文档库 最新最全的文档下载
当前位置:文档库 › 排列组合问题的类型及解题策略

排列组合问题的类型及解题策略

排列组合问题的类型及解题策略
排列组合问题的类型及解题策略

排列组合应用题的类型及解题策略

四川省双流县中学 周汝东

排列组合问题,通常都是出现在选择题或填空题中,或结合概率统计综合出题,它联系实际,生动有趣,

但题型多样,思路灵活,不易掌握。实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练

运用。

一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题) ②有序还是无序 ③

分步还是分类。

二.处理排列组合应用题的规律

(1)两种思路:直接法,间接法。

(2)两种途径:元素分析法,位置分析法。

解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。

特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决

特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。

例1.(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求

首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).

解:分二步:首尾必须播放公益广告的有A 22种;中间4个为不同的商业广告有A 44种,从而应当填 A 22·A 44

=48. 从而应填48.

(3)对排列组合的混合题,一般先选再排,即先组合再排列。弄清要“完成什么样的事件”是前提。

三.基本题型及方法:

1.相邻问题

(1)、全相邻问题,捆邦法

例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。

A )720

B )360

C )240

D )120

说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑

将相邻元素视作一个“大”元素。

(2)、全不相邻问题,插空法

例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不

同的排法,

解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个

舞蹈节目有47A 种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为4676A A 种

例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺

序,要求两个舞蹈节目不连排,则不同排法的种数是

(A )1800 (B )3600 (C )4320 (D )5040

解:不同排法的种数为5256A A =3600,故选B

说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题

可以先将其它元素排好,再将特殊元素插入,故叫插空法。

(3).不全相邻排除法,排除处理

例5.五个人站成一排,其中甲、乙、丙三人有两人相邻,有多少排法?

解:533235332372A A A A A --=222232或3A A A

例6.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,

并且这2人不.

左右相邻,那么不同排法的种数是 解法一: ①前后各一个,有8×12×2=192种方法

②前排左、右各一人:共有4×4×2=32种方法

③两人都在前排:

两人都在前排左边的四个位置:

乙可坐2个位置

乙可坐1个位置 2+2=4 1+1=2 此种情况共有4+2=6种方法

因为两边都是4个位置,都坐右边亦有6种方法,所以坐在第一排总共有6+6=12种方法

④两人都坐在第二排位置,先规定甲左乙右

∴ 甲左乙右总共有55102110128910=?+=+++++ 种方法.同样甲、乙可互换位置,乙左甲右

也同样有55种方法,所以甲、乙按要求同坐第二排总共有55×2=110种方法。综上所述,按要求两人不同

排法有 192+32+12+110=346种

解法二:考虑20个位置中安排两个人就坐,并且这两人左右不相邻,4号座位与5号座位不算相邻(坐在

前排相邻的情况有12种。),7号座位与8号座位不算相邻(坐在后排相邻的情况有22种。),共有

346)611(2220=+-A 种

2、顺序一定,除法处理或分类法。

例7、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把5面旗都挂上去,

可表示不同信号的种数是( )(用数字作答)。

解:5面旗全排列有55A 种挂,由于3面红旗与2面白旗的分别全排列均只能作一次的挂法,故有 553232

10A A A = 说明:在排列的问题中限制某几个元素必须保持一定的顺序问题,这类问题用缩小倍数的方法求解比较方便

快捷

例8.(06湖北卷)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程

丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排

法种数是 。(用数字作答)

解一:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中(插一个或二个),可

得有22525A A +?=30种不同排法。解二:6!4!

=30 例9、由数字0、1、2、3、4、5组成没有重复数字的6位数,其中个位数字小于十位的数字的共有( )

A )210个

B )300个

C )464个

D )600个

解: 155513002

A A = 故选(

B ) 4、多元问题,分类法

例10.(06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,

甲和丙只能同去或同不去,则不同的选派方案共有 种

解析:某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙

只能同去或同不去,可以分情况讨论,① 甲、丙同去,则乙不去,有2454

C A ?=240种选法;②甲、丙同不去,乙去,有3454C A ?=240种选法;③甲、乙、丙都不去,有45120A =种选法,共有600种不同的选派方案.

例11:(06全国卷I )设集合{}1,2,3,4,5I =。选择I 的两个非空子集A 和B ,要使B 中最小的数大于A

中最大的数,则不同的选择方法共有

A .50种

B .49种

C .48种

D .47种

解析:若集合A 、B 中分别有一个元素,则选法种数有2

5C =10种;若集合A 中有一个元素,集合B 中有两

个元素,则选法种数有35C =10种;若集合A 中有一个元素,集合B 中有三个元素,则选法种数有45C =5种;若集合A 中有一个元素,集合B 中有四个元素,则选法种数有55C =1种;若集合A 中有两个元素,集合B

中有一个元素,则选法种数有35C =10种;若集合A 中有两个元素,集合B 中有两个个元素,则选法种数有45C =5种;若集合A 中有两个元素,集合B 中有三个元素,则选法种数有55C =1种;若集合A 中有三个元

素,集合B 中有一个元素,则选法种数有4

5C =5种;若集合A 中有三个元素,集合B 中有两个元素,则选

法种数有55C =1种;若集合A 中有四个元素,集合B 中有一个元素,则选法种 数有55C =1种;总计有49种,选B.

解法二:集合A 、B 中没有相同的元素,且都不是空集,

从5个元素中选出2个元素,有2

5

C=10种选法,小的给A集合,大的给B集合;

从5个元素中选出3个元素,有3

5

C=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;

从5个元素中选出4个元素,有4

5

C=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A 集合,较大元素的一组的给B集合,共有3×5=15种方法;

从5个元素中选出5个元素,有5

5

C=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;

总计为10+20+15+4=49种方法。选B.

例12(06天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()

A.10种B.20种C.36种D.52种

解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小

于该盒子的编号,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有1

44

C=种方法;②1号

盒子中放2个球,其余2个放入2号盒子,有2

46

C=种方法;则不同的放球方法有10种,选A.

说明:元素多,取出的情况也多种,可按要求分成互不相容的几类情况分别计算,最后总计。

5、交叉问题,集合法(二元否定问题,依次分类)。

例13、从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?

解:设全集U={6人中任选4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素的个数的公式可得参赛方法共有:card(U)-card(A)-card(B)+card(A∩B)=252

例14、某天的课表要排入语文、数学、英语、物理、化学、体育共六门课程,且上午安排四节课,下午安排两节课。

(1)若第一节不排体育,下午第一节不排数学,一共有多少种不同的排课方法?

(2)若要求数学、物理、化学不能排在一起(上午第四节与下午第一节不算连排),一共有多少种不同的排课方法?

例15、同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡不同的分配方式有()

A)6种B)9种C)11种D)23种

解:此题可以看成是将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一数,且每个方格的标号与所填数字不同的填法问题。所以先将1填入2至4的3个方格里有3种填法;第二步把被填入方格的对应数字填入其它3个方格,又有3种填法;第三步将余下的两个数字填入余下的两格中只有一种填法,故共有3×3×1=9种填法。故选B

说明:求解二元否定问题可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依此即可完成。

例16、(06湖北卷)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是.(用数字作答) 。(答:78种)

说明:某些排列组合问题几部分之间有交集,可用集合中求元素的个数的公式来求解。

6、多排问题,单排法

例17、两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一座位),则不同的座

法为

A ) 5388C C

B )153288A

C C C )3588A A

D )88

A 解:此题分两排座可以看成是一排座,故有 88A 种座法。∴选(D )

说明:把元素排成几排的问题,可归纳为一排考虑,再分段处理。

7、至少问题,分类法 或 间接法(排除处理)

例18.(06福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名

女生,则选派方案共有

(A )108种 (B )186种 (C )216种 (D )270种

解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有3374

A A -=186种,选B. 例19.(06辽宁卷)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加

团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有_______种.(以数作

答)

【解析】两老一新时, 有112322C 12C A ?=种排法;两新一老时, 有123233C C 36A ?=种排法,即共有48种排法.

【点评】本题考查了有限制条件的排列组合问题以及分类讨论思想.

例20.(06重庆卷)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分

配方案有

(A )30种 (B )90种 (C )180种 (D )270种

解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,

一组1人,另两组都是2人,有125422

15C C A ?=种方法,再将3组分到3个班,共有331590A ?=种不同的分配方案,选B.

说明:含“至多”或“至少”的排列组合问题,是需要分类问题,或排除法。排除法,适用于反面情况

明确且易于计算的情况。

8、部分符合条件淘汰法

例21.四面体的顶点各棱中点共有10个点,在其中取4个不共面的点,不同的取法共有 ( ) A )150种 B )147种 C )144种 D )141种

解:10个点取4个点共有 410C 种取法,其中面ABC 内的6个点中任取4个点必共面,这样的面共

有6个,又各棱中点共6个点,有四点共面的平面有3个,故符合条件不共面的平面有 44106463141C C ---= 选D

说明:在选取总数中,只有一部分符合条件,可从总数中减去不符合条件数,即为所求。

9.分组问题与分配问题

①分组问题:均匀分组,除法处理;非均匀分组,组合处理

例22。有9个不同的文具盒:(1)将其平均分成三组;(2)将其分成三组,每组个数2,3,4。上述问

题各有多少种不同的分法?

分析:(1)此题属于分组问题:先取3个为第一组,有39C 种分法,再取3个不第二组,有36C 种分法,

剩下3个为第三组,有33

C 种分法,由于三组之间没有顺序,故有33396333C C C A 种分法。(2)同(1),共有234974C C C 种分法,因三组个数各不相同,故不必再除以33A 。

练习:12个学生平均分成3组,参加制作航空模型活动,3个教师各参加一组进行指导,问有多少种分组方法?

②分配问题: 定额分配,组合处理; 随机分配,先组后排。

例23。有9本不同的书:(1)分给甲2本,乙3本,丙4本;(2)分给三个人,分别得2本,3本,4本。上述问题各有多少种不同的分法?

(1)此题是定额分配问题,先让甲选,有29C 种;再让乙选,有37C 种;剩下的给丙,有44C 种,共有234974

C C C 种不同的分法(2)此题是随机分配问题:先将9本书分成2本,3本,4本共有三堆,再将三堆分给三个人,

共有23439743

...C C C A 种不同的分法。 例24:对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?

解:第5次必测出一次品,余下3件次品在前4次被测出,从4件中确定最后一件次品有1

4C 种方法,

前4次中应有1件正品、3件次品,有3316C C 种,前4次测试中的顺序有44A 种,由分步计数原理即得:14C (3316C C )4

4A =576。

【评述】本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列

练习:1。3名教师分配到6个班里,各人教不同的班级,若每人教2个班,有多少种分配方法?22264290C C C =

2.将10本不同的专著分成3本,3本,3本和1本,分别交给4位学者阅读,问有多少种不同的分法?3331107414!3!

C C C C ? 例25(06湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )

A.16种

B.36种

C.42种

D.60种

解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有123436C A ?=,

二是在在两个城市分别投资1,1,1个项目,此时有3

424A =,

共有1234C A ?+34A =60, 故选 (D ) 10.隔板法:隔板法及其应用技巧

在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中,每盒至少一个,求方法数的问题,常用隔板法。见下例:

例26。求方程x+y+z=10的正整数解的个数。(即:10个相同的小球分给三人,每人至少1个,有多少种方法?)

分析:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块

隔板),规定由隔板分成的左、中、右三部分的球数分别为 x.y.z 之值(如图)

○○○ ○○○ ○○○○

则隔板与解的个数之间建立了一一对立关系,故解的个数为2936C = 个。实际运用隔板法解题时,在

确定球数、如何插隔板等问题上形成了一些技巧。下面举例说明:

技巧一:添加球数用隔板法。

例27.求方程x+y+z=10 的非负整数解的个数。

分析:注意到x 、y 、z 可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了。怎么办呢?只要添加三个球,给 x 、 y 、z 各一个球。这样原问题就转化为求x+y+z=13 的正整数解的个数了,故解的

个数为212C =66个。

【小结】本例通过添加球数,将问题转化为如例1中的典型的隔板法问题。

技巧二:减少球数用隔板法。

例28.将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。

分析1:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,有1种方法;再把剩下的14个球,

分成4组,每组至少1个,由例25知有 313C =286 种方法。

分析2:第一步先在编号1,2,3,4的四个盒子内分别放1,2,3,4个球,有1种方法;第二步把剩

下的10个相同的球放入编号为1,2,3,4的盒子里,由例26知有 313C =286 种方法。

【小结】两种解法均通过减少球数将问题转化为例25、例26中的典型问题。

技巧三:先后插入用隔板法。

例29。为构建和谐社会出一份力,一文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添2个小品节目,则不同的排列方法有多少种?

分析:记两个小品节目分别为A 、B 。先排A 节目。根据A 节目前后的歌舞节目数目考虑方法数,相当于把

4个球分成两堆,由例26知有 15C 种方法。这一步完成后就有5个节目了。再考虑需加入的B 节目前后的

节目数,同上理知有16C 种方法。故由乘法原理知,共有115630C C = 种方法。

【小结】对本题所需插入的两个隔板采取先后依次插入的方法,使问题得到巧妙解决。

11.数字问题(组成无重复数字的整数)

① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。

②能被3整除的数的特征:各位数字之和是3的倍数;能被9整除的数的特征:各位数字之和是9的倍数。 ③ 能被4整除的数的特征:末两位是4的倍数。

④ 能被5整除的数的特征:末位数是0或5。

⑤ 能被25整除的数的特征:末两位数是25,50,75。

⑥ 能被6整除的数的特征:各位数字之和是3的倍数的偶数。

例30(06北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有

(A )36个 (B )24个 (C )18个 (D )6个

解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有3

3A 种方法(2)3个数字中有一个是

奇数,有1

333C A ,故共有33A +1333C A =24种方法,故选B

例31。(06天津卷)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有

24 个(用数字作答).

12.分球入盒问题

例32:将5个小球放到3个盒子中,在下列条件下,各有多少种投放方法?

① 小球不同,盒子不同,盒子不空

解:将小球分成3份,每份1,1,3或1,2,2。再放在3个不同的盒子中,即先分堆,后分配。有

31223

525332222

C C (+)A A A C C ? ②小球不同,盒子不同,盒子可空 解:53种

③小球不同,盒子相同,盒子不空

解:只要将5个不同小球分成3份,分法为:1,1,3;1,2,2。共有312252532222

C C +A A C C =25种

④小球不同,盒子相同,盒子可空 本题即是将5个不同小球分成1份,2份,3份的问题。共有3122

54352535552222C C ()(+)41A A C C C C C +++=种 ⑤小球相同,盒子不同,盒子不空

解:(隔板法)。0 \ 00 \ 00 ,有2

4C 种方法

⑥小球相同,盒子不同,盒子可空

解一:把5个小球及插入的2个隔板都设为小球(7个球)。7个球中任选两个变为隔板(可以相邻)。那

么2块隔板分成3份的小球数对应于 相应的3个不同盒子。故有27C =21 解:分步插板法。

⑦小球相同,盒子相同,盒子不空

解:5个相同的小球分成3份即可,有3,1,1;2,2,1。 共 2种

⑧小球相同,盒子相同,盒子可空

解:只要将将5个相同小球分成1份,2份,3份即可。分法如下:5,0,0; 4,1,0;3,2,0; 3,1,1; 2,2,1。

例33、有4个不同的小球,放入4个不同的盒子内,球全部放入盒子内

(1)共有几种放法?(答:44)

(2)恰有1个空盒,有几种放法?(答:2344144C A =)

(3)恰有1个盒子内有2个球,有几种放法?(答:同上2344144C A =)

(4)恰有2个盒子不放球,有几种放法?(答:3222444484C A C C +=)

13、涂色问题:(1

(2)以涂色先后分步,以色的种类分类。 例34、(2003为6个部分(如图)。现要栽种4种不同颜色的花,每部分栽 例35用,则不同的染色种数为 420

应该指出的是,上述所介绍的适用不同要求的各种方法并不是绝对的,对于同一问题有时会有多种方法,这时要认真思考和分析,灵活选取最佳方法。

新课标排列组合解题策略(精编)

新课标排列组合问题的解题策略(精编)相邻元素捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 变式练习:1.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法 2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 (20) 3.有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种1440 不相邻问题——插空法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 变式练习:1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ____(30) 3.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个 288 特殊元素——优先考虑法 例3 (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法()种. 72 变式练习:1.乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有多少种? 252 2.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数 288 定序问题用除法(缩倍法) 例4.6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种? 120 变式练习:1.4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法 2.0人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐 增加,共有多少排法? 5 C 10

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =?? ? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 14A 34C 1 3

排列组合的二十种策略

排列组合的二十种策略 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第 2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的

高三复习:排列组合问题的解题方法

排列组合问题的解题方法 一、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑. 例1、在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个. 解1:(元素优先法)根据所求四位数对0和5两个元素的特殊要求将其分为四类:① 含0不含5,共有1324C A =48(个);②含5不含0,共有1334C A =72(个);③含0也含5,共有112224C C A =48(个);④不合0也不含5,共有4 4 A =24(个).所以,符合条件的四位数共有48+72+48+24=192(个). 解2:(位置优先法)根据所求四位数对首末两位置的特殊要求可分三步:第一步:排 个位,有14C 种方法;第二步;排首位,有14C 种方法;第三步:排中间两位,有2 4A 种方法.所以符合条件的四位数共有14C 14C 24 A =192(个). 二、相邻问题“捆绑法”:对于元素相邻的排列问题,可先将相邻元素“捆绑”起来看作一个元素(整体),先与其它元素排列,然后相邻元素之间再进行排列. 例2、6个人排成一排,甲、乙二人必须相邻的排法有多少种? 解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A 55 种,甲、乙二人的排列有A 22 种,共有A 22·A 5 5=240种. 三、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可. 例3、用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”, 共有22232 22234576A A A A A 种. 四、有序问题“无序法”:对于元素顺序一定的排列问题,可先考虑没有顺序元素的排列,然后除以有顺序的几个元素的全排列即可. 例4、3男3女排成一排,若3名男生身高不相等,则按从高到低的一种顺序站的站法有多少种? 解:6个人的全排列有A 66 种,3名男生不考虑身高的顺序的站法有A 3 3种,而由高到低又可从左到右,或从右到左(这是两种不同的站法),故共有不同站法2A 66÷A 3 3 =240种. 五、分排问题“直排法”:n 个元素分成m (m <n )排,即为n 个元素的全排列. 例5、将6个人排成前后两排,每排3人,有多少种排法. 解:6个人中选3个人排在前排有A C 33 36种,剩下3人排在后排有A 3 3种,故共有

排列组合问题的解题方法与技巧的总结(完整版)

种。故不同插法的种数为:26A + 22A 16A =42 ,故选A 。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区 不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:由题意,选用3种颜色时,C 43种颜色,必须是②④同色,③⑤同色,与①进行全排列,涂色 方法有C 43A 33=24种4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有 C 21A 44=48种所以不同的着色方法共有48+24=72种;故答案为72 六、混合问题--先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4 人,则不同的分配方案共有( )种 A. B.3种 C. 种 D. 解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三 个不同的路口的不同的分配方案共有: 种,故选A 。 例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出 3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共 有() A .24种 B .18种 C .12种 D .6种

解:黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33, ∴种法共有C32A33=18,故选B. 七.相同元素分配--档板分隔法 例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。 解一:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有2 C种插法,即有15种分 6 法。 2、解二:由于书相同,故可先按阅览室的编号分出6本,此时已保证各阅览室所分得的书不小于其编号,剩下的4本书有以下四种分配方案:①某一阅览室独得4本,有种分法;②某两个阅览室分别得1本和3本,有种分法;③某两个阅览室各得2本,有种分法;④某一阅览室得2本,其余两阅览室各得1本,有种分法.由加法原理,共有不同的分法3+=15种. 八.转化法: 对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解 。例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种? 分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他

排列组合解题策略大全(十九种模型)

排列组合解题策略大全 一、合理分类与分步 1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种? 四位上,则有1 31333A A A 种排法,由分类计数原理,排法共有7813133344 =+A A A A (种) 解法二(排除法):甲在排头:44A ,乙在排尾: 44A ,甲在排头且乙在排尾: 3 3A ,故符合题意的不同的排法为: 5443544378A A A A --+=.注: 甲在排头和乙在排尾都包含甲在排头的同时乙在排位,所以多减了要补回来. 2、从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ① 若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有3 8A 方法, 所以共有383A ;③若乙参加而甲不参加同理也有3 83A ④(同例1)若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数4332 88883374088A A A A +++=(种) 二、特殊元素和特殊位置优先法 1、0,1,2,3,4,5能够组成多少个没有重复数字的五位奇数? 分析:特殊元素:0,1,3,5;特殊位置:首位和末位 先排末位:13C ,再排首位:14C ,最后排中间三位:34A 共有:13C 14C 3 4A =288 2、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 先种这两种特殊的花在除中间和两端外剩余的3个位置:24A ;再在其余5个位置种剩余的5种花:55A ;总共:24A 55A =1440 三、排列组合混合问题先选后排法 1、4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种? 解决排列组合混合问题,先选后排是最基本的指导思想。

排列组合解题策略

排列组合解题策略 2.A、36种B、120种C、720种D、1440种 前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C 3.把15人分成前后三排,每排5人,不同的排法种数为() (A)510515A A (B)3355510515A A A A (C)1515A (D)3355510515A A A A ÷答案:C 4.8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法. 5.10个相同的球装5个盒中,每盒至少一有多少装法?4 9C 解:从0、0、0、1、2、3…100中插入三个隔板即可3103C 。 7.某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 解:在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 8.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法? 解:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有1202 16=C 种。 9.(a+b+c+d)15有多少项?

解:当项中只有一个字母时,有种(即 a.b.c.d 而指数只有15故;当项中有2个字母时,有 而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即;当项中有3个字母 时指数15分给3个字母分三组即可;当项种4个字母都在时 四者都相加即可.10.将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个 中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种? 解:1、先从4个盒子中选三个放置小球有3 4C 种方法;2、注意到小球都是相同的,我们可以采用隔板法。为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个5个空挡中分别插入两个板。各有23C 、24C 、25C 种方法;3、由分步计数原理可得34C 23C 24C 25C =720种。 11.用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)第11题第12题第13题第14题 12.四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种(84) 13.某城市中心广场建造一个花圃,花圃6分为个部分(如图),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).(120) 秒杀秘籍:合并单元格解决染色问题 例3.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同 一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。 解:分情况讨论: (ⅰ)当3、4颜色相同且1、5颜色不同时,将3、4合并成一个单元格,此时不同的 着色方法相当于4个元素的全排列数4 4A (ⅱ)当3、4颜色不同且1、5颜色相同时,与情形(ⅰ)类似同理可得44A 种着色法. (ⅲ)当3、4与1、5分别同色时,将3、4,1、5分别合并,这样仅有三个单元格,从4种颜色中选3种来着色这三个单元格,计有3334A C 种方法.由加法原理知:不同着色方法共有3 334442A C A +=48+24=72(种) 例4.将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端 点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是_______. 解:可把这个问题转化成相邻区域不同色问题,如图, 若恰用三种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任 选两种涂A、B、C、D 四点,此时只能A 与C、B 与D 分别同色,故有125460C A =种方法。 (2)若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S,再从余下的四种颜色中任选两种染A 与B,由于A、B 颜色可以交换,故有24A 种染法;再从余下的两种颜色中任选一种染D 或C,而D 与C,而D 与C 中另一个只需染与其相对顶点同色即可,故有12115422240C A C C =种方法。 (3)若恰用五种颜色染色,有55120A =种染色法综上所知,满足题意的染色方法数为60+240+120=420种。涂色问题的常用方法有:(1)可根据共用了多少种颜色分类讨论;(2)根据相对区域是否同色分类讨论; (3)将空间问题平面化,转化成平面区域涂色问题。54321

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1) 26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34 【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( ) A 、38 B 、83 C 、38A D 、3 8C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军 看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女 生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432种, 其中男生甲站两端的有1 222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

排列与组合解题技巧

佛山学习前线教育培训中心 高二数学(理)讲义 专题:排列与组合解题技巧 主要技巧: 一. 运用两个基本原理 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 二. 特殊元素(位置)优先 例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 三. 捆绑法 例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法? 练习3:记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .A1440种.B960种.C720种.D480种 四. 插入法 例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 练习4:安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种。 五. 排除法 例5:求以一个长方体的顶点为顶点的四面体的个数。 练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 六. 机会均等法 例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 七. 转化法 例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法? 练习8:动点从(0,0)沿水平或竖直方向运动到达(6,8),要使行驶的路程最小,有多少种走法? 八. 隔板法 例14:20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法? 练习9:把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

(推荐)排列组合问题的类型及解答策略

排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。本文介绍十二类典型排列组合问题的解答策略,供参考。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人, 与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240种不同排法,选C。 评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法 例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。 评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例 3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。 解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排 列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。 评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()

排列与组合解题技巧

排列与组合解题技巧

佛山学习前线教育培训中心 高二数学(理)讲义 专题:排列与组合解题技巧 主要技巧: 一. 运用两个基本原理 例1:n个人参加某项资格考试,能否通过,有多少种可能的结果? 练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有() (A)6种(B)9种(C)11种(D)23种 二. 特殊元素(位置)优先 例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个? 练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法? 三. 捆绑法 例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法? 练习3:记者要为5名志愿者和他们帮助的2为老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .A1440种.B960种.C720种.D480种

四. 插入法 例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法? 练习4:安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种。 五. 排除法 例5:求以一个长方体的顶点为顶点的四面体的个数。 练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法? 练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法? 六. 机会均等法 例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法? 练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。 七. 转化法 例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法. ***************************************************************************** 习题 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 2、(1)将4封信投入3个邮筒,有多少种不同的投法? (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 3、七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600) (2)某乙只能在排头或排尾的不同排法有多少种?(1440) (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120) (4)甲、乙必须相邻的排法有多少种?(1440) (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)

排列组合的解题策略 陈莉

排列组合的解题策略陈莉 发表时间:2014-04-01T17:09:56.750Z 来源:《新疆教育》2013年第5期供稿作者:陈莉 [导读] 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。 重庆市江津区第八中学陈莉 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平,思维能力在一定程度上受到限制,还不太适应。从而导致学生对题目一知半解,甚至觉得“云里雾里”。针对这一现象,笔者在日常教学过程中经过尝试总结出一些个人的想法跟各位同行交流一下。笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。 怎样分析排列组合综合题?使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。排列与组合定义相近,它们的区别是在于是否与顺序有关。复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 下面笔者将就教学过程中的两个难点通过两个特例作进一步的说明:第一,占位子问题例1:将编号为1、2、3、4、5 的5 个小球放进编号为1、2、3、4、5 的5 个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法?①仔细审题:在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。②转换题目:在审题的基础上,为了激发学生兴趣进入角色,我将题目转换为:让学号为1、2、3、4、5 的学生坐到编号为1、2、3、4、5 的五张凳子上(已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法? ③解决问题:这时我在选另一名学生来安排这5 位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C 种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2 种排法,最后根据乘法原理得到结果为2×C =20(种)。 这样原题也就得到了解决。④学生小结:接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案。(课堂气氛又一次活跃起来)⑤老师总结:对于这一类占位子问题,关键是抓住题目中的特殊条件,先从特殊对象或者特殊位子入手,再考虑一般对象,从而最终解决问题。 第二,分组问题例2:从1、3、5、7、9 和2、4、6、8 两组数中分别选出3 个和2 个数组成五位数,问这样的五位数有几个?(本题我是先让学生计算,有很多同学得出的结论是P ×P )①仔细审题:先由学生审题,明确组成五位数是一个排列问题,但是由于这五个数来自两个不同的组,因此是一个“分组排列问题”,然后对题目进行等价转换。②转换题目:在学生充分审题后,我让学生自己对题目进行等价转换,有一位同学A 将题目转换如下:从班级的第一组(12 人)和第二组(10 人)中分别选3 位和2 位同学分别去参加苏州市举办的语文、数学、英语、物理、化学竞赛,问有多少种不同的选法?③解决问题:接着我就让同学A 来提出选人的方案同学A 说:先从第一组的12 个人中选出3 人参加其中的3 科竞赛,有P×P 种选法;再从第二组的10 人中选出2 人参加其中2 科竞赛有P×P 种选法;最后由乘法原理得出结论为(P×P)×(P×P)(种)。(这时同学B 表示反对)同学B 说:如果第一组的3个人先选了3 门科目,那么第二组的2 人就没有选择的余地。所以第二步应该是 P×P(. 同学们都表示同意,但是同学 C 说太蘩)同学 C说:可以先分别从两组中把5 个人选出来,然后将这5 个人在5 门学科中排列,他列出的计算式是C×C×P(种)。(再次通过互相讨论,都表示赞赏)这样原题的解答结果就“浮现”出来C×C×P(种)。④老师总结:针对这样的“分组排列”题,我们多采用“先选后排”的方法:先将需要排列的对象选定,再对它们进行排列。 以上是我一节课两个例题的分析过程,旨在通过这种方法的尝试(教学效果比较明显),进一步活跃课堂气氛,更全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析转换问题,解决问题。

相关文档
相关文档 最新文档