文档库 最新最全的文档下载
当前位置:文档库 › etap实验 短路分析

etap实验 短路分析

etap实验  短路分析
etap实验  短路分析

第三章短路分析

ETAP短路分析功能可以分析电力系统中三相、单相、线-地、线-线、线-线-地等情况下的故障电流和及其影响,该程序分析计算系统中总的短路电流和单个电动机、发电机以及连接点的故障电流,故障划分以最新的ANSI/IEEE(C37系列)和IEC(IEC 60909等)版本为标准。

ANSI/IEEE短路工具条(ANSI/IEEE Short-Circuit Toolbar) 和IEC短路工具条(IEC Short-Circuit Toolbar) 部分告诉您如何开始一个短路电流计算,如何打开并查看输出报告或者选择输出选项。短路分析案例编辑器( The Short-Circuit Study Case Editor) 部分告诉您如何创建一个新的分析案例,需要什么参数,如何设定。显示选项(Display Options)部分告诉您显示系统参数和输出结果时需要哪些参数,如何设定等。

短路分析软件确定故障电流和自动比较这些数值与厂商提供的短路额定电流值,在单线图和短路输出报告上自动显示超过额定值的设备报警信息。

点击“模式工具条”中的“短路分析”按钮,切换到短路案例分析模式。此时,右侧的“模块工具条”转换为“短路工具条”。

介绍两个ETAP常用的快捷方式

1、移动图形——按空格键,鼠标将变成手形,就可以移动图形。

2、放大和缩小——按Ctrl键,滚动鼠标滚轮,即可实现放大和缩小。

第一节增添短路分析需要的数据

短路计算需要在潮流分析基础上补充一些参数。由于发电机Gen1的直轴次暂态电抗X d”和直轴电抗X d 为零,不能做短路计算。在单线图上双击Gen1,打开同步发电机编辑器-Gen1“阻抗/模型”属性页,同步发电机编辑器的“阻抗/模型”属性页如图3-1所示。选中“动态模型”框中“次暂态”复选框,再点击“典型数据”按钮,赋值于这两个参数,即可做短路计算了。

图3-1 同步发电机编辑器的阻抗/模型属性页

第二节设定故障位置和设置短路分析参数

1、设定故障位置为Bus4:单击母线Bus4,选定母线Bus4;单击鼠标右健,弹出快捷菜单,选择“故障”。

2、在“分析案例工具条”中,点击“编辑分析案例”按钮,打开“短路分析案例”编辑器,在此可以更改短路分析的参数与设置。本算例对默认的参数不作更改。

第三节三相短路计算

1、单击右侧“短路工具条”的“运行三相对称短路计算(duty)(IEC60909)”按钮,进行IEC60909标准下的三相短路分析。

2、ETAP计算各支路对短路电流的贡献、短路时各母线残压、短路后0~0.1秒的电流。

3、点击“短路工具条”的“显示选项”按钮,打开“显示选项—短路”编辑器,在“结果”页-故障电流框中,选择显示“三相”和“初始对称有效值”或者“峰值”。

第四节断路器、电缆的选择和校验

1、断路器的选择

首先根据系统额定电压和各自所接负荷大小选择断路器的额定电压和额定电流(选择过程略)。本例中的短路点都是近发电机的短路点,取短路发生到故障切除的最小间隔时间(继电器

动作时间+断路器动作时间)为0.07S,以短路后0.07S的短路电流对称分量I b sym和直流分量I dc来

选择断路器的开断能力。根据短路电流“峰值”校验开关动稳定,以短路电流热效应值校验断路器热稳定。

(1)打开断路器CB3 的编辑,选择“设备库”中的Siemens 12-3AF-63;在额定“交流开断”电流下拉列表中选择,将额定“交流开断”电流指定为50kA。具体如下图3-2 所示:

图3-2 高压断路器CB3 编辑器的额定值属性页

(2)仍设定Bus4三相短路,“运行三相对称短路计算(Duty)(IEC60909)”后出现断路

器报警窗口:单击右侧“短路工具条”中的“报警视图”按钮,打开“短路分析报警视窗”,可以看到详细的报警信息如图3-3所示。

图3-3 母线Bus4故障,三相短路分析报警信息

(3)重新选择断路器CB3的参数:在单线图上双击CB3,打开“高压断路器编辑器”,将额定“交流开断”电流设为63kA,额定“动稳定峰值”电流设为160kA,如图3-4所示。

图3-4 重新选择参数后的高压断路器CB3编辑器

(4)再点击右侧“短路工具条”中的“运行三相对称短路计算(duty)(IEC60909)”按钮,重新执行三相短路分析,运行后则报警消失。

2、电缆的选择和热稳定校验

电缆选择一般分两步:1.首先根据电缆所接设备的额定电流和电缆不同安装环境载流量校验来选择电缆截面积,满足负载的需要;2.然后根据电缆所在回路故障切除时间计算出这个时间对

应的热效应电流,以这个故障切除时间和热效应电流计算出电缆热稳定要求的最小截面。

比较两次得到的电缆截面积,选择大的一个结果作为最终结果。本例中速断保护切除时间为0.07S,考虑延时保护动作级差为0.5S,以0.57S 短路电流持续时间做电缆热稳定校验。

(1)在电缆编辑器-Cable1→“选型-相”属性页→“约束条件”对话框,选定“短路”,并填写:最大短路电流=27.24 kA,时间=0.6秒。短路前电缆的工作温度T c=90℃,可以在电缆编辑器的“容量”属性页修改此值。ETAP 软件自动给出:电缆优化尺寸=150mm2,较小尺寸=120 mm2,选定优化尺寸,如图3-5 所示。

(2)在电缆编辑器-Cable1→“保护”属性页→“短路电流”对话框,选定“用户定义”,填写:最大短路电流=27.24 kA。在“保护设备”对话框,“过电流”下拉条中选定“用户定义”,填写:时间=0.57 秒。

图3-5 电缆编辑器的“选型-相”属性页――根据短路选定尺寸

第五节不对称故障分析

1、采用上述相同的方法,设置母线Bus10故障;

2、点击“短路工具条”的“运行LG、LL、LLG、三相短路计算(IEC 60909)”按钮,进行不对称短路计算。

3、点击“显示选项”按钮,显示选项编辑器图3-6 所示,可以在单线图上显示不同类型短路(L-G、L-L、L-L-G)的序分量值、相分量值以及A相电压和零序电流。

4、点击“报告管理器”按钮,打开的“IEC Unbalanced SC报告管理器”,如图3-7 所示。

图3-7 IEC 不平衡短路报告管理器

从报告中可以看出:1)母线Bus10总的三相短路电流=30.1kA,来自母线Bus2、Mtr1和Lump6 三个方向的短路电流分别是28.66kA、0.980kA和0.495kA;2)对应4种不同的短路类型每一组短

路电流值见表3-1。

表3-1 母线Bus10不对称短路电流

短路分析报告根据IEC60909标准给出全面的信息,其中短路结果报告如图3-8 所示。

图3-8 短路分析-结果报告

第六节暂态短路电流计算(IEC61363)

除了与开关设备选型有关的交流开断电流(容量)等计算之外,ETAP还根据IEC标准61363-1提供了暂态短路电流计算。暂态短路电流计算用时间函数的形式表示了故障电流的波形,其中考虑到一系列故障后不同时间内影响短路电流的因素。这些因素包括同步电机次暂态阻抗、暂态阻抗、阻抗、次暂态时间常数、暂态时间常数和直流时间常数。也包括感应电动机反馈电流的衰减。

这种详细的计算模型,为孤岛电力系统(船舶和海上采油平台)的保护设备选型和继电器配合,提供了精确的短路电流估算。该计算方法也可用于带一个或多个电压源的辐射型系统和环形

系统。

ETAP计算结果是短路电流以0.001~0.1秒为步长的时间函数。也显示了短路电流以0.1周波为步长的1个周波的函数。除了瞬时电流值,ETAP还计算交流分量、直流分量和电流波形的顶部包络线。点击“总结报告”属性页,输出的总结报告给出每条母线的初始、暂态和稳态的故障电流。

下面以母线Bus2故障为例,具体操作步骤如下:

1、在进行此项计算之前,必须给发电机Gen1的次暂态直轴开路时间常数Tdo”和暂态直轴开路时间常数Tdoˊ赋值。打开发电机编辑器,点击“阻抗/模型”属性页,同步发电机的“阻抗/

模型”属性页如图3-1所示。点击“动态模型”的“次暂态”复选框,再点击“典型数据”按钮,点击“确定”按钮。在ETAP软件建立了同步发电机的次暂态与暂态计算模型之后,就可以做基于IEC61363 标准的暂态短路电流计算。

2、设置母线Bus2为故障母线,点击“短路工具条”的“运行暂态短路(IEC61363)”按钮,完成暂态短路电流计算。

3、单击“短路工具条”的“IEC61363 短路画图”按钮,打开“IEC61363 画图选择”对话框如图3-10 所示:

图3-9 IEC61363 画图选择对话框

在此可选择需要输出的曲线,它们包括:1)瞬时电流i;2)交流电流有效值;3)直流电流(有名值);4)直流电流(百分数);5)包络线。例如,母线Bus2 发生三相短路,总的故障电流瞬时值i 曲线如图3-11 所示:

图3-10 母线Bus2发生三相短路,总的故障电流瞬时值

第七节不同的数据版本用于设置系统短路计算的最大与最小运行方式1、数据版本取名“最大运行方式””

等效电网U1:

最大运行方式:三相短路容量:2500MVA,X/R=30

单相短路容量:2000MVA,,X/R=30

2、数据版本取名“最小运行方式”

等效电网U1:

最小运行方式:三相短路容量:2000MVA,X/R=30

单相短路容量:1600MVA,X/R=30

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: ) 120sin()360240sin()240sin(); 120sin(); sin( t U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随着时间t 的流逝,当 t 值每增长360°(或2π)时,电压ua 就经过了一个周期的循环,如下图所示:

图 如上图,t代表时间, 代表t=0时刻的角度(例如上图中ua当t=0时位于原点, ), 表示角速度即每秒变化多少度。例如电网的频率为50Hz,每即代表0 秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算:

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

两相短路电流计算

根据两相短路电流计算公式:I d=U e/2√(∑R)2+(∑X)2 其中∑R=R1/K b2+R b+R2;∑X=X X+X1/ K b2+X b+X2 式中I d--两相短路电流,A; ∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω; X X—根据三相短路容量计算的系统电抗值,Ω; R1、X1—高压电缆的电阻、电抗值,Ω; K b—矿用变压器的变压比,若一次电压为10KV,二次电压为1200V、690V时,变比依次为8.3、14.5R b、X b—矿用变压器的电阻、电抗值 R2、X2—低压电缆的电阻、电抗值 U e—变压器二次侧的额定电压,对于660V网络,U e以690V 计算;对于1140V网络,U e以1200V计算 经查表: 702高压电缆R1=0.3Ω/Km,X1=0.08Ω/Km; 502高压电缆R1=0.42Ω/Km,X1=0.08Ω/Km; 352高压电缆R1=0.6Ω/Km,X1=0.08Ω/Km; 1140V变压器R b=0.0167,X b=0.1246; 660V变压器R b=0.0056,X b=0.0415; 1140V系统下X X=0.0144; 660V系统下X X=0.0048; 702低压电缆R2=0.315Ω/Km,X2=0.078Ω/Km; 502低压电缆R2=0.448Ω/Km,X2=0.081Ω/Km;

352低压电缆R2=0.616Ω/Km,X2=0.084Ω/Km;252低压电缆R2=0.864Ω/Km,X2=0.088Ω/Km;162低压电缆R2=1.37Ω/Km,X2=0.09Ω/Km; 1、副井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.539948 ∑X=X X+X1/ K b2+X b+X2=0.118166 I d=U e/2√(∑R)2+(∑X)2=627.27A 2、副井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.27092 ∑X=X X+X1/ K b2+X b+X2=0.20162 I d=U e/2√(∑R)2+(∑X)2=1776.73A 3、副井井下风机专用线最远端两相短路电流∑R=R1/K b2+R b+R2=0.2 ∑X=X X+X1/ K b2+X b+X2=0.086 I d=U e/2√(∑R)2+(∑X)2=1568A 4、主井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.09 ∑X=X X+X1/ K b2+X b+X2=0.06 I d=U e/2√(∑R)2+(∑X)2=3136A 5、主井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.277 ∑X=X X+X1/ K b2+X b+X2=0.2

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

电力系统分析潮流计算例题

电力系统的潮流计算 西安交通大学自动化学院 2012.10 3.1 电网结构如图3—11所示,其额定电压为10KV 。已知各节点的负荷功率及参数: MVA j S )2.03.0(2 +=, MVA j S )3.05.0(3+=, MVA j S )15.02.0(4+= Ω+=)4.22.1(12j Z ,Ω+=)0.20.1(23j Z ,Ω+=)0.35.1(24j Z 试求电压和功率分布。 解:(1)先假设各节点电压均为额定电压,求线路始端功率。 0068.00034.0)21(103.05.0)(2 2223232232323j j jX R V Q P S N +=++=++=?0019.00009.0)35.1(10 15.02.0)(2 2 224242242424j j jX R V Q P S N +=++=++=?

则: 3068.05034.023323j S S S +=?+= 1519.02009.024424j S S S +=?+= 6587.00043.122423' 12 j S S S S +=++= 又 0346 .00173.0)4.22.1(106587.00043.1)(2 2 212122'12'1212j j jX R V Q P S N +=++=++=? 故: 6933.00216.112'1212 j S S S +=?+= (2) 再用已知的线路始端电压kV V 5.101 =及上述求得的线路始端功率 12 S ,求出线 路 各 点 电 压 。

kV V X Q R P V 2752.05 .104.26933.02.10216.1)(11212121212=?+?=+=? kV V V V 2248.101212=?-≈ kV V V V kV V X Q R P V 1508.100740.0) (24242 2424242424=?-≈?=+=? kV V V V kV V X Q R P V 1156.101092.0) (23232 2323232323=?-≈?=+=? (3)根据上述求得的线路各点电压,重新计算各线路的功率损耗和线路始端功率。 0066.00033.0)21(12.103.05.02 2 223j j S +=++=? 0018.00009.0)35.1(15 .1015.02.02 2 224j j S +=++=? 故 3066.05033.023323j S S S +=?+= 1518.02009.024424j S S S +=?+= 则 6584.00042.122423' 12 j S S S S +=++= 又 0331.00166.0)4.22.1(22 .106584.00042.12 2 212j j S +=++=? 从而可得线路始端功率 6915.00208.112 j S +=

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4 因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

电力系统分析潮流计算

电力系统分析潮流计算报告

目录 一.配电网概述 (3) 1.1 配电网的分类 (3) 1.2 配电网运行的特点及要求 (3) 1.3 配电网潮流计算的意义 (4) 二.计算原理及计算流程 (4) 2.1 前推回代法计算原理 (4) 2.2 前推回代法计算流程 (7) 2.3主程序清单: (9) 2.4 输入文件清单: (11) 2.5计算结果清单: (12) 三.前推回代法计算流程图 (13) 参考文献 (14)

一.配电网概述 1.1 配电网的分类 在电力网中重要起分配电能作用的网络就称为配电网; 配电网按电压等级来分类,可分为高压配电网(35—110KV),中压配电网(6—10KV,苏州有20KV的),低压配电网(220/380V); 在负载率较大的特大型城市,220KV电网也有配电功能。 按供电区的功能来分类,可分为城市配电网,农村配电网和工厂配电网等。 在城市电网系统中,主网是指110KV及其以上电压等级的电网,主要起连接区域高压(220KV及以上)电网的作用。 配电网是指35KV及其以下电压等级的电网,作用是给城市里各个配电站和各类用电负荷供给电源。 从投资角度看,我国与国外先进国家的发电、输电、配电投资比率差异很大,国外基本上是电网投资大于电厂投资,输电投资小于配电投资。我国刚从重发电轻供电状态中转变过来,而在供电投资中,输电投资大于配电投资。从我国城网改造之后,将逐渐从输电投资转入配电建设为主。 本文是基于前推回代法的配电网潮流分析计算的研究,研究是是以根节点为10kV的电压等级的配电网。 1.2 配电网运行的特点及要求 配电系统相对于输电系统来说,由于电压等级低、供电范围小,但与用户直接相连,是供电部门对用户服务的窗口,因而决定了配电网运行有如下特点和基本要求:

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

电力系统分析潮流计算

题目:电力系统分析潮流计算 初始条件:系统如图所示 = i(W 如矶=10.5^^% = 10.5^% = BL 9 T3SFL1-8000/110(1105%)/6 3码 =52kw t A^)= 12,76kw t V s% = iO.5J用=LI T4 2 爲FL1-16000/110(110 2 痊.5%)/10.5 ARf = 62kw d A^0= = 10.5^94 = Li 导线LGJ-150 巾=Di21D/Am; x a= 0.4£lfkm>b a=2.8 x LO^s/km 要求完成的主要任务: 1、计算参数,画等值电路; 2、进行网络潮流计算; 3、不满足供电要求,进行调压计算 时间安排: 熟悉设计任务5.27 收 集相关资料5.28 选定 设计原理5.29 计算分 析及结果分析撰写设 计报告6.7 5.30 -- 6.6 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 简述................................... 1 设计任务及要求分析........................... 2 潮流计算过程 (4) 2.1 计算参数并作出等值电路. (4) 2.1.1 输电线路的等值参数计算. (4) 2.1.2 变压器的等值参数计算. ......................................... 2.1.3 等值电路.............................. 3 功率分布计算.............................. 4 调压计算...................... 5 心得体会...................... 参考文献....................... 本科生课程设计成绩评定表................ 错误!未定义书签 错误!未定义书签 4 6 7 错误!未定义书签。 错误!未定义书签。

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络 X c X T X L X T X d ” C V fa(1) G + + +

电力系统分析短路电流的计算汇总

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求:(1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15. 01=T X 15 . 00=T X 25 . 02=T X 25. 02==''X X d 图1-1

1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1. 在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2. 正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3. 负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入 代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4. 零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1. 单相(a相接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I =

电力系统分析潮流计算

题 目: 电力系统分析潮流计算 初始条件:系统如图所示 T1、T2 SFL1-16000/110 (121±2×2.5%)/6.3 T3 SFL1-8000/110(110±5%)/6.3 T4 2×SFL1-16000/110(110±2×2.5%)/10.5 导线 LGJ-150 要求完成的主要任务: 1、计算参数,画等值电路; 2、进行网络潮流计算; 3、不满足供电要求,进行调压计算。 时间安排: 熟悉设计任务 5.27 收集相关资料 5.28 选定设计原理 5.29 计算分析及结果分析 5.30 --6.6 撰写设计报告 6.7 指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日

目录简述 2 1设计任务及要求分析 3 2潮流计算过程 4 2.1计算参数并作出等值电路 4 2.1.1输电线路的等值参数计算 4 2.1.2变压器的等值参数计算 4 2.1.3等值电路 6 3功率分布计算 7 4调压计算 10 5心得体会 11 参考文献 12 本科生课程设计成绩评定表 13

简述 潮流计算是电力系统最基本最常用的计算。根据系统给定的运行条件,网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值和相角),各支路流过的功率,整个系统的功率损耗。潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。因此,潮流计算在电力系统的规划计算,生产运行,调度管理及科学计算中都有着广泛的应用。 本次课程设计要求将系统中的元件转换为等值参数,并绘制出相应的等值电路,然后依据等值电路图计算网络中的功率分布、功率损耗和未知的节点电压。 最后还需进行检验,如不满足供电要求,还应进行调压计算。 关键词:潮流计算;等值电路;功率损耗;节点电压;调压

道路照明设计中单相短路电流计算

道路照明设计中单相短路电流计算 照明设计是城市道路设计中比较重要的一项设计内容。为了确保城市道路照明能为车辆驾驶人员以及行人创造良好的视看环境,达到保障交通安全,提高交通运输效率,方便人民生活,防止犯罪活动和美化城市环境的效果,建设部于91年特制定了《城市道路照明设计标准》CJJ45-91.标准要求道路照明设计原则为“安全可靠、技术先进、经济合理、节约能源、维修方便。”并对照明标准、光源和灯具的选择、设计、照明供电和控制以及节能措施等方面做了较详尽的规定和要求,笔者在工程设计中运用和深入了解标准的过程中,确实得到了很多的益处,同时也发现一些不完善之处,比较突出的是规范中对照明供电保护及电缆选择没有做详细说明和要求,而这部分内容的设计正确与否直接影响到“安全可靠、技术先进、经济合理、节约能源、维修方便”这个基本原则。在道路实际使用中发生的电气故障,小到电缆烧毁,大到人身触电伤亡事故的出现,都于与此相关。笔者希望本文起抛砖引玉的作用,以引起有关部门的重视,并与本行业同仁一同探讨。 在道路照明配电中,由于配电线路较长,配电线路零序阻抗较大,单相接地(零)短路电流相对较小。为了计算低压配电系统的单相接地(零)电流,需要利用不对称短路电流的计算方法。不对称短路电流可利用计算三相短路的原则进行计算。因为电压的对称分量

与相应的电流对称分量成正比,因此在正序、负序和零序分量中,都能独立地满足欧姆定律和克希荷夫定律。正序、负序和零序电流也只产生相应地正序、负序和零序电压降,利用这一个重要的性质,可以用电工学中对称分量法分析在对称电路中所产生的各种不对称短路。 单相接地(零)短路电流的计算 不对称短路时,由于距发电机的电气距离很远,降压变压 器容量与发电机电源容量相比甚小,因此,可假定正序阻抗约等于负序阻抗。单相接地(零)短路电流按下式计算: 式中Up平均线电压(V)R0Σ,X0Σ,Z0Σ配电网络的总零序电阻,总零序电抗,总零序阻抗。R1Σ,X1Σ,Z1Σ配电网络的总正序电阻,总正序电抗,总正序阻抗。 电路中主要元件阻抗 1、电力系统正序电抗的计算在计算低压电力网络短路时,有时需要计入系统电抗XX,如果系统电抗不知,只有原线圈方面的 短路容量或高压短路器的额定容量Sdn(MVA)时,则系统正序电抗 可近似地按下式计算:式中 Uj=Up平均线电压(V)Sdn原线圈方面的短路容量或高压短路器的额定容量(KVA)。 2、变压器阻抗的计算 变压器的正序电阻: 变压器的正序电抗:式中ΔPd 变压器短路损耗(kW)Ue 变压器二次侧额定电压(V)Se 变压器额定容量(KVA)Ud% 变压器阻 抗电压百分比,变压器的零序电抗是与其本身结构和绕组的接法有关。

最新8.1.2三相和两相短路电流的计算汇总

8.1.2三相和两相短 路电流的计算

8.1.2.2 三相和两相短路电流的计算 在220/380网络中,一般以三相短路电流为最大。一台变压器供电的低压网络三相短路电流计算电路见图8?1?1。 图8?1?1 低压网络三相短路电流计算电路 (a )系统图;(b )等效电路;(c )用短路阻抗表示的等效电路图 低压网络三相起始短路电流周期分量有效值按下式计算 22 22230 3 /05.13/k k k k n k n X R X R U Z cU I + = +== '' kA (8-1-19) L m T s k R R R R R +++= L m T s k X X X X X +++= 式中 n U ——网路标称电压(线电压),V ,220/380V 网络为380V ; c ——电压系数,计算三相短路电流时取1.05; k Z 、k R 、k X ——短路电路总阻抗、总电阻、总电抗,mΩ; s R 、s X ——变压器高压侧系统的电阻、电抗(归算到400V 侧),mΩ; T R 、T X ——变压器的电阻、电抗,mΩ; m R 、m X ——变压器低压侧母线段的电阻、电抗,mΩ; L R 、L X ——配电线路的电阻、电抗,mΩ; I ''、k I ——三相短路电流的初始值、稳态值。 只要2222/s s T T X R X R ++≥2,变压器低压侧短路时的短路电流周期分量不衰减,即I I k ''=。

短路全电流k i 包括有周期分量z i 和非周期分量f i 。短路电流非周期分量的起始值 I i f ''=20,短路冲击电流ch i ,即为短路全电流最大瞬时值,它出现在短路发生后的半周期(0.01s )内的瞬间,其值可按下式计算 I K i ch ch ''=2 kA (8?1?20) 短路全电流最大有效值ch I 按下式计算 2)1(21-+''=ch ch K I I kA (8?1?21) 式中 ch K ——短路电流冲击系数,f ch T e K 01 .01+=; f T ——短路电流非周期分量衰减时间常数,s ,当电网频率为50Hz 时,∑ ∑ = R X T f 314; ∑X ——短路电路总电抗(假定短路电路没有电阻的条件下求得),Ω; ∑R ——短路电路总电阻(假定短路电路没有电抗的条件下求得),Ω。 如果电路只有电抗,则∞=f T ,2=ch K ,如果电路只有电阻,则0=f T ,1=ch K ;可见2≥ ch K ≥1。 电动机反馈对短路冲击电流的影响,仅当短路点附近所接用电动机额定电流之和大于短路电流的1%(I I M r ''>∑?01.0)时,才予以考虑。异步电动机起动电流倍数可取为6~7,异步电动机的短路电流冲击系数可取1.3。由异步电动机馈送的短路冲击电流的计算式(8?1?22)。 由异步电动机提供的短路冲击电流M ch I .按下式计算 rM qM M ch M ch I K K I ..29.0= kA (8?1?22) 计入异步电动机影响后的短路冲击电流ch i 和短路全电流最大有效值ch I ,按下列两式计算 M ch s ch ch i i i ..+= kA (8?1?23) ])1()1[(2)(..2M M ch s s ch M s ch I K I K I I I ''-+''-+''+''= (8?1?24) 以上式中 s ch i .——由系统送到短路点去的短路冲击电流,kA ;

电力系统分析潮流计算的计算机算法

潮流计算的计算机算法实验报告 :学号:班级: 一、实验目的 掌握潮流计算的计算机算法。 熟悉MATLAB,并掌握MATLAB程序的基本调试方法。 二、实验准备 根据课程容,熟悉MATLAB软件的使用方法,自行学习MATLAB程序的基础语法,并根据所学知识编写潮流计算牛顿拉夫逊法(或PQ分解法) 的计算程序,用相应的算例在MATLAB上进行计算、调试和验证。 三、实验要求 每人一组,在实验课时,用MATLAB调试和修改运行程序,用算例计算输出潮流结果。 四、实验程序 clear; %清空存 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1;

%一:创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3); Y(q,q)=Y(q,q)+1/(B1(i,5)^2*B1(i,3)); end end Y; %将OrgS、DetaS初始化 OrgS=zeros(2*n-2,1); DetaS=zeros(2*n-2,1); %二:创建OrgS,用于存储初始功率参数 h=0; j=0; for i=1:n %对PQ节点的处理 if i~=isb&B2(i,6)==2 h=h+1; for j=1:n OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag (Y(i,j))*Imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i ,j))*real(B2(j,3))); OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y( i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))* real(B2(j,3))); end end

两相接地短路电流的计算

目录 1.前言 (1) 1.1短路电流的危害 (1) 1.2短路电流的限制措施 (1) 1.3短路计算的作用 (2) 2.数学模型 (3) 2.1对称分量法在不对称短路计算中的应用 (3) 2.2电力系统各序网络的制订 (9) 2.3两相接地短路的数学分析 (10) 2.4变压器的零序等值电路及其参数 (10) 3两相接地短路运行算例 (14) 4.结果分析 (18) 5.心得体会 (19) 6.参考文献 (20)

1.前言 电能作为我们日常生活中运用最多的一种能源,不仅有无气体无噪音污染,便于大范围的传送和方便变换,易于控制,损耗小,效率高等特点。 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。 1.1短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。 1.2短路电流的限制措施 为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。主要措施如下: 一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。 二是正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失。

电力系统分析潮流计算讲解

电力系统分析潮流计算报告 目录 一.配电网概述................................................ 3... 1.1配电网的分类 3... 1.2配电网运行的特点及要求.................................. 3.. 1.3配电网潮流计算的意义.................................... 4.. 二.计算原理及计算流程................................................................. 4. ..

2.1 前推回代法计算原理................................................................. 4. . 2.2 前推回代法计算流程................................................................. 7. . 2.3主程序清单: 9... 2.4输入文件清单: 1..1 2.5计算结果清单: 1.. 2. 三.前推回代法计算流程图................................................................. 1. .3 参考文献................................................................ 1..

4..

一.配电网概述 1.1配电网的分类 在电力网中重要起分配电能作用的网络就称为配电网;配电网按电压等级来分类,可分为高压配电网( 35—110KV),中压配电网( 6—10KV,苏州有20KV的),低压配电网( 220/380V ); 在负载率较大的特大型城市,220KV 电网也有配电功能。按供电区的功能来分类,可分为城市配电网,农村配电网和工厂配电网等。 在城市电网系统中, 主网是指110KV 及其以上电压等级的电网,主要起连接区域高压( 220KV 及以上)电网的作用。 配电网是指35KV 及其以下电压等级的电网,作用是给城市里各个配电站和各类用电负荷供给电源。 从投资角度看,我国与国外先进国家的发电、输电、配电投资比率差异很大,国外基本上是电网投资大于电厂投资,输电投资小于配电投资。我国刚从重发电轻供电状态中转变过来,而在供电投资中,输电投资大于配电投资。从我国城网改造之后,将逐渐从输电投资转入配电建设为主。 本文是基于前推回代法的配电网潮流分析计算的研究,研究是是以根节点为10kV 的电压等级的配电网。 1.2配电网运行的特点及要求 配电系统相对于输电系统来说,由于电压等级低、供电范围小,但与 用户直接相连,是供电部门对用户服务的窗口,因而决定了配电网运行有如下特点和基本要求: (1)10kV 中压配电网在运行中,负荷节点数多,一般无表计实时记录负荷,无法应用现在传统潮流程序进行配电网的计算分析,要求建立新的数学模型和计算方法。

相关文档