文档库 最新最全的文档下载
当前位置:文档库 › PP+20%滑石粉填充

PP+20%滑石粉填充

PP+20%滑石粉填充
PP+20%滑石粉填充

SABIC? PPcompound 37T1020

聚丙烯共聚物

Saudi Basic Industries Corporation (SABIC)

Technical Data

产品说明

SABIC? PPcompound 37T1020是一种聚丙烯共聚物(PP Copoly)产品,含有的填充物为20% 滑石填料。它可以通过注射成型进行加工,在欧洲有供货。 典型应用领域为:汽车行业。特性包括:? 冲击改性? 高流动性? 共聚物? 良好的刚度? 耐冲击总体材料状态资料 1

? 已商用:当前有效

? Technical Datasheet (English)

? Saudi Basic Industries Corporation (SABIC)? SABIC? PPcompound 搜索 UL 黄卡供货地区? 欧洲

填料/增强材料添加剂? 滑石填料, 20% 填料按重量? 冲击调节器? 改良抗撞击性? 刚性,良好? 共聚物? 抗撞击性,良好特性? 流动性高

用途? 汽车领域的应用? 颗粒料? 汽车内部零件形式加工方法

? 注射成型

物理性能额定值 单位制测试方法密度

1.04 g/cm313 g/10 min 1.0 %ISO 1183熔流率 (230°C/

2.16 kg)收缩率 (24小时)机械性能

ISO 1133内部方法额定值 单位制测试方法

拉伸应力

ISO 527-2/5/50

屈服, 3.20 mm, 注塑断裂, 3.20 mm, 注塑28.0 MPa 25.0 MPa 45 %拉伸应变 (断裂, 3.20 mm, 注塑)弯曲模量 3 (注塑)

ISO 527-2/5/50ASTM D790测试方法2350 MPa 额定值 单位制

6.3 kJ/m218 kJ/m2冲击性能

简支梁缺口冲击强度 (23°C, 注塑)简支梁缺口冲击强度 (-40°C, 注塑)悬壁梁缺口冲击强度-20°C, 注塑ISO 179/1eA ISO 179/1eU ISO 180/4A

3.0 kJ/m23.5 kJ/m25.7 kJ/m2额定值 单位制

710°C, 注塑23°C, 注塑硬度

测试方法支撐硬度 (邵氏 D, 注塑)热性能

ISO 868额定值 单位制110 °C 测试方法热变形温度 (0.45 MPa, 未退火)维卡软化温度ISO 75-2/B ISO 306/A ASTM D696

145 °C 线形膨胀系数 - 流动-30 到 30°C 8.0E-5 cm/cm/°C 1.1E-4 cm/cm/°C

23 到 80°C

1 / 3

Saudi Basic Industries Corporation (SABIC)

备注

1 通过这些链接您能够访问供应商资料。我们尽量保证及时更新资料;不过您可以从供应商处了解最新资料。

2 一般属性:这些不能被视为规格。

3 方法 I (三点负荷)

2 / 3

填充剂及其在塑料中的应用

填充剂及其在塑料中的应用 第一章:填充剂的基本概念 1. 填充剂定义 n 填充剂又称填料”,是一大类添加到塑料中能增加体积、降低制品成本及价格的物质。 n 填充剂不但降低了塑料制品的生产成本,提高了树脂的利用率,同时也扩大了树脂的应用范围,而且一些填料的应用可赋予或提高制品某些特定的性能,如尺寸稳定性、阻燃性、电气绝缘性、防粘性、不透明性和刚性。有些填料还能对提高拉伸强度和冲击强度有帮助。 2. 填充剂的基本要求 1. 本身化学性质稳定,相对纯度高,杂质含量低。 2. 颜色尽量为白色或浅色,不含铁等易加热变黄的杂质。 3. 不对塑料制品的理化性能指标产生严重损害。 4. 容易分散和混合,粒度适当。 5. 吸油值相对较低,对加工性无大影响。 6. 有合适的晶型结构。 7. 有较低的莫氏硬度。 8. 与树脂相比有相对便宜的价格。 3. 填充剂的分类 1. 根据其来源通常分为矿物性、植物性填料和工业性填充剂。后者可分为合成型和废渣型。 2. 根据其形状分为粉末状、球状、片状、柱状、针状及纤维状填充剂。 3. 根据其效能分为增量型、补强型及功能型填充剂。 4. 根据其化学组成分为无机填充剂和有机填充剂。 4. 填充剂的特性 1. 粒径及粒径分布。 2. 晶型结构。 3. 吸油性。 4. 分散性。 5. 粘度特性。 6. 刚性与硬度。 7. 电气性能。 第二章:常见填充剂的分类介绍 一,碳酸钙。(CaCO3) 碳酸钙的种类很多,如石灰石,大理石,珍珠,珊瑚,冰洲石等。工业用碳酸钙接来源分重质和轻质两种。碳酸钙是最有代表性的塑料用的白色填充剂,因其无味、无※,白度可达到96%,可自由着色且价格低廉,故在许多塑料中得到广泛应用。 1,重质碳酸钙

PP+20%滑石粉填充

SABIC? PPcompound 37T1020 聚丙烯共聚物 Saudi Basic Industries Corporation (SABIC) Technical Data 产品说明 SABIC? PPcompound 37T1020是一种聚丙烯共聚物(PP Copoly)产品,含有的填充物为20% 滑石填料。它可以通过注射成型进行加工,在欧洲有供货。 典型应用领域为:汽车行业。特性包括:? 冲击改性? 高流动性? 共聚物? 良好的刚度? 耐冲击总体材料状态资料 1 ? 已商用:当前有效 ? Technical Datasheet (English) ? Saudi Basic Industries Corporation (SABIC)? SABIC? PPcompound 搜索 UL 黄卡供货地区? 欧洲 填料/增强材料添加剂? 滑石填料, 20% 填料按重量? 冲击调节器? 改良抗撞击性? 刚性,良好? 共聚物? 抗撞击性,良好特性? 流动性高 用途? 汽车领域的应用? 颗粒料? 汽车内部零件形式加工方法 ? 注射成型 物理性能额定值 单位制测试方法密度 1.04 g/cm313 g/10 min 1.0 %ISO 1183熔流率 (230°C/ 2.16 kg)收缩率 (24小时)机械性能 ISO 1133内部方法额定值 单位制测试方法 拉伸应力 ISO 527-2/5/50 屈服, 3.20 mm, 注塑断裂, 3.20 mm, 注塑28.0 MPa 25.0 MPa 45 %拉伸应变 (断裂, 3.20 mm, 注塑)弯曲模量 3 (注塑) ISO 527-2/5/50ASTM D790测试方法2350 MPa 额定值 单位制 6.3 kJ/m218 kJ/m2冲击性能 简支梁缺口冲击强度 (23°C, 注塑)简支梁缺口冲击强度 (-40°C, 注塑)悬壁梁缺口冲击强度-20°C, 注塑ISO 179/1eA ISO 179/1eU ISO 180/4A 3.0 kJ/m23.5 kJ/m25.7 kJ/m2额定值 单位制 710°C, 注塑23°C, 注塑硬度 测试方法支撐硬度 (邵氏 D, 注塑)热性能 ISO 868额定值 单位制110 °C 测试方法热变形温度 (0.45 MPa, 未退火)维卡软化温度ISO 75-2/B ISO 306/A ASTM D696 145 °C 线形膨胀系数 - 流动-30 到 30°C 8.0E-5 cm/cm/°C 1.1E-4 cm/cm/°C 23 到 80°C 1 / 3

常用聚烯烃改性剂

聚烯烃用改性剂 1. 大分子相容剂 塑料合金化、填充改性是提高塑料物理与力学性能的主要方法之一。但通常塑料与填料极性差异大, 相容性不好, 造成填料在树脂中不易均匀分散, 界面粘合力低, 导致材料的冲击强度、断裂伸长率等力学性能降低。用传统表面活性剂或有机偶联剂(如硬脂酸、硅烷、钛酸酯等)处理填料表面, 虽可改善填料的分散性和界面粘合力, 但因为有机偶联剂的有机链段短, 与基体作用小, 对材料力学性能的提高有限。而大分子相容剂的应用收到了良好的效果。大分子相容剂不但可促进填料在基体中的分散, 而且可提高填料与基体、基体与偶联剂间的界面粘合, 克服传统偶联剂与基体作用弱的缺点, 从而使复合材料的综合性能得到提高。用于改性填充塑料的大分子相容剂主要是带有反应性基团的官能团化接枝高分子。一方面大分子相容剂的反应性官能团可以和填料发生化学反应, 另一方面大分子相容剂含有高分子长链, 可与基体产生良好的缠结或共结晶。因此, 大分子相容剂不但可以使填料在塑料中的分散性改善, 而且增加组分间的粘合力, 从而提高填充塑料的综合性能。 大分子相容剂用于改性填充PP的研究最多, 常用马来酸酐接枝聚丙烯(PP-g-MAH)、丙烯酸接枝聚丙烯(PP-g-AA)、甲基丙烯酸缩水甘油酯/苯乙烯(GMA/St)熔融接枝PP(PP-g-GMA-co-St)、甲基丙烯酸甲酯接枝聚丙烯(PP-g-MMA)等来改性CaCO3、云母、滑石粉、高岭土等填充和增强聚丙烯。其次大分子相容剂较多的应用于填充聚乙烯改性中。常用的有马来酸酐接枝高密度聚乙烯(HDPE-g-MAH)、马来酸二丁酯接枝聚乙烯(PE-gDBM)等来改性CaCO3、Mg(OH)2等填充和增强聚乙烯。应用于聚氯乙烯的大分子相容剂的有:甲基丙烯酸-苯乙烯-丁二烯共聚物胶乳涂覆CaCO3填充PVC/氯化聚乙烯,丙烯酸丁酯接枝PVC(PVC-g-BA)改性CaCO3填充PVC。 2. 成核剂 结晶改性是目前聚烯烃, 尤其是聚丙烯塑料工程化改性的重要途径。目前聚烯烃用成核剂主要包括聚烯烃α晶型成核透明剂和聚烯烃β晶型成核剂在内的两大体系三个系列化的产品。其中α晶型成核透明剂涉及TM和TMP两个产品系

滑石粉在塑胶行业的应用

在很多行业和领域都要涉及到粉体,可以说粉体技术是支撑高新技术的基础技术之一。所谓粉体技术包括两个方面,一是粉体粒子的设计和制造技术,二是粉体的处理技术,即如何能够将粉体添加到其他的物质中,发挥它独特作用。超细目滑石粉母料添加到塑料里,可显著提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。 一、在聚丙烯树脂中的应用: 滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa力)提高到88℃或从121℃(0.45Mpa力)提高到147℃。用于电气元件,介电常数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中,聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件

等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。 二、在聚乙烯树脂中的应用: 滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变温度及尺寸稳定性;改善变形和翘曲,同时亦有较低的热膨胀系数;改进导热性;提高模塑件的表面硬度及光洁度;提高聚乙烯的机械强度。例如:用超细滑石粉(1250目、2500目)母料填充注塑级高密度聚乙烯复合材料,除上述性能有明显改善外,该种复合材料的拉伸强度增加,添加10%时增加到最大值,添加30%时仍能保持原强度,冲击强度稍有增加。对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降低70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装如火腿、肉肠、乳酪等食品。 三、在ABS树脂中的应用: 用特种方法制造的超细滑石粉母料,添加到塑料中具有很好的分散性、

滑石粉在塑料行业的应用

滑石粉在塑料行业的应用 在很多行业和领域都要涉及到粉体,可以说粉体技术是支撑高新技术的基础技术之一。所谓粉体技术包括两个方面,一是粉体粒子的设计和制造技术,二是粉体的处理技术,即如何能够将粉体添加到其他的物质中,发挥它独特作用。超细目滑石粉母料添加到塑料里,可显着提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。 一、在聚丙烯树脂中的应用: 滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显着的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显着提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa 力)提高到88℃或从121℃(0.45Mpa力)提高到147℃。用于电气元件,介电常 数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中, 聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。 二、在聚乙烯树脂中的应用: 滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂 竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变温度及尺寸稳定性;改善变形和翘曲,同时亦有较低的热膨胀系数;改进导热性;提高模塑件的表面硬度及光洁度;提高聚乙烯的机械强度。例如:用超细滑石粉(1250目、2500目)母料填充注塑级高密度聚乙烯复合材料,除上述性能有明显改善外,该种复合材料的拉伸强度增加,添加10%时增加到最大值,添加30%时仍能保持原强度, 冲击强度稍有增加。对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包 装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降低70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装如火腿、肉肠、乳酪等食品。 三、在ABS树脂中的应用: 用特种方法制造的超细滑石粉母料,添加到塑料中具有很好的分散性、均匀

滑石粉在塑料改性中的应用解析

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/0b10548812.html,)滑石粉在塑料改性中的应用解析 1、在聚丙烯树脂中的应用(PP) 滑石粉常用于填充聚丙烯,滑石粉具有薄片构型的片状结构特征,因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。 在汽车工业中,聚丙烯添加滑石粉主要用于汽车的保险杠和仪表盘,另外还用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件,在家电工业中,用于冰箱抽屉、洗衣机滚筒等注塑件。 2、在聚乙烯树脂中的应用(PE) 滑石是天然硅酸镁,它独特的微鳞片状结构,具有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂竞争。 用它填充聚乙烯能够提高以下性能: ①韧度、挠曲模量和扭曲模量; ②提高挠曲强度;

③降低在常温和高温下下蠕变倾向; ④提高热变温度及尺寸稳定性; ⑤改善变形和翘曲,同时亦有较低的热膨胀系数; ⑥改进导热性; ⑦提高模塑件的表面硬度及光洁度; ⑧提高聚乙烯的机械强度。 添加不同比例的滑石粉对聚乙烯材料的物性将产生不同的影响,添加比例在10-15%达到最佳。 对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装食品。 3、在ABS树脂中的应用 ABS树脂是无定形聚合物,具有聚苯乙烯那样优良的成型加工性;它具有良好的抗冲击强度,耐低温性能好,拉伸强度高耐蠕变性能好。为了提升ABS现有的使用性能,人们对ABS改性的研究广泛的开展。比如ABS与PVC共混制造的汽车仪板吸塑片、ABS 与PVC共混制造的仿皮箱包蒙面皮,不但强度高、韧性大而且能够保持表面花纹的耐久性。这种共混材料加超细碳酸钙或超细滑石粉进行填充,能够显着的提高共混材料的缺口冲击强度和耐撕裂强度,比如:添加超细滑石粉或碳酸钙5-15%,缺口冲击强度可提高2-4倍。 由于ABS是无定型聚合物具有容纳较多填料的功能。其中添加超细滑石粉既能显着地提高ABS原存的性能,又能降低成本。因而多用它注塑成型各种仪表、电视机、收录机、手机等的壳体,当然在其他领域如:纺织器材、电气零件、汽车部件、飞机部件等的应用也非常广泛。

滑石粉特性

中文名称:滑石粉 英文名称:Talc 别名名称:滑石一水硅酸镁超微细滑石粉水合硅酸镁超细粉含水硅酸镁法兰西 白粉 更多别名:Talc super fine Talcum French chalk Hydrous magnesium silicate Steatite talc Nonfibrous talc 分子式:3MgO·4SiO2·H2O 分子量:379.29 物性数据: 1. 性状:白色粉末 2. 密度(g/mL,25/4℃):2.7~2.8 3. 相对蒸汽密度(g/mL,空气=1):未确定 4. 熔点(oC):800 5. 沸点(oC,常压):未确定 6. 沸点(oC,5.2kPa):未确定 7. 折射率:未确定 8. 闪点(oC):未确定 9. 比旋光度(o):未确定 10. 自燃点或引燃温度(oC):未确定 11. 蒸气压(kPa,25oC):未确定 12. 饱和蒸气压(kPa,60oC):未确定 13. 燃烧热(KJ/mol):未确定 14. 临界温度(oC):未确定 15. 临界压力(KPa):未确定 16. 油水(辛醇/水)分配系数的对数值:未确定 17. 爆炸上限(%,V/V):未确定 18. 爆炸下限(%,V/V):未确定 19. 溶解性:不溶于水。

毒理学数据: 皮肤/眼睛刺激数据(人类):300 ug/3D (Intermittent)REACTION SEVERITY : Mild 致肿瘤数据数据(小鼠):18 mg/m3/6H/2Y-I 滑石:粉尘吸入,眼睛及皮肤接触。反复大量的吸入会造成肺结疤,出现呼吸短促、咳嗽,可致残和死亡。眼睛接触后会引起刺激,造成眼睛的严重损害。X光胸透异常。 分子结构数据 1、摩尔折射率:无可用的 2、摩尔体积(m3/mol):无可用的 3、等张比容(90.2K):无可用的 4、表面张力(dyne/cm):无可用的 5、介电常数:无可用的 6、极化率(10-24cm3):无可用的 7、单一同位素质量:377.817456 Da 8、标称质量:378 Da 9、平均质量:379.2657 Da 计算化学数据 1、疏水参数计算参考值(XlogP): 2、氢键供体数量:0 3、氢键受体数量:12 4、可旋转化学键数量:0 5、互变异构体数量: 6、拓扑分子极性表面积(TPSA);253 7、重原子数量:19 8、表面电荷:-2 9、复杂度:18.8 10、同位素原子数量:0 11、确定原子立构中心数量:0 12、不确定原子立构中心数量:0 13、确定化学键立构中心数量:0 14、不确定化学键立构中心数量:0 15,共价键单元数量:7 性质与稳定性

粉体改性剂对滑石粉表面改性方法及作用

粉体改性剂对滑石粉表面改性方法及作用 滑石粉是一种层状含水镁硅酸盐,其表面含有亲水基团,且具有较高的表面能,作为无机填料与有机高聚物分子材料之间在化学结构和物理形态上有着很大的差异,缺少亲和性,使之滑石粉与聚合物之间混合不均匀、粘合力弱,导致制品的力学性能降低。为此,必须对滑石粉进行表面改性处理。 滑石粉表面改性的机理是利用某些带有两性基团的小分子或高分子化合物对进行复合的物质中的一种或两种进行表面改性,使其表面由憎水变为亲水,目的是使两种物质与树脂更好地相结合。 1、表面覆盖改性法

表面覆盖改性法是将表面活性剂或粉体改性剂覆盖于粒子表面,使表面活性剂或粉体改性剂以吸附或化学键的方式与粒子表面结合,使粒子表面由亲水变为疏水,赋予粒子新的性质,使粒子与聚合物的相容性得以改善。 该方法是目前最普遍采用的方法。大致可理解为:针对滑石粉与聚合物亲和力不高的缺点,将带有两性基团的表面活性剂覆盖粒子上,亲水基团朝向粒子表面,亲油基团朝向外面,这样与聚合物结合时就有好的相容性,达到改性目的,扩大滑石粉的应用范围。 2、机械化学法 机械化学法是通过粉碎、摩擦等方法将比较大的粒子变得较小,使粒子的表面活性变大,即增强其表面吸附能力,简化工艺的同时还可以降低成本,同时更易控制产品的质量。超细粉碎是物料深加工的重要手段,其主要目的是为现代工业提供高性能的粉体产品。此过程不是简单的物料粒度减小,它包含了许多复杂的粉体物质性质和结构的变化、机械化学变化。 滑石粉经搅拌磨超细粉碎后,表面活性增强,热效应改善,白度提高,粉体性质变化与超细粉碎过程的热力学特性密切相关。 3、外膜层改性法 外膜层改性是在粒子表面均匀地包覆一层聚合物,从而赋予粒子表面新的性质。 用澳达粉体表面改性剂对无机粒子滑石粉进行表面处理,与常规的滑石粉粒子填充物相比,包覆后的滑石粉填充高分子材料后,其最大拉伸强度、冲击强度均明显提高,提高率分别达到136%和162%,可作为新型强韧型填充改性剂用于PVC电缆料。 4、局部活性改性 局部活性改性利用化学反应在粒子表面接枝上一些可与聚合物相容的基团或官能团,使无机粒子与聚合物有更好的相容性,从而达到无机粒子与聚合物复合的目的。

高密度聚乙烯的研究及应用

茂名职业技术学院 文献检索论文题目高密度聚乙烯的研究及应用 系(部)化学工程系 专业应用化工技术 班级 D10应化(5)班 姓名招鑫章 指导教师赖谷仙 日期 2011.12.8

摘要 综述了近年来我国高密度聚乙烯(HDPE)的最新研究现状,并介绍了高密度聚乙烯的特点及其应用,最后指出了我国高密度聚乙烯的发展方向。 关键词:高密度聚乙烯;特点;应用 目录 高密度聚乙烯的研究及应用 前言 高密度的聚乙烯(HDPE),是一种结晶度高、非极性的热塑性树脂,原态的HDPE外表呈乳白色,在微薄截面呈一定程度的半透明状,具有优良的耐大多数生活和工业用化学品的特性,该聚合物不吸湿并具有好的防水蒸汽性。可用于包装用途。HDPE具有很好的电性能,特别是绝缘介电强度高,使其很适用于电线电缆。HDPE是重要的五大通用塑料之~,具有无毒价廉、质轻、优异的耐湿性、良好的化学稳定性和易成型加工等特点,被广泛应用于食品、汽车、化工等领域。 1.HDPE特点 HDPE可用淤浆法、溶液法和气相法生产,H D P E分子中支链少。结晶度高( 8 5 %~9 O 茗 ),密度高( 0 . 9 4 1 — 0 . 9 6 5 g / c m ),具有较高的使用温度、硬度、力学强度和耐化学药品性好。适用于中空吹塑、注塑和挤出各种制品,如各种容器、网、打包带,并可用作电缆覆层、管材、异型材、片材等。是不透明的白色粉末,造粒后为乳白色颗粒,分子为线型结构,很少支化现象,是较典型的结晶高物,机械性能均优于低密度聚乙烯。2.HDPE研究进展 HDPE作为最常用的通用塑料之一,由于有极强的应用背景,越来越受到工业界和学术界的广泛重视¨一t o ]。近年来,国内科研人员HDPE的改性及应用方面进行了大量的研究,并取得了一定的成效。许惠芳…等考察了国内三家石化公司生产HDPE薄膜料9455F,6098,7000F的流变行为。结果表明三HDPE薄膜料的熔体均属于非牛顿流体,其流动指数( n )随温度升高而增大,熔体的非牛顿性随温度升高而降低,即熔体偏离牛顿流体的程度变小;薄膜料6098对温度敏感性较大,在成型加工时对其进行温度调整可获得良好的效果;9455F对剪切的敏感性较大,在成型加工时对其进行剪切速率或剪切应力的调整可获得良好的效果。陈欣n 等制备了多壁碳纳米管、石墨和碳黑填HDPE复合体,研究了复合体的导电和流变学性质,利用隧道逾渗模型对关键指数分别为4.4、6.4和2.9 的三种复合体的“非普适性”导电行为进行了解释,与此同时,考察了颗粒类型和含量,以及剪切速率对复合体流变学性质的影响。结果表明复合体系的储能模量在低频区出现“第二平台”,而复合黏度则表现出强烈的剪切变稀行为,标志着颗粒在聚合物内部发生聚集形成了网络结构,与石墨和碳黑填充复合体相比,具有更高纵横比的多壁碳纳米管填充复合体具有更高的储能模量和复合黏度,基于Guth—Sma1]wood理论结合有效介近似G ’r分析结果表明,填充HDPE复合体系的流变学逾渗阈值和导电逾渗阈值吻合良好。蒋炳炎…等用M0]df]0WMPI5.O软件F]ow3D模块仿真及同步热分析仪分析的方法,研究了熔体温度及注射速率对薄壁件注射成型时结晶特性的影响。结果表明熔体温度175 、195 、215cc时,在厚度为O.8 m m的高密度聚乙烯薄壁件的注射成型过程中,在流动方向上,浇口附近的剪切速率和熔融热焓远大于其他各处,且二者均随着

滑石粉的表面改性及其对填充PP性能的影响

滑石粉的表面改性及其对填充PP性能的影响 项素云田春香孙彩霞 (大连理工大学,辽宁大连116012) 摘要:滑石粉的表面改性处理,对提高与改善填充塑料的性能至关重要。本文报道采用钛酸酯、铝酸酯、硼酸酯等偶联剂,对滑石粉等填料进行表面改性处理的研究结果,通过接触角、活化率、吸油量等实验方法对改性效果进行了研究,其结果有助于筛选偶联剂。通过红外光谱、DSC扫描、电镜等手段研究滑石粉等填充PP的结晶性能、结晶行为、微观结构,说明滑石粉在填充PP中的改性机理与对性能的改善。 1 偶联剂作用机理 滑石粉的表面有亲水性基团,并呈极性,而多数塑料有疏水性,两者之间的相容性差;同时,越细的滑石粉,加工过程中越易于团聚而最终影响填充塑料的性能。因此,为了改善两者之间的界面结合,必须采用适当的方法对滑石粉进行表面改性,也称为表面活化处理。 应用偶联剂处理填料的改性方法是应用最广、发展最快的一种技术。偶联剂的分子中通常含有几类性质和作用不同的基团,其功能是改善填料与聚合物之间的相容性,从而增强填充复合体系中组分界面之间的相互作用[1]。作用机理最早且比较完善的一种理论是化学键理论,该理论认为偶联剂分子中的一部分基团与无机填料表面的化学基团反应,形成强固的化学键合,而另一部分基团有亲有机物的性质,可与有机高分子反应或形成物理缠结,从而在无机相和有机相之间起了连接的桥梁作用,把两种不同性质的材料牢固的结合起来[2]。 目前偶联剂品种很多,如硅烷类、钛酸酯类、铝酸酯类、铝钛复合类、硼酸酯类、稀土类及硬脂酸盐等。偶联剂的选择应综合考虑填料表面结构、性质,偶联剂酸碱性、中心原子的电负性、几何结构和空间位阻等因素[3]。 偶联剂的用量一般都有最佳用量,低于此值,填料活化处理不彻底;而高于此值,填料表面会形成多层物理吸附的界面薄弱层,从而造成制品强度下降。所谓最佳用量,按经典理论即是处理剂在填料颗料表面上覆盖单分子层的用量[4]。 本文主要研究钛酸酯、铝酸酯、硼酸酯等偶联剂对滑石粉等填料表面改性,通过几种方法评价活化效果,确定最佳偶联剂类型及其用量;并对滑石粉填充聚丙烯的性能与结构进行了研究。

滑石粉在塑料中的应用

滑石粉在塑料中的应用 超细目滑石粉母料添加到塑料里,可显著提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。一、在聚丙烯树脂中的应用:滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa力)提高到88℃或从121℃(0.4 5Mpa力)提高到147℃。用于电气元件,介电常数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中,聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。二、在聚乙烯树脂中的应用:滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性。用它填充聚乙烯可作为工程塑料,可与ABS、尼龙、聚碳酸脂竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变

各种滑石粉地种类及全参数

各种滑石粉的种类及参数 涂料级滑石粉 & 油漆级滑石粉 特点: 白度高,遮盖力强。 用途: 具有化学惰性,低吸油量, 可以改善涂料的分散性。主要应用于内、外墙等建筑涂料。 规格表 规格Unit A121 A120 B111 B101 W100 W101 C121 比表面m2/g 0.70 0.70 0.70 0.50 0.50 0.40 0.35 平均粒度um 2.30 2.30 2.30 4.00 4.00 5.75 8.50 最大粒径um 7 7 7 10 10 16 25 白度% 96 96 96 95 95 95 94 二氧化硅% >58 >60 >60 >61 >61 >63 >63 氧化镁% >28 >30 >30 >30 >30 >31 >32 PH值- 9.00 9.00 9.00 9.00 9.00 9.00 9.00 水份% 0.5 0.40 0.40 0.35 0.35 0.30 0.30 DOP吸收量ml/100g - 90 80 80 78 70 60 吸油量ml/100g - 78 75 75 70 55 52 体积密度g/ml - 0.16 0.17 0.18 0.19 0.31 0.36 325目筛残余量% 0 0 0 0 0 0 0 包装净重kgs 25 25 25 25 25 25 25 橡胶级滑石粉 & 塑胶级滑石粉 特点: 高温煅烧後白度增强,密度均匀,光泽度好,表面平滑,细腻。 用途: 用於制造电瓷、无线电瓷、各种工业陶瓷、建筑陶瓷、日用陶瓷和瓷釉等。 特点: 湿白度高, 色相单一。增加产品形状的稳定性,提高产品耐蠕变性和耐冲击强度。

聚乙烯填充配方

第一节聚乙烯填充配方 1,纳米碳酸钙填充POE[1](质量份) POE 100,Loo 纳米碳酸钙(30一50nrro ) 3 相关性能拉伸强度15.1~18.93MPa,断裂伸长率800%一876%,邵氏硬度75~79,撕裂强度36~41N/mm: 2,超细碳酸钙填充HDPE[2] HDPE 92% DCP l% eaCOa 3%' 钛酸酯偶联荊1% PE-g-MAF 3% 相关竹他冲击强度12.3kJ/mz,维卡软化点12VC,拉伸强度25.3MPa,伸长率小」j。与ABS接近,但价格低:可代替ABS。 3.碳酸钙填充LDPE(质量份) LDPE 100 PE蜡 1.5 碳酸钙(KR-138-S处理)30 硬腊酸钙..0.3 4.碳酸钙填充LLDPE(质量份) LLDPE 100 硬脂酸o.5 碳酸钙(KR-138-S处理)35 5.滑石粉填充LDPE配方(质量份) LDPE 100 PE蜡 1.5 滑石粉(KR-212)30 硬脂酸锌0.5 6.滑石粉填充LDPE/LLDPE配方(质量份) LDPE 70 PE蜡 1 LLDPE 30 硬脂酸 1 滑石粉(KR-212) 20 7.云母填充HDPE[a」(质量份) HDPE(6366M) l00 云母(16p-m,硅烷表面处理)变量 加工条件用双螺杆挤出机,在料筒温度160~190℃、螺杆转速50r/min条件下造粒。 相关性能见表l-l。 表1-1 不同云母含量时HDPE/云母复合材料的性能 8.空心玻璃微珠填充LLDPE闪(质量份) 相关性能见表1-2, 表1-2 不同空心玻璃微珠含量LLDPE的性能

9.玻璃微珠填充HDPEL5] (质量份) HDPE(6000S)100 空心玻璃微珠(5000 目,EB251表面处理)变量 加工条件先将空心玻璃微珠在100DC温度下干燥12h,用偶联剂进行表面处理后,再干燥24h。处理过的空心玻璃微珠与HDPE混合均匀,在双辊塑炼机上于160aC温度下塑炼,最后压制成样条。 相关性能见表1-3. 表1-3 不同含量表面处理空心玻璃微珠填充HDPE的性能 10.纳米凹凸棒石(A TP)/PE增强复合材料[6] (质量份) PE 100 PE-g-MAH A TP 2 A TP 8 相关性能拉伸强度7.5MPa(纯PE为6.3),缺口冲击强度200J/m,熔体流动指数1.69g/10min (纯PE为2.75g/10min)。 11.凹凸棒石(A T)填充POEC"] <质量份) POE(8150)85 KH-550处理的凹凸棒石变量 POE-g-MAH 15 相关性能见表1-4。 表1-4 不同凹凸棒石含量PP的性能 LDPE(2102TN26) 97%凹凸棒黏土3% 加工条件先将凹凸棒黏土在甲苯溶液中超声波分散2h;然后加入水解后的硅烷偶联剂KH-570中,加热回流lh;在50℃温度下干燥处理后,与LDPE 混合均匀,于130℃温度下在双辊塑炼机上塑化10min,最后在160℃温度下模压样品。 相关性能拉伸强度7.6MPa,比纯LDPE增加209/0,冲击强度6.7kJ/mz。 13.EV A悬浮填料配方[9」(质量份) EV A l00 抗氧剂lol0 0.3 活性炭23 抗氧剂168 0.3 发泡剂:9 硬脂酸钙0.5

塑料填充剂简介及滑石粉和碳酸钙作为塑料填充材料的应用与影响

塑料填充剂简介及简述滑石粉和碳酸钙作为塑料填充材料的应用与区别 填充剂一般都是粉末状的物质,而且对聚合物都呈惰性。配制塑料时加入填充剂的目的是改善塑料的成型加工性能,提高制品的某些性能,赋予塑料新的性能和降低成本。 1、碳酸钙 重质型由白垩、贝壳、石灰石等天然物质经机械粉碎而制得的,粒径在2~10μm。近年利用湿法、球磨、气流粉碎等,已使重质碳酸钙(滑石粉等也同样)粒子加工得更细(<10μm),与轻质者相近,使用后对塑料得加工性能及物理力学性能均不致有较大得下降。 轻质型由无机合成后沉降而得,粒径在0.1μm以下 作用用于聚氯乙稀、聚烯烃等。提高制品耐热性、硬度、降低收缩率、降低成本。遇酸易分解,故不宜用于耐酸制品中,细粒者,在制品中分散较好,但比容积较大,应进行适当得表面处理,使之在制品中分散良好。 2、粘土、硅酸盐类粘土、高岭土(陶土、瓷土)、硅灰石基 来源由天然物质精制,煅烧,粉碎得 作用用于聚氯乙稀、聚烯烃等,改善加工性能,降低收缩率,提高制品耐药性、 耐燃、耐水性及降低成本,煅烧陶土可提高制品介电性能。 3、滑石粉 来源由硅酸镁研磨成,成片状 作用用于聚氯乙稀、聚烯烃等,提高制品刚性,尺寸稳定性、高温儒变性、耐化 学腐蚀及降低摩擦因数。 4、石棉 来源由含镁、铁、钙、钠等的硅酸盐制成,呈纤维状 作用用于聚氯乙稀、聚烯烃等,提高制品刚性,尺寸稳定性、高温儒变性,但因 其毒性,近年使用量下降。 5、云母 来源由含铝硅酸的钾、镁、铁等盐类制成,呈片状 作用用于聚氯乙稀、聚烯烃等,提高制品耐热性、尺寸稳定性、介电性能,多用 于电绝缘制品中。 6、炭黑 来源由天然气、石油不完全燃烧或热裂解得。有接触法、炉法、热裂法等多类 作用用于聚氯乙稀、聚烯烃等。常兼具着色剂、光屏蔽剂作用,以提高制品导热、导电性能。 7、二氧化硅(白炭黑) 来源沉淀法粒径20~40nm,含水10%~14%,气相法粒径10~25nm,含水量 <2%。 作用用于聚氯乙稀、聚烯烃、不饱和聚酯、环氧树脂等。提高制品介电、抗冲击 性能,可作树脂流动性调节剂。 8、硫酸钙(石膏)、亚硫酸钙 来源由天然产物或化学法制得

硅灰石填充高密度聚乙烯

材料科学与工程专业 材料设计性综合实验报告 题目:硅灰石填料在高密度聚乙烯中的研究 学生姓名:黄保康 学生所在班级:033124 指导老师:胡珊 实验起止日期:2015年09月09日~2015年09月29日中国地质大学(武汉)材料科学与工程系

目录 目录 (2) 1.绪论 (3) 1.1研究现状简介 (3) 1.1.1高密度聚乙烯研究现状 (3) 1.1.2硅灰石填料性质 (4) 1.2实验机理、改性方法 (4) 1.2.1聚合物填充改性机理 (4) 1.2.2正交试验法 (5) 1.2.3挤出成型 (5) 1.2.4注塑工艺 (6) 1.4小组成员 (7) 2.原料及设备 (7) 2.1主要原料 (7) 2.2理化性质 (8) 2.2实验设备 (8) 3.硅灰石填充HDPE复合材料的制备 (8) 3.2工艺参数的设定 (8) 3.3设备的具体操作过程 (8) 3.4实验过程 (9) 4.硅灰石填充HDPE复合材料的性能检测 (10) 5.结果与分析 (10) 5.1硅灰石填充HDPE复合材料拉伸性能 (10) 5.2硅灰石填充HDPE复合材料弯曲性能 (11) 5.3硅灰石填充HDPE复合材料冲击性能 (12) 6.结论与展望 (13) 致谢 (13) 参考文献 (13)

硅灰石填料在高密度聚乙烯中的研究 黄保康 摘要:本文通过实验研究不同粒径、不同含量及通过不同改性剂改性后的硅灰石填料填充到高密度聚乙烯中,高密度聚乙烯在抗弯强度、拉伸强度及缺口断裂功等表现出的不同性质,对硅灰石填充高密度聚乙烯做了研究分析。 关键词:高密度聚乙烯、硅灰石、改性、正交实验法、性能 1.绪论 1.1研究现状简介 1.1.1高密度聚乙烯研究现状 高密度聚乙烯(HDPE)于1953年由德国化学家齐格勒(Ziegler)用低压法率先合成,在1957年投入工业化生产。同时投产的还有美国菲利普(Phillips)石油化学公司创造的中压法HDPE。HDPE的分子链为线型结构,支链比较少,分子链中平均每1000个碳原子数只含有几个支链。规整的链结构使HDPE具有较高的结晶度(80%~95%)、较高的密度 (0.94~0.979g/cm3)以及较高的熔点(124~134℃)。原态HDPE外表呈乳白色,无毒、质轻、价廉、易成型加工。主要用于生产薄膜制品、包装用的压延带和结扎带、绳缆、鱼网和编织用纤维、电线电缆、日用品及工业用的各种大小中空容器、管材等[1]。HDPE是一种由乙烯共聚生成的热塑性聚烯烃,具有良好的物理机械性能,主要表现为:良好的化学稳定性、刚性以及耐湿性,中到高分子量等级的HDPE不管是在室温还是在较低的温度条件下都具有较好的抗冲击性能,广泛用于许多领域。HDPE虽然早在1957年就已经推出,但在其开发与应用方面还远没有达到成熟水平,难以满足一些工程领域对其性能的需求。国内外对HDPE的高性能化进行了大量的研究,是高分子材料科学研究的热点之一。实现聚乙烯高性能化的途径主要有三条:①开发新型聚乙烯;②聚乙烯的化学改性;③聚乙烯的物理改性。开发新型聚乙烯周期长,成本高,因此化学改性和物理改性一直都是重要的手段。下面主要对HDPE的填充、增强改性及断裂功做出研究[2]。 随着聚合物填充改性技术的不断发展,用于塑料填充改性的无机粒子种类越来越多,应用于聚乙烯改性的填料种类也在不断增加。无机填料按化学组成可以分为氧化物、氢氧化物、硅酸盐、碳酸盐、硫酸盐等。常用的无机填料有玻璃微珠、纳米Al2O3、硅灰石、层状纳米硅石、纳米MMT、碳酸钙、滑石粉、云母、凹凸棒石、高岭土、石墨、钛酸钾晶须等等。

塑料行业中滑石粉的应用

塑料行业中滑石粉的应用 滑石粉用途:用于聚丙烯、尼龙、聚氯乙烯、聚乙烯、聚苯乙烯和聚脂类塑料的填料和橡胶制品的防粘剂及填料。在很多行业和领域都要涉及到粉体,可以说粉体技术是支撑高新技术的基础技术之一。所谓粉体技术包括两个方面,一是粉体粒子的设计和制造技术,二是粉体的处理技术,即如何能够将粉体添加到其他的物质中,发挥它独特作用。超细目滑石粉母料添加到塑料里,可显著提高塑料制品的刚性和耐蠕变性、硬度和耐表面划伤性、耐热性和热变形温度,相当细度的滑石粉亦能提高塑料制品的冲击强度。并且添加后还具有润滑作用,能起流动促进作用,提高塑料的加工工艺性。 一、在聚乙烯树脂中的应用: 滑石是天然硅酸镁,有四种粒型:纤维状、层状、针状和标准型(冻石型)。但只有层状在工业上得到应用。滑石的层状夹心状结构,每一层都有一定的抗水性和高度的化学惰性,因此有良好的耐化学腐蚀性和滑动性。用它填充聚乙烯可作为工程塑料,有良好的耐化学腐蚀性和流动性,可与ABS、尼龙、聚碳酸脂竞争。用它填充聚乙烯能够提高以下性能:提高韧度、挠曲模量和扭曲模量;提高挠曲强度;降低在常温和高温下下蠕变倾向;提高热变温度及尺寸稳定性;改善变形和翘曲,同时亦有较低的热膨胀系数;改进导热性;提高模塑件的表面硬度及光洁度;提高聚乙烯的机械强度。例如:用超细滑石粉(1250目、2500目)母料填充注塑级高密度聚乙烯复合材料,除上述性能有明显改善外,该种复合材料的拉伸强度增加,添加10%时增加到最大值,添加30%时仍能保持原强度,冲击强度稍有增加。对于聚乙烯吹塑薄膜来说,填充超细滑石粉母料比其他填料好,易成型、工艺性好。而且,该种薄膜可使氧气透过率降低80%,特别适合包装含油食品,如花生米、蚕豆等,长期保持不出油、不变质:该种薄膜可使水蒸气透过率降低70%,具有很好的防潮性,很适合作地下土工防潮布,也适用于包装如火腿、肉肠、乳酪等食品。 二、在聚丙烯树脂中的应用: 滑石粉常用于填充聚丙烯。滑石粉具有薄片构型的片状结构特征。因此粒度较细的滑石粉可用作聚丙烯的补强填充剂。在聚丙烯的改性体系中,加入超细滑石粉母料不但能够显著的提高聚丙烯制品的刚性、表面硬度、耐热蠕变性、电绝缘性、尺寸稳定性,还可以提高聚丙烯的冲击强度。在聚丙烯中添加少量的滑石粉还能起到成核剂的作用,提高聚丙烯的结晶性,从而使聚丙烯各项机械性能提高,又由于提高结晶性,细化晶粒,亦能提高聚丙烯的透明性。填充20%和40%超细目滑石粉的聚丙烯复合材料,不论是在室温和高温下,都能够显著提高聚丙烯的刚性和高温下的耐蠕变性能。例如:添加40%的超细目滑石粉母料的聚丙烯抗弯曲模量可从16100kg/cm2提高到42000kg/cm2,热变形温度从62℃(1.82Mpa力)提高到88℃或从121℃(0.45Mpa力)提高到147℃。用于电气元件,介电常数由1.9提高到2.4,耐电弧由马上熔融延长到140秒。因此,在汽车工业中,聚丙烯添加滑石粉母粒的复合材料被用于风扇罩、加热器罩、导管、蓄电池防热板、流体泵件等;在飞机工业中,用于冰箱门衬垫、加热器及真空泵罩、洗涤机搅拌器;在电气工业中,用于注塑成型各种仪表壳体和电气元件等。 三、在ABS树脂中的应用:

聚乙烯的改性方法

聚乙烯的改性方法 聚乙烯(PE)树脂是以乙烯单体聚合而成的聚合物。聚乙烯的分子是长链线形结构或支链结构,为典型的结晶聚合物。在固体状态下,结晶部分与无定形部分共存。结晶度视加工条件和原处理条件而异,一般情况下,密度越高结晶度就越大。LDPE结晶度通常为55%~65%,HDPE结晶度为80%~90%。PE具有优良的机械加工性能,但其表面呈惰性和非极性,造成印刷性、染色性、亲水性、粘合性、抗静电性能及与其他极性聚合物和无机填料的相容性较差,而且其耐磨性、耐化学药品性、耐环境应力开裂性及耐热等性能不佳,限制了其应用范围。通过改性来提高其性能,扩大其应用领域。 1.接技改性 接枝聚合物几乎不改变取乙烯骨架结构,同时又将具有各种功能的极性单体接枝到PE主链上,既保持了PE原有特性,又增加了新的功能,是一种简单而行之有效的PE极性功能化方法。 接枝反应实施方法主要有溶液法、溶融法、固相法以及辐射接枝法等。 (1)溶液法使用甲苯、二甲苯、氯苯等作为反应介质在液相中进行。PE、单体、引发剂全部溶解在反应介质中,体系为均相,介质的极性和对单体的链转移常数对接枝反应影响很大。 (2)固相法将PE粉末直接与单体、引发剂、界面活性剂等接触反应。与传统实施方法相比,固相法具有反应温度适宜、常压、基本保持聚合物固有物性,无需回收溶剂,后处理简单,高效节能等优点。 (3)熔融法在熔融状态下,通过引发剂热分解产生自由基,从而引发大分子链产生自由基,在接枝单体的存在下发生自由基共聚反应,然后在聚合物大分子链上接枝侧链。 (4)辐射接枝法辐射接枝表面改性包括γ射线、β射线、电子束等辐照方法,其原理是利用聚合物被辐照后产生游离基,游离基再与其它单体生成接枝聚合反应,而达到表面改性的目的。辐射接枝改性主法有:共辐照法、预辐照法、过氧化物法。 2.交联改性 交联改性使PE的物理力学强度大大提高,并显著改善其耐环境应力开裂性、

相关文档
相关文档 最新文档