,通过局部放电测量判断变压器的绝缘状况是相当有效的,并且已作为衡量电力变压器质量的重要检测手段之一。 高压电力变压器主要采用油一纸屏障绝缘,这种绝缘由电工纸层和绝缘油交错组成。由于大型变压器结构复杂、绝缘很不均匀。当设计不当,造成局部场强过高、工艺不良或外界原因等因素造成内部缺陷时,在变压器内必然会产生局部放电,并逐渐发展,后造成变压器损坏。电力变压器内部局部放电主要以下面几种情况出现: (1)绕组中部油一纸屏障绝缘中油通道击穿; (2)绕组端部油通道击穿; (3)紧靠着绝缘导线和电工纸(引线绝缘、搭接绝缘,相间绝缘)的油间隙击穿; (4)线圈间(匝间、饼闻)纵绝缘油通道击穿; (5)绝缘纸板围屏等的树枝放电; (6)其他固体绝缘的爬电; (7)绝缘中渗入的其他金属异物放电等。 因此,对已出厂的变压器,有以下几种情况须进行局部放电试验: (1)新变压器投运前进行局部放电试验,检查变压器出厂后在运输、安装过程中有无绝缘损伤。 (2)对大修或改造后的变压器进行局放试验,以判断修理后的绝缘状况。 (3)对运行中怀疑有绝缘故障的变压器作进一步的定性诊断,例如油中气体色谱分析有放电性故障,以及涉及到绝缘其他异常情况。

二测量回路接线及基本方法 1、外接耦合电容接线方式 对于高压端子引出套管没有尾端抽压端或末屏的变压器可按图1所示回路连接。 图1:变压器局部放电测试仪外接耦合电容测量方式110kV以上的电力变压器一般均为半绝缘结构,且试验电压较高,进行局部放电测量时,高压端子的耦合电容都用套管代替,测量时将套管尾端的末屏接地打开,然后串入检测阻抗后接地。测量接线回路见图2或图3。 图2:变压器局部放电测试中性点接地方式接线

变压器局部放电在线监测装置检验规范-(终稿)

变压器局部放电在线监测装置检验规范 1 范围 本规范规定了变压器局部放电在线监测装置的专项检测项目、检验条件、检验内容及要求和检验结果处理。 本规范适用于变压器局部放电在线监测装置的型式试验、出厂试验、交接试验和运行中试验。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16927 高电压试验技术 GB 7354-2003 局部放电测量 DL/T 356-2010 局部放电测量仪校准规范 3 检验项目 变压器局部放电在线监测装置专项试验项目包括一致性测试、通用技术条件试验、传感器频响特性检验、系统灵敏度检验、系统有效性检验和抗干扰性能试验。 4 检验条件 除环境影响试验和抗谐波干扰试验之外,其它试验项目应在如下试验环境中进行: a)环境温度:+15?C~+35?C; b)相对湿度:45%~75%; c)大气压力:80kPa~110kPa; d)电源电压:单相220×(1±10%)V; e)电源频率:50Hz±0.1Hz; f)电源波形:正弦波,波形失真度不大于5%; g)标准信号源:标准波形脉冲上升沿(10%~90%上升时间)约为1ns,半波时间为50ns, 幅值稳定度±5%,脉冲重复频率为50-200Hz可调。 对于高压检验试验,还应该满足以下试验条件: 1

a)试品的温度与环境温度应无显著差异; b)试验场所不得有显著的交流或直流外来磁场影响; c)试验场地必须具有单独工作接地和保护接地,设置保护栅栏; d)试品与接地体或邻近物体的距离,应大于试品高压部分与接地部分的最小空气距离 的1.5倍; e)构建吉赫兹横电磁波测量小室(GTEM测量小室)。 5 检验内容及要求 5.1一致性测试 5.1.1通信模型检测 a)检验模型配置文件与IEC 61850标准的变电站配置语言SCL的符合性; b)检验逻辑设备、逻辑节点、数据、数据属性的命名规则及描述与《变压器局部放电 在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性; c)检验数据集、报告控制块、日志控制块、定值组控制块等的命名规则、描述、定义 位置及数量与《变压器局部放电在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性。 5.1.2数据传送功能检测 a)通过报告服务,装置应实现遥信、遥测数据的告警、召唤、周期上传; b)通过日志服务,装置应响应综合处理单元查询遥信、遥测数据; c)通过文件服务,装置应实现谱图文件的上传; d)所有遥信、遥测数据应具备品质、时标等信息; e)装置内部的通信网络连接出现中断,应正确报出通信中断。 5.1.3谱图文件格式检测 装置生成的谱图文件应符合《变压器局部放电在线监测装置技术规范》的谱图文件格式要求。 5.1.4时间同步检测 a)装置应采用SNTP协议实现网络对时; b)用于事件时标的时钟同步准确度应为±1ms。 5.1.5通信自恢复能力检测 装置具备通信恢复能力,当物理故障消除后,网络通信应能自动恢复正常,信息传送正

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

变压器局部放电在线监测技术

变压器局部放电在线监测技术 目录 目录 (1) 前言 (2) 1在线监测方法 (2) 1.1超声监测法 (2) 1.2光测法 (3) 1.3电脉冲法 (3) 1.4射频监测法 (3) 1.5超高频监测法 (3) 2在线监测监控技术 (4) 2.1.1现场噪声的抑制 (4) 2.1.1.1 周期性干扰的抑制 (4) 2.1.1.1.2 脉冲型干扰的抑制 (5) 2.1.1.1.3白噪声干扰的抑制 (5) 2.1.2局部放电模式识别 (5) 2.1.3局部放电定位技术 (6) 3结束语 (7) 结论 (7) 致谢 (7) 参考文献 (7)

前言 近年来 , 随着电力系统的快速发展 , 变压器的容量和电压等级不断提高 , 运行中的安全问题也越来越受到重视。在变压器所发生的故障中 , 绝缘问题占很大的比重 , 因此需要一种有效的手段对变压器的绝缘状况进行监测 , 确保运行中变压器的安全。 局部放电监测作为检测变压器绝缘的一种有效手段 , 无论是检测理论还是检测技术 , 近年来都取得了较大的发展 , 并在电厂和电站中得到了实际应用。 相对传统的停电局部放电检测 , 在线局部放电检测可以长时间连续监测变压器局部绝缘放电情况 , 在放电量达到危险时 , 及时停机做进一步的检查 , 因此在检修工时和经济效益等方面有很大的优势 , 是目前惟一的一种有效避免变压器突发性事故的监测手段。在线局部放电监测反映的是变压器实际工作状态下的绝缘放点情况,比离线检测更符合设备的实际运行工况。 1在线监测主要方法 根据变压器局放过程中产生的电脉冲、电磁辐射、超声波、光等现象,相应出现了电脉冲检测法超声波检测法、光测法及射频检测法和UHF超高频检测法。、 1.1超声监测法 用固体在变压器油箱壁上的超声传感器接收变压器内部局放产生的超声波来检测局放的大小和位置。通常采用的超声传感器为电压传感器,选用的频率范围为70-150kHz,目的是为了避开铁心的磁噪声和变压器的机械振动噪声。超声检测法主要用于定性判断是否有局放信号,结合电脉冲信号或直接利用超声信号对局放源进行物理定位。近年来,由于声电换能元件效率的提高和电子放大技术的发展,超声检测的灵敏度有了较大的提高。 1.2光测法 光测法是利用局部放电产生的光辐射进行检测。在变压器油中,各种放电发出的光波不同,光电转换后,通过检测光电流的特征可以实现局放的识别。虽然是实验室中利用光测法来分析局放特征及绝缘劣化机理等方面取得了很大进展。但由于光测法设备复杂、昂贵、灵敏度低在实际中并未直接使用。尽管如此,光纤技术作为超声技术的辅助手段应用于局放检测,将光纤伸入变压器油中,当变压器内部放生局放时,超声波在油中传播,这种机械力波挤压光纤,引起光纤变形,导致光纤折射率和光纤长度发生变化,从而光波被调制,通过适当的解调器即可测量出超声波,实现放电定位。

紫外检测法用于电气设备局部放电

紫外检测法用于电气设备局部放电 1.1概述 随着工业发展和社会进步,电力系统向大容量、超高压和特高压方向发展,对系统运行可靠性要求越来越高。电力设备是组成电力系统的基本元件,其工作状况直接关系到电力系统的安全经济运行。电气设备绝缘材料多为有机材料,如矿物油,绝缘纸或各种有机合成材料,绝缘体各区域承受的电场一般是不均匀的,而电介质本身通常也是不均匀的,有的是由不同材料组成的复合绝缘体,如气体一固体复合绝缘、液体一固体复合绝缘以及固体一固体复合绝缘等。有的虽是单一的材料,但是在制造或使用过程中会残留一些气泡或其他杂质,于是在绝缘体内部或表面就会出现某些区域的电场强度高于平均电场强度,或某些区域的击穿场强低于平均击穿场强,因此在某些区域就会先发生放电,而其他区域仍然保持绝缘特性,这就形成了局部放电。 在电场作用下,导体间绝缘仅部分区域被击穿的电气放电现象称为局部放电。对于被气体包围的导体附近发生的局部放电,可称之为电晕。局部放电可能发生在导体边缘,也可能发生在绝缘体的表面或内部,发生在表面的称为表面局部放电,发生在内部的称为内部局部放电。实践证明局部放电是造成高压电气设备最终发生绝缘击穿的主要原因,故对电气设备局部放电的监测尤为重要。 局部放电对电气设备会带来严重的危害,主要表现在由于放电产生的局部发热、带电粒子的撞击、化学活性生成物以及射线等因素对绝缘材料的损害。虽然局部放电能量很小,但在运行电压作用下长期发展,最终会导致绝缘击穿,对设备的安全运行构成威胁,甚至造成电力设备运行时出现故障造成供电中断,其经济损失不可估量。我国曾对110kV及以上的变压器统计表明,50%的事故是匝间绝缘事故;1971-1974年我国对170台6kV及以上的电机事故进行统计,发现绝缘事故占60%,对1984-1987年间的发电机事故调查表明,定子绕组绝缘击穿和相间短路占定子事故的48.4%。面对电力系统口趋完善的保护措施,要求提高对设备的在监检测能力,对不同的电力设备制定出有效的测试及判断标准,在事故发展初期提出改善措施,以保证高压设备的运行安全,节约维修费用。 1. 2局部放电检测的常用方法及存在的问题 局部放电测量的方法很多,主要是根据放电过程中发生的物理化学效应,通过测量局部放电所产生的电荷交换、能量的损耗、发射的电磁波、声音和光以及生成的新物质来表征部放电的状态。常见的检测方法有:脉冲电流法、色谱分析

第3章特高频局部放电检测技术

第三章特高频局部放电检测技术 目录 第1节特高频局放检测技术概述 (2) 1.1 发展历程 (2) 1.2 技术特点 (4) 1.2.1 技术优势 (4) 1.2.2 局限性 (5) 1.2.3 适用范围 (6) 1.2.4 技术难点 (6) 1.3 应用情况 (8) 1.3.1 国外应用情况 (8) 1.3.2 国内应用情况 (8) 第2节特高频局放检测技术基本原理 (10) 2.1 特高频局放电磁波信号基本知识 (10) 2.1 GIS内部电磁波的传播特性 (10) 2.3 特高频局放检测技术基本原理 (12) 2.3 特高频局放检测装置组成及原理 (13) 第3节特高频局放检测及诊断方法 (16) 3.1 检测方法 (16) 3.1.1 操作流程 (16) 3.1.2 注意事项 (18) 3.2 诊断方法 (19) 3.2.1 诊断流程 (19) 3.2.2 现场常见干扰及排除方法 (20) 3.2.3 放电缺陷类型识别与诊断 (22) 3.2.4 放电源定位 (25) 3.2.5 局部放电严重程度判定 (26) 第4节典型案例分析 (27) 4.1 220kV GIS盆式绝缘子内部气隙缺陷检测 (27) 4.2 110kV电缆-GIS终端绝缘内部气隙缺陷检测 (29) 4.3 220kV GIS内部刀闸放电缺陷检测 (34) 参考文献 (39)

第1节特高频局放检测技术概述 1.1 发展历程 电力设备内发生局部放电时的电流脉冲(上升沿为ns级)能在内部激励频率高达数GHz的电磁波,特高频(Ultra High Frequency,UHF)局部放电检测技术就是通过检测这种电磁波信号实现局部放电检测的目的。特高频法检测频段高(通常为300M~3000MHz),具有抗干扰能力强、检测灵敏度高等优点,可用于电力设备局部放电类缺陷的检测、定位和故障类型识别[1]。特高频法过去曾被称为“超高频法”。但是按照中华人民共和国无线电频率划分规定,300MHz~3000MHz频带划分为特高频,因此该检测方法的正式名称为特高频法。 特高频局部放电检测技术是20世纪80年代初期由英国中央电力局(Central Electricity Generating Board,CEGB)首先提出来的,该方法由Scottish Power于1986年最先引进并应用于英国的Torness 420kV的GIS设备上[2]。Torness电站的多年运行经验验证了该方法的可行性,并得到了人们的认可。随后UHF法也被用于变压器等其他电力设备的局部放电检测中。经过三十余年的发展,该方法逐渐成熟,相关的技术标准也相继形成。期间英国Strathclyde大学、德国Stuttgart 大学、荷兰Delft大学和日本Nagoya大学的研究工作最为突出[3]。此外,英国的Rolls Royce工业电力集团、QualitrolDMS,德国的Siemens AG、Doble-Lemke,瑞士的ABB,荷兰的KEMA,法国的ALSTOM T&D,日本的Kyushu Institute of Technology、东京电力、三菱、东芝、日立、AEPower Systems,韩国的Power System Diagnosis Tech、HYOSUNGCorporation,澳大利亚的New South Wales大学、Powerlink Queensland Ltd作了大量的基础理论研究与技术开发工作。自20世纪90年代末以来,国内的西安交通大学、清华大学、重庆大学、华北电力大学、上海交通大学等高校和公司也开展了大量的研究和推广工作,取得了一定的研究成果。基本从2006年以来,UHF局放检测技术在国家电网公司、南方电网公司等国内电力企业得到了广泛应用,特别是在气体绝缘金属封闭开关设备(Gas Insulation Switchgear, GIS)的绝缘缺陷检测中发挥了重要作用。 20世纪90年代,由Judd和Hampton等人对局放电磁波的激励特性及其传播特性做了研究,对电磁波的表达式进行了推导分析。此外,还提出采用分析电磁场的有限时域差分(FDTD)方法对GIS 局放的激励特性进行仿真分析。德国

变压器局部放电试验基础与原理

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在-定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部

相关文档
相关文档 最新文档