文档库 最新最全的文档下载
当前位置:文档库 › 录井参数变化及原因

录井参数变化及原因

录井参数变化及原因
录井参数变化及原因

综合录井

综合录井技术 综合录井技术广泛应用于油气勘探活动中的钻探过程。它不仅在新区勘探过程中对参数井、预探井、探井有广泛的应用,而且对老区开发过程中的开发井、调整井的施工也有着十分明显的作用。 由于综合录井技术是多学科、多技术集成的高新技术集合体,因此它在施工现场所获取的大量参数、资料信息并不只是为单一用户服务。也就是说:获取的钻井工程信息既可以供钻井工程技术人员使用,也可以供地质技术人员使用:同时,获取的地质信息也同样为工程、地质技术人员共同使用,这两者是相辅相成、互为利用、资源共享的。 总体讲,综合录井技术在油所勘探开发中大致有以下几方面的应用: 1.利用综合录井开展地层评价 地层评价包括岩性的确定、地层划分、构造分析、沉积环境分析、岩相古地理分析及以单井评价为基础进行区域对比。地层评价是勘探活动的一项基础工作。 在勘探过程中,利用综合录井收集的大量资料可以有效地进行随钻地层评价。综合录井使用MWD、FEMWD(随钻地层评价仪)获取的电阻率、自然伽马、中子孔隙度、岩石密度等资料,配合岩屑、岩心、井壁取心,泥(页)岩密度、碳酸盐含量等资料,参考钻时、转盘扭矩等参数变化可以建立单井地层剖面、岩性剖面及单井沉积相和岩相古地理分析。利用综合录井计算机系统的多井对比(Multiwell)软件可以进行多达22口井的对比。随钻进行小区域的地层对比,建立区域构造剖面,据些进行随钻分析、及时修改设计、预报目的层、卡准取心层位和古潜山顶面、确定完钻井深。 2.进行油气资源评价 油气资源评价是勘探活动中最主要的工作之一。油气资源评价的好坏直接关系到勘探效果。资源评价搞的好,有利于提高勘探的成功率和效益,减少探井钻探口数,有助于加快勘探的步伐,从而具有很大的经济效益和社会效益。 综合录井配套的各种技术和仪器设备可以在现场提供从单井油气层的发现、解释到储层的分析、评价,生油层的生油资源评价等一整套手段和方法,在钻探现场及时、准确地进行油气资源评价。从单井评价到区域评价都可以快速进行并能及时作出评价报告,供石油公司使用。 1)及时、准确发现油气层 发现油气层是资源评价的基础。综合录井技术使用了多种方法来检测、发现钻井中油气显示,在一般的岩屑录井、岩心录井、荧光录井的基础上,综合录井使用气测录井包括定量脱气分析、岩屑残敢分析、VMS真空蒸馏脱气分析、岩石热解分析、定量荧光分等方法及时有效、准确地发现油气显示。特别是ALS-2型综合录井仪分析菘灵敏度已达10 ,组分测量从C1到C5,整个分析服周期仅需1min ,大大增加了气测灵敏度采样密度,有利于薄层、微弱油气层的发现。由于使用了QFT(Quantitative Fluorescence Technique)荧光定量分析技术和QGM(quantitative Gas Measurement)定量脱气分析技术使油气层的检测由过动定性检测发展到定量检测,大大提高了油气层发现率和解释精度。 除了上述方法外,综合录井还采集有钻井液、电阻率、温度、流量、泥浆池体积等参数进行井下流体的分析、判断,以发现油气显示。 2)油气层解释 利用综合录井技术不仅可以快速、准确地发现油气显示,而且还可以利用自身的手段进行油气层的综合解释,大大提高了现场资料的运用效果。 综合录井使用岩屑(岩心)含油显示描述、荧光观察、热解色谱、分析资料、钻井液性能变化情

储层预测中有关测井参数的分析及应用

第7卷第3期2010年6月   CHIN ESE J OURNAL OF EN GIN EERIN G GEOP H YSICS Vol 17,No 13 J une ,2010 文章编号:1672—7940(2010)03—0296—04doi :10.3969/j.issn.1672-7940.2010.03.006 储层预测中有关测井参数的分析及应用 曾 婷,桂志先,何加成,易寒婷,章雪松 (油气资源与勘探技术教育部重点实验室,长江大学地球物理与石油资源学院,湖北荆州434023) 作者简介:曾 婷(1985-),女,湖北天门人,硕士研究生,地球探测与信息技术专业,主要从事地震资料解释工作。E -mail : zt851129@https://www.wendangku.net/doc/0713416913.html, 摘 要:根据研究区56口井,笔者对岩心、自然伽马、自然电位、声波时差、密度、中子等钻井、测井资料进行 多种统计和交会分析,研究速度、密度、波阻抗、孔隙度与深度、岩性,波阻抗与孔隙度等的关系,分析储层物性特征,并作相关交会图,建立规律关系式。经比较得出利用波阻抗进行下一步的反演工作会比较合理。根据砂岩孔隙度与波阻抗之间的函数关系,可以利用砂岩波阻抗估算砂岩孔隙度。为下一步储层预测研究提供良好的基础资料。 关键词:储层预测;岩性;波阻抗;孔隙度 中图分类号:P631文献标识码:A 收稿日期:2010-03-29 Analysis and Application of Logging Parameters in R eservoir Prediction Zeng Ting ,Gui Zhixian ,He Jiacheng ,Y i Hanting ,Zhang Xuesong (Key L aboratory of Ex ploration Technology f or Oil and Gas Resources (Yangtze Universit y ) Minist ry of Education ,J ingz hou H ubei 434023,China ) Abstract :This paper collect s various logging data of core ,nat ural gamma ,spo ntaneous po 2tential ,acoustic t ravel time ,density ,neut ron etc.and t ries to st udy t he relationship s of t he speed ,density ,wave impedance and porosity wit h t he dept h ,lit hology ,as well as t he relationship s between wave impedance and poro sity.Then it analyzes t he characteristics of t he reservoir forecast.Through comparison ,it is reasonable to go on wit h t he next inver 2sion task by using wave impedance.Based on t he relationship between sand porosity and wave impedance ,we can use t he sand wave impedance to estimate t he sand porosity.This st udy p rovides very good information for t he reservoir p redict research.K ey w ords :reservoir prediction ;lit hology ;wave impedance ;porosity 1 引 言 储层预测是综合地质、地震、测井、试井、分析化验等各种资料研究储集层的分布、岩性变化、厚 度变化、物性特征、所含流体、油气藏等等的一项 综合性研究课题[1]。其目标是发现有利储集体,提高勘探开发的整体效益。地层参数关系的分析是储层研究中一项非常关键的基础工作。在前人研究成果基础上,从本研究区特点出发,在储层预

录井资料解释2015版(优.选)

1、掌握储层物性,含油气水丰度和(油气水的可动性)是评价油气层的充要条件。 2、如果层内含油丰度相近而不同渗透带的渗透率相差较大,那么可以确定高渗透带内 没有充满油,水是可动的,该层不高于(油气同层)。 3、进行井间对比的条件是:井距不远,储层的埋深相近,层位相近,储集类型和(物 性)相近,油气水物理化学性质相近。 4、定量荧光仪测定的是(荧光强度)。 5、在平衡状态下,组分在固定相和流动相中的量之比称为(分配系数)。 6、岩心描述时,一般长度大于或等于(10)cm,颜色,岩性,结构,构造,含油情况 有变化着,均需分层描述。 7、正常地下油气显示层在工程参数出现钻时降低,DC指数减小,立压降低等变化,在 钻井液参数上,具有出口温度升高,相对密度(降低)和出口电导率(变小)等现象,而假油气显示没有上述变化。 8、氢火焰离子检测器属于(质量流速检测器)。 9、在下列各组参数中,是综合录井仪实时参数的是(立管压力,1号泵冲速率,4号泥 浆体积)。 1.QFT定量荧光仪的激发波长是(254)nm。 2.QFT定量荧光仪检测到的荧光物质是(以萘族为主的化合物)。 3.假岩心一般出现在岩心的(顶部)。 4.全脱分析时盐水必须使用(饱和盐水)。 5.普通电动脱气器使用时,一定要注意脱气器钻井液出口量,应为满管的(2/3)最 佳。 6.DC指数是建立在(泥岩沉积压实)的理论基础上的。 7.Slgma方法是根据(岩石骨架强度)理论基础建立的。 8.在钻井过程中,用岩性对比地层时,最有效,最可靠的的方法是(岩性标准层标志 层)。 9.岩石热解地化录井参数TMAX的含义是热解(S2)的最高点所对应的温度。 10.直接测量项目按被测参数的性质和及时性可分为:实时参数和(计算参数)。 11.转盘扭矩是反应(地层变化)及钻头使用情况的一项重要参数。 12.出入口钻井液温度的测量可以掌握(地温梯度),帮助判断油气层,还可以探测超 压地层。 13.从色谱组分分析仪注样开始到全部组分分析完成所用的时间为一个(出峰时间)。 14.对于气液色谱分离下列定义(利用不同物质的组分在涂有固定液的固定相中的溶解 度差异,从而在两相中有不同的分配系数,当混合物质通过色谱柱时是单一物质组分得到分离,即挥发-溶解-在挥发=在溶解直至分离)是正确的。 15.对于气固色谱分离:利用吸附剂对单一物质的吸附性不同,是混合物质通过色谱柱 分离,即吸附-再吸附-解吸-再解吸直至分离。 16.根据石油的荧光性,请选择物质的荧光颜色正确的一组(油,沥青。黄色) 填空题

测井专业术语

测井专业术语 测井常用名词汉英对照 1范围 本标准规定了石油测井专业基本术语的含义。 本标准适用于石油测井专业的生产、科研、教学以及对外交往活动等领域。 2通用术语 2.1地球物理测井(学)borehole geophysics 作为地球物理一个分支的学科名词。 2.2测井well logging 在勘探和开采石油的过程中,利用各种仪器测量井下地层、井中流体的物理参数及井的技术状况,分析所记录的资料,进行地质和工程研究的技术。log一词表示测井的结果,logging 则主要指测井的过程、测井方法或测井技术。按照中文的习惯,通称为测井。 2.3测井曲线logs;well logs;logging curves 把所测量的一种或多种物理量按一定比例记录为随井深或时间变化的连续记录。包括电缆测井和随钻测井(LWD)。 2.4测井曲线图头log head 测井曲线图首部记录的井号、曲线名称、测量条件,比例尺、施工单位名称,日期等栏目的总称。 2.5重复曲线repeated curve 在相同的测量条件下,为了检验和证实下井仪器的稳定性对同一层段进行再次测量的曲线。 2.6深度比例尺depth scale 在测井曲线图上,沿深度方向两水平线间的距离与它所代表实际井段距离之比。 2.7横向比例grid scale 在测井曲线图上,曲线幅度变化单位长度所代表的实测物理参数值。 2.8线性比例尺linear scale 在横向比例中,测井曲线幅度按单位长度变化时它所代表的物理参数按相等值改变。 2.9对数比例尺logarithmic scale 在横向比例中,测井曲线幅度按单位长度变化时,它所代表的物理参数按对数值改变。 2.10勘探测井exploration well logging 在油气田勘探过程中使用的方法、仪器、处理及解释技术。 2.11开发测井development well logging 在油气田开发过程中使用的方法、仪器、处理及解释技术。 2.12随钻测井logging while drilling 一种非电缆测井。它是将传感器置于特殊的钻铤内,在钻井过程中测量各种物理参数并发送到地面进行记录的测井方法。 2.13组合测井combination logging 将几种下井仪器组合在一起,一次下井可以测量多种物理参数的一种测井工艺。 2.14测井系列well logging series 针对不同的地层剖面和不同的测井目的而确定的一套测井方法。 2.15标准测井standard logging 以地层对比为主要目的,在自然伽马、自然电位、井径、声波时差和电阻率等项目中选定不少于三项的测井方法,全井段进行测量。

钻井液与录井工程参数

钻井液与录井工程参数 摘要:钻井液参数包括钻井液的出入口密度、出入口温度、出入口电导率、流量、钻井液体积等。钻井液参数的变化通常直接反映井下地层流体的活跃情况及井筒压力与地层压力的平衡情况,重视钻井液参数异常的预报,可以避免井喷、井漏等重大事故的发生,及时处理油气侵、盐侵、水侵,为顺利施工创造条件。本文从钻井液相关事故类型与钻井液录井参数响应特征方面进行了阐述,为提高综合录井操作人员的现场技术水平和工程异常预报准确率起到促进和提高的作用,达到保障钻井施工安全、减少投入、提高勘探开发整体效益的目的。 1 钻井液信息的类型 1.1 钻井液的循环动态信息 钻井液的循环动态信息包括钻井液体积、钻井液流量,这类信息具有很强的实时性。在钻开渗透性好的油气层时,这类信息的变量可以立即显示循环钻井液压力与地层孔隙压力的平衡状态。这类信息可以监测井漏、溢流、井涌等工程异常。 1.2 钻井液的物理性质信息 钻井液的物理性质信息包括钻井液温度、钻井液密度、钻井液电导(阻)率,这类信息具有一定的延时性。从钻开地层到返出地面需要一个迟到时间,实时性较差,但这类信息携带有钻开地层的岩石物性和含油性等方面的地质信息。这类信息可以用来判断地层流体的性质和某些岩性,可以用来监测气侵、水侵、盐侵等工程异常。 2 钻井液工程异常的类型 2.1 井涌 2.1.1 形成井涌的原因 在地层压力的作用下,钻井液和地层内的流体涌出井口的现象称之为井涌。井涌发生的原因主要有以下几点: ①钻于异常高压地层,地层超压驱动地层流体进入井眼形成井涌,这是最根本和最主要的原因。 ②钻井液密度因地层流体的不断侵入而降低,形成负压,负压加剧地层流体的侵入又进一步加大负压形成恶性循环,最后形成井涌。 ③在井底压力近平衡状态下,停止循环时,作用于井底的环空压耗消失,使井底压力减小。 ④起钻时未按规定灌钻井液使井筒液面下降。

测井曲线解释

测井曲线基本原理及其应用 一. 国产测井系列 1、标准测井曲线 2、5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0、5m电位曲线。测量地层的侵入带电阻率。0、45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时就是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性与铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,就是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2、5米底部梯度曲线。以其极大值与极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2、5粘梯度与自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

储层物性参数解释方法研究

储层物性参数解释方法研究 宋岩竹 (大庆油田有限责任公司第十采油厂黑龙江大庆 166405) 摘要:首先以测井曲线的分辨率、探测原理为基础,优选出与孔隙度、渗透率相关性较高的声波时差曲线和自然伽玛曲线来建立孔隙度和渗透率的解释方程,并且用非建立关系的密闭取心井和评价井进行验证,解释结果比较合理,为多学科油藏研究奠定良好的基础。 主题词:孔隙度渗透率多元回归 Study on reservoir physical property interpretation method Song Yanzhu (No.10 Oil Production Plant of Daqing Oilfield Co.,Ltd.,Heilongjiang Daqing 166405) 「Abstract」It is a difficult problem in the Oilfield.First,we choose the well log of AC and GR to establish the reservoir physical property interpretation equation,in the base of the differentiated rate and exploration principle of well log.Then it is verified that the result is reasonable based on datas of sealing core drill well and assessment well,and it lays a favorable foundation for the study on multidisciplinary reservoir. 「Keywords」porosity;permeability;multiple regression 1 前言 统计某油田扶余油层探明区内86口探井、几千个样品分析结果表明,油层砂岩平均孔隙度15.3%,平均渗透率10.8×10-3μm2。 作者简介:宋岩竹,工程师,1994年毕业于大庆石油学院采油工程专业,主要从事精细地质描述工作。E-mail:songyanz@https://www.wendangku.net/doc/0713416913.html,

测井基础知识

测井基础知识 1. 名词解释: 孔隙度:岩石孔隙体积与岩石总体积之比。反映地层储集流体的能力。 有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积百分比。 原生孔隙度:原生孔隙体积与地层体积之比。 次生孔隙度:次生孔隙体积与地层体积之比。 热中子寿命:指热中子从产生的瞬时起到被俘获的时刻止所经过的平均时间。 放射性核素:会自发的改变结构,衰变成其他核素并放射出射线的不稳定核素。 地层密度:即岩石的体积密度,是每立方厘米体积岩石的质量。 地层压力:地层孔隙流体(油、气、水)的压力。也称为地层孔隙压力。地层压力高于正常值的地层称为异常高压地层。地层压力低于正常值的地层称为异常低压地层。 水泥胶结指数:目的井段声幅衰减率与完全胶结井段声幅衰减率之比。 周波跳跃:在声波时差曲线上出现“忽大忽小”的幅度急剧变化的现象。 一界面:套管与水泥之间的胶结面。 二界面:地层与水泥之间的胶结面。 声波时差:声速的倒数。 电阻率:描述介质导电能力强弱的物理量。 含油气饱和度(含烃饱和度Sh):孔隙中油气所占孔隙的相对体积。 含水饱和度Sw:孔隙中水所占孔隙的相对体积。含油气饱和度与含水饱和度之和为1. 测井中饱和度的概念:1.原状地层的含烃饱和度Sh=1-Sw。2.冲洗带残余烃饱和度:Shr =1-Sxo (Sxo表示冲洗带含水饱和度)。3.可动油(烃)饱和度Smo=Sxo-Sw或Smo =Sh-Shr。4.束缚水饱和度Swi与残余水饱和度Swr成正比。 泥质含量:泥质体积与地层体积的百分比。 矿化度:溶液含盐的浓度。溶质重量与溶液重量之比。 2. 各测井曲线的介绍: SP 曲线特征: 1.泥岩基线:均质、巨厚的泥岩地层对应的自然电位曲线。 2.最大静自然电位SSP:均质巨厚的完全含水的纯砂层的自然电位读数与泥岩基线读数差。 3.比例尺:SP曲线的图头上标有的线性比例,用于计算非泥岩层与泥岩基线间的自然电位差。 4.异常:指相对泥岩基线而言,渗透性地层的SP曲线位置。(1)负异常:在砂泥岩剖面井中,当井内为淡水泥浆时(Cw>Cmf),渗透性地层的SP曲线位于泥岩基线的左侧(Rmf>Rw); (2)正异常:在砂泥岩剖面井中,当井内为盐水泥浆时(Cmf>Cw),渗透性地层的SP曲线位于泥岩基线的右侧(Rmf4d)的自然电位曲线幅度值近似等于静自然电位,且曲线的半幅点深度正对地层的界面。(3)随地层变薄曲线读数受围岩影响,幅度变低,半幅点向围岩方向移动。 SP 曲线的应用: 1.划分渗透性岩层:在淡水泥浆中负异常围渗透性岩层,在盐水泥浆中正异常围渗透性岩层。

录井参数仪参数

悬重0-2500KN 大钩高度0-35m 钻压0-200KN 转速0-120r/min 套压0-130MPa 扭矩0-35KN.m 泵冲1#、2#0-120冲 立压0-35MPa 出口温度0-100 出口电导0-10 出口密度1-2 池体积根据罐自己调整

HookHgt :大钩高度 Bit Depth :钻头深度Total Depth:总深度 V ertical Depth:垂直深度 Lag Depth :迟到深度WOH :大钩负荷WOB :钻压SPP :泵压WHP : 套压RPM :钻盘转速TORQUE :扭矩FLOWPMP : 入口流量PUMP :泵冲数HookSpd:大钩运行速度Overpull :遇阻遇卡 TimSlip :累计坐卡瓦时间StdLgth :立柱长 StdCnt :累计下入立柱ROP m/h: 机械钻速 BitRun :累计钻头进尺BitTime :累计纯钻进时间Flow Out:出口流量 CompV ol: 井内钻柱钢体体积Pit V ol :钻井液池体积Trip Tk : 计量罐体积 TG :气全量 C1 :甲烷 C2 :乙烷 C3 :丙烷 iC4 :异丁烷 nC4 :正丁烷 iC5 :异戊烷 nC5 :正戊烷 QFT :定量荧光仪测值H2S :硫化氢 CO2 :二氧化碳WH :烃的湿度值 BH :烃的平衡值 CH : 烃的特性值 ROP (mn/m ):钻时ROP ins (mn/m):瞬时钻时ROP ins(m/h ):瞬时钻速FP :地层压力Pfrac :地层破裂压力Dexp : DC指数DexpTrd :DC指数趋势值 MW IN :钻井液入口密度MW OUT :钻井液出口密度TMP IN :钻井液入口温度TMP OUT :钻井液出口温度RES IN :钻井液入口电阻率RES OUT : 钻井液出口电阻率CON IN :钻井液入口电导率CON OUT :钻井液出口电导率

测井解释计算常用公式

测井解释计算常用公式目录 1. 地层泥质含量(Vsh)计算公式................................................ .. (1) 2. 地层孔隙度(υ)计算公式....................................... (4) 3. 地层含水饱和度(Sw)计算.......................................................... (7) 4. 钻井液电阻率的计算公式...................................................... . (12) 5. 地层水电阻率计算方法 (13) 6. 确定a、b、m、n参数 (21) 7. 确定烃参数 (24) 8. 声波测井孔隙度压实校正系数Cp的确定方法 (25) 9. 束缚水饱和度(Swb)计算 (26) 10.粒度中值(Md)的计算方法 (28) 11.渗透率的计算方法 (29) 12. 相对渗透率计算方法 (35) 13. 产水率(Fw) (35) 14. 驱油效率(DOF) (36) 15. 计算每米产油指数(PI) (36) 16. 中子寿命测井的计算公式 (36) 17. 碳氧比(C/O)测井计算公式 (38) 18.油层物理计算公式 (44) 19.地层水的苏林分类法 (48) 20. 毛管压力曲线的换算 (48) 21. 地层压力 (50) 22. 气测录井的图解法 (51) 附录:石油行业单位换算 (53)

测井解释计算常用公式 1. 地层泥质含量(Vsh )计算公式 1.1 利用自然伽马(GR )测井资料 1.1.1 常用公式 min max min GR GR GR GR SH --= (1) 式中,SH -自然伽马相对值; GR -目的层自然伽马测井值; GRmin -纯岩性地层的自然伽马测井值; GRmax -纯泥岩地层的自然伽马测井值。 1 2 12--= ?GCUR SH GCUR sh V (2) 式中,Vsh -泥质含量,小数; GCUR -与地层年代有关的经验系数,新地层取3.7,老地层取2。 1.1.2 自然伽马进行地层密度和泥质密度校正的公式 o sh o b sh B GR B GR V -?-?= max ρρ (3) 式中,ρb 、ρsh -分别为储层密度值、泥质密度值; Bo -纯地层自然伽马本底数; GR -目的层自然伽马测井值; GRmax -纯泥岩的自然伽马值。 1.1.3 对自然伽马考虑了泥质的粉砂成分的统计方法 C SI SI B A GR V b sh +-?-?= 1ρ (4) 式中,SI -泥质的粉砂指数; SI =(ΦNclay -ΦNsh )/ΦNclay (5) (ΦNclay 、ΦNsh 分别为ΦN -ΦD 交会图上粘土点、泥岩点的中子孔隙度) A 、B 、C -经验系数。 1.2 利用自然电位(SP )测井资料

录井工程参数的地质运用

工程录井参数的地质应用 韩涛 (大庆油田地质录井分公司) 摘要 从传统意义上讲,工程录井参数应用于实时钻井监控和随钻地层压力检测倍受人们的重视,而将其应用于确定流体性质、划分盐膏层以及确定地层界面等地质应用方面尚未引起人们的足够重视。该文从工程录井参数与相关地质因素关系出发,探讨了利用钻时、钻井液密度、电导率、池体积等工程参数进行地层划分、储集层评价以及卡取潜山界面等方面的相互关系和实例,总结归纳了一些规律性的特征。对扩展工程录井参数应用范围、提升其应用水平以及深入研究工程参数的地质意义具有推动作用。 关键词工程录井参数应用地层划分储集层评价地层界面 0 引言 众所周知,综合录井仪的工程录井参数对指导安全钻井起到了极为重要的作用,如对钻头寿命、钻具刺穿、井涌、井漏、断钻具等的预报和监测,这些功能同时也为保护油气层、缩短建井周期等综合勘探效益起到了积极的作用。近二十年实践证明,综合录井仪在实时钻井监控、随钻地层压力检测等方面发挥了不可替代的重要作用。另外,综合录井仪的工程录井参数对油气层解释及其他方面的地质工作有着较好的应用效果。 1 油气水层与钻井液参数的关系

工程参数的变化对综合分析地层流体性质有着重要的参考意义。参数的变化幅度可用于定性分析产能,而钻井液温度、电导率的变化可用来区分油气水层。钻遇油气水层时,各主要工程参数的变化见表1 。 表1 油气水层各主要工程参数变化特征

图1 C 25 井录井参数 图1 为C 25 井录井参数示意图。钻开井深4370 m以后,钻井液密度由1.21g/cm3 下降到1.20g/cm3 , 总池体积由146.00m3 上升到147.86 m3 ,出口电导率由68 mS /cm 下降到66 mS/cm ,立压由16.6 MPa 下降到16.0 MPa ,全烃由4.5%上升到8.0% ,虽然随钻异常 值远低于接单根气31% ,电导率等各工程录井参数均有明显变化,证

页岩气测井标准

页岩气战略调查井钻井技术要求 YYQ-05 地球物理测井 1.测井内容 对全井段进行标准和全套测井,根据实际钻探情况研究是否需要针对目的 层段增加特殊测井项目,测井内容: 地球物理测井内容

2.5.2测井要求 2.5.2.1在下表层套管前必须进行标准,下技术套管前、完钻前必须进行标准及全套测井。 2.5.2.2每次电测,保证前后两次电测资料重复井段不少于50米(若下套管须能接上图)。 2.5.2.3依据全套组合、微电阻率扫描成像测井及综合研究优选相关井段进行核磁共振测井。 2.5.2.4按核磁共振测井成果优选有利井段进行电缆式动态测试测井了解地层压力及储层渗透率。 2.5.2.5对目的层井段进行偶极子扫描成像测井。 2.5.2.6测井施工单位要在现场提供井斜资料和标准测井图及完井电测回放1:200测井图件,24小时后提供全套测井图及初步测井解释意见。 2.5.2.7取芯井段大于10米要求1:50的全套组合放大曲线和对比曲线。 2.5.2.8固完技油套后,按规定时间测固、放、磁。 2.5.2.9每次测井在5 7天前由施工单位通知甲方指定测井单位,做施工前准备,并预报测井时间。 2.5.2.10为保证测井工作顺利进行,要求钻井承包商确保仪器下井畅通无阻,安全测井。测井方应尽量满足甲方其它的合理要求共同保证各项资料的齐全、准确。 2.5.3对测井资料解释要求 2.5. 3.1测井施工单位要选择该地区地质情况的最佳处理程序进行测井资料处理,及时提供中途测井数字处理成果图、测井解释成果表。 2.5. 3.2完钻全套测井后,24小时内提供初步解释意见,7天内提供系统测井图,30天内提交达到归档标准的全部资料,主要包括: (1)综合数字处理成果图1:200;解释成果表。 (2)回放标准测井图1:500,并提供资料光盘。 (3)综合解释报告。 (4)特殊测井曲线图(原始图)1:200,解释成果图、表及单项解释报告。 (5)固井质量图,磁性定位图、表及解释报告。 2.5. 3.3完井30天后提供全部测井内容的LA716数据带两份及全部测井原始带和胶片。 2.5. 3.4测井施工单位要根据甲方的要求,随时无偿提供各种测井资料,以确保研究工

综合录井等级考试复习题(初级)

综合录井仪理论考试复习题(初级) 一、填空 1.气固色谱的分析原理是利用吸附剂对分离物质的(吸咐)作用不同将各组份分离。2.计算机由(主机),(显示器),(键盘)组成。 3.陆上钻井井深从(转盘面)开始算起。 4.组成一台电子计算机所有部件的总称叫(硬件)。 5.在计算机的一个字中包含二进制数位数的多少叫(字长) 6.鼠标器(输入设备)。 7.对RAM可以进行的两种操作是(读)和(写),断点后数据,(消失)。 8.钻时与(钻速)为倒数。 9.绞车传感器由(定子),(转子),(探头),(接头及电缆)组成。 10.压力传感器用于测量(大钩负荷),(钻压),(立压),(套压)和(扭矩)。 11.线电压为380伏,相电压为(220)伏。 12.DOS中软盘格式化命令为(FORMAT)。 13.DOS中单文件拷贝命令为(COPY)。 14.DOS中建立子目录命令为(MD)。 15.DOS中删除子目录命令为(RD)。 16.DOS中删除单个文件命令为(DEL)。 17.TCD鉴定器是利用被分析组份的(导热系数)不同,使(电桥)失去平衡而转换成电压信号输出。 18.色谱分类: 流动相为液体,固定相为固体是(液固)色谱。 流动相为气体,固定相为液体是(气液)色谱。 气测,综合录井仪分析烃组份的色谱分析为(气液)色谱。 19.样品通过鉴定器时所给出的信号大小称为(响应值)。 20.氢焰鉴定器产生的离子流,其大小通常为(10-12A)。 21.在塔板理论中,柱效率与理论塔板数n的关系为(n越大越高)。 22.目前我们所用的计算样品含量的方法为(外标法)。 23.在三相四线制交流电源中,U AO,U BO,U CO称(相)。 电压;U AB,U AC,U BC称(线)电压。 24.储存电荷的容量称为(电容),符号(C), 单位(F或μF)。 25.一个由稳压管组成的电路,其中V Z1=7V,V Z2=3V,该电路的输出电压为(3V)。

综合录井英文参数释义

综合录井英文参数释义Bit Depth 钻头深度 Tot Depth 总井深 TVD Depth 垂直井深 LAG Depth 迟到井深 KD left 方余 HK HGHT 大钩高度 HK spd 大钩速度 WOH 悬重 WOH min 最小悬重 WOH max 最大悬重 WOB 钻压 TORQUE 扭矩 TD TOR 顶驱扭矩 RPM 转速 TD RPM 顶驱转速 WHP 套压 SPP 立压FLWPUMPS 泵排量 FLW OUT 出口流量 PUMP 1 1#泵冲 PUMP 2 2#泵冲 PUMP 3 3#泵冲 PIT 1 1#罐体积 PIT 2 2#罐体积 PIT 3 3#罐体积 PIT 4 4#罐体积 PIT 5 5#罐体积 Trip TK 起下钻罐体积SUM1 总池体积 TMP IN 入口温度 TMP OUT 出口温度 MW IN 入口密度 MW OUT 出口密度 CON IN 入口电导 CON OUT 出口电导 ROP 钻时 ROP ins 瞬时钻时 CO2 gen 二氧化碳含量 BitTim 钻头运行时间Bitrun 钻头进尺 H2S 1 Max 1#硫化氢含量 H2S 2 Max 2#硫化氢含量

H2S 3 Max 3#硫化氢含量 H2S 4 Max 4#硫化氢含量 H2S 5 Max 5#硫化氢含量 H2Sline Mx 管线硫化氢含量 LAGtim 迟到时间 T GAS ma 总烃含量 C1 main 甲烷含量 C2 main 乙烷含量 C3 main 丙烷含量 iC4 main 异丁烷含量 nC4 main 正丁烷含量 iC5 main 异戊烷含量 nC5 main 正戊烷含量 D EXP d指数 Dexp TR d指数趋势 FP EATON 地层压力梯度(伊顿法)FRAC Eat 地层破裂压力梯度(伊顿法)Sigma 0 sigma指数 Sigma tr sigma趋势 FP Sigma sigma地层压力系数 ECD at B 当量密度 DP lght 钻杆长度 STDlght 立柱长度 STDcntr 立柱根数 TIMslip 坐卡时间 TIMhook 勾吊时间 OVERPull 超拉 VOL +/- 池体积变化量 CUP 套压 Bit Cost 钻头成本 Min Cost 最小成本 Rec Date 记录日期 Rec Time 记录时间 Lith(X500) 岩性符号 TnclmCo 1 接单根符号 TnclmCo 2 含油情况 TnclmCo 3 解释结果 Shale Dns 泥岩密度

测井名称

RILM 中感应电阻率 RLML 微梯度电阻率 RFOC 八侧向电阻率 RILD 深感应电阻率 CILM 中总能谱比测井 CILD 深总能谱比测井 APLC 补偿中子 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 DRH 密度校正值 DT4P 纵横波方式单极纵波时差 DT4S 纵横波方式单极横波时差 HFK 钾 HSGR 无铀伽马 HURA 铀 LCAL 井径 REFL 放射性元素裂变测井 RHOM 岩性密度 RLA0 电阻率测井 RLA1 电阻率测井 RLA2 电阻率测井 RLA3 电阻率测井 RLA4 电阻率测井 RLA5 电阻率测井 RT 地层真电阻率 常用测井曲线符号单位 测井曲线名称符号(常用) 单位符号单位符号名称自然伽玛GR API 自然电位SP MV 毫伏 井径CAL cm 厘米 中子伽马NGR 冲洗带地层电阻率Rxo 深探测感应测井Ild 中探测感应测井Ilm 浅探测感应测井Ils 深双侧向电阻率测井Rd 浅双侧向电阻率测井Rs 微侧向电阻率测井RMLL 感应测井CON 声波时差AC

密度DEN g/cm3 中子CN v/v 孔隙度POR 冲洗带含水孔隙度PORF 渗透率PERM 毫达西 含水饱和度SW 冲洗带含水饱和度SXO 地层温度TEMP 有效孔隙度POR 泥浆滤液电阻率Rmf 地层水电阻率Rw 泥浆电阻率Rm 微梯度ML1或MIN 微电位ML2或MNO 补偿密度RHOB或DEN G/CM3 补偿中子CNL或NPHI 声波时差DT或AC US/M 微秒/米 深侧向电阻率LLD或RT OMM 欧姆米 浅双侧向电阻率LLS或RS OMM 欧姆米 微球电阻率MSFL或SFLU、RFOC 中感应电阻率ILM或RILM 深感应电阻率ILD或RILD 感应电导率CILD MMO 毫姆欧 PERM绝对渗透率,PIH油气有效渗透率,PIW水的有效渗透率。 测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井

录井工程参数的地质应用

录井工程参数的地质应用 韩涛 (大庆油田地质录井分公司) 摘要 从传统意义上讲,工程录井参数应用于实时钻井监控和随钻地层压力检测倍受人们重视,而将其应用于确定流体性质、划分盐膏层以及确定地层界面等地质应用方面尚未引起人们足够重视。该文从工程录井参数与相关地质因素关系出发,探讨了利用钻时、钻井液密度、电导率、池体积等工程参数进行地层划分、储集层评价以及卡取潜山界面等方面相互关系和实例,总结归纳了一些规律性特征。对扩展工程录井参数应用范围、提升其应用水平以及深入研究工程参数地质意义具有推动作用。 关键词工程录井参数应用地层划分储集层评价地层界面 0 引言 众所周知,综合录井仪工程录井参数对指导安全钻井起到了极为重要作用,如对钻头寿命、钻具刺穿、井涌、井漏、断钻具等预报和监测,这些功能同时也为保护油气层、缩短建井周期等综合勘探效益起到了积极作用。近二十年实践证明,综合录井仪在实时钻井监控、随钻地层压力检测等方面发挥了不可替代重要作用。另外,综合录井仪工程录井参数对油气层解释及其他方面地质工作有着较好应用效果。 1 油气水层与钻井液参数关系 工程参数变化对综合分析地层流体性质有着重要参考意义。参数变化幅度可用于定性分析产能,而钻井液温度、电导率变化可用来区分油气水层。钻遇油气水层时,各主要工程参数变化见表1 。 表1 油气水层各主要工程参数变化特征

油层下降下降上升下降下降上升 气层下降下降上升下降下降下降 水层下降下降上升下降 图1 C 25 井录井参数 图1 为C 25 井录井参数示意图。钻开井深4370 m以后,钻井液密度由1.21g/cm3 下降到1.20g/cm3 , 总池体积由146.00m3 上升到147.86 m3 ,出口电导率由68 mS /cm 下降到66 mS/cm ,立压由16.6 MPa 下降到1 6.0 MPa ,全烃由4.5%上升到8.0% ,虽然随钻异常值远低于接单根气31% ,电导率等各工程录井参数均有明显变化,证明该层有较高产能。根据该地区地层水矿化度较高特点,该层不可能为水层,结合地层特征,分析认为以出油为主。经测试,日产原油22t ,水0.12m3 。 图2 X 160 井录井参数 图2 为X 160 井录井参数示意图。在钻开井深3198 m 之后进行地质循环过程中,气测及相关工程参数均有明显异常,从图上可以看出,全烃异常值由4.0 %上升到95 % ,池体积由60.5 m3上升到67.5 m3 , 密度由1.50 g/cm3 下降到1.05g/cm3 ,温度由58℃上升到62℃, 立压由9.5 MPa下降到8.0 MPa ,分析认为是高产油层特征,综合解释为油层。经3198~3202m 进行测试,日产原油27.6t 。 2 油气层与盐水层区分 钻至盐水层时,气测全烃值及甲烷含量往往都特别高, 单凭气测资料往往难以与油气层进行区分,究其原因,主要有以下两点: ①石油在水中溶解度随水中盐度增加而减少,如戊烷、苯、甲苯和甲环戊烷在含20 %NaCl 溶液

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米。侵入带是钻井液与地层中流体的混合部分。

相关文档