文档库 最新最全的文档下载
当前位置:文档库 › 压铸常见缺陷原因和改善方法

压铸常见缺陷原因和改善方法

压铸常见缺陷原因和改善方法
压铸常见缺陷原因和改善方法

压铸常见缺陷原因及其改善方法

1).冷紋:

原因:熔汤前端的温度太低,相叠时有痕迹.

改善方法:

1.检查壁厚是否太薄(設計或制造) ,较薄的区域应直接充填.

2.检查形狀是否不易充填;距离太远、封閉区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.並注意是否有肋点或冷点.

3.缩短充填时间.缩短充填时间的方法:…

4.改变充填模式.

5.提高模温的方法:…

6.提高熔汤温度.

7.检查合金成分.

8.加大逃气道可能有用.

9.加真空裝置可能有用.

2).裂痕:

原因:1.收缩应力.

2.頂出或整缘时受力裂开.

改善方式:

1.加大圆角.

2.检查是否有热点.

3.增压时间改变(冷室机).

4.增加或缩短合模时间.

5.增加拔模角.

6.增加頂出銷.

7.检查模具是否有錯位、变形.

8.检查合金成分.

3).气孔:

原因:1.空气夾杂在熔汤中.

2.气体的来源:熔解时、在料管中、在模具中、离型剂.

改善方法:

1.适当的慢速.

2.检查流道转弯是否圆滑,截面积是否渐減.

3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方.

4.检查离型剂是否噴太多,模温是否太低.

5.使用真空.

4).空蚀:

原因:因压力突然減小,使熔汤中的气体忽然膨胀,冲击模具,造成模具損伤.改善方法:

流道截面积勿急遽变化.

5).缩孔:

原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处.

改善方法:

1.增加压力.

2.改变模具温度.局部冷却、噴离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔.

6).脫皮:

原因:1.充填模式不良,造成熔汤重叠.

2.模具变形,造成熔汤重叠.

3.夾杂氧化层.

改善方法:

1.提早切換为高速.

2.缩短充填时间.

3.改变充填模式,浇口位置,浇口速度.

4.检查模具強度是否足夠.

5.检查銷模裝置是否良好.

6.检查是否夾杂氧化层.

7).波紋:

原因:第一层熔汤在表面急遽冷却,第二层熔汤流過未能将第一层熔解,却又有足夠的融合,造成組织不同.

改善方法:

1.改善充填模式.

2.缩短充填时间.

8).流动不良产生的孔:

原因:熔汤流动太慢、或是太冷、或是充填模式不良,因此在凝固的金属接合处有孔.

改善方法:

1.同改善冷紋方法.

2.检查熔汤温度是否稳定.

3.检查模具温充是否稳定.

9).在分模面的孔:

原因:可能是缩孔或是气孔.

改善方法:

1.若是缩孔,減小浇口厚度或是溢流井进口厚度.

2.冷却浇口.

3.若是气孔,注意排气或捲气問题.

10).毛边:

原因:1.鎖模力不足.

2.模具合模不良.

3.模具強度不足.

4.熔汤温度太高.

11).缩陷:

原因:缩孔发生在压件表面下面.

改善方法:

1.同改善缩孔的方法.

2.局部冷却.

3.加热另一边.

12).积碳:

原因:离型剂或其他杂质积附在模具上.

改善方法:

1.减小离型剂喷洒量.

2.升高模温.

3.选择适合的离型剂.

4.使用软水稀釋离型剂.

13).冒泡:

原因:气体捲在铸件的表面下面.

改善方式:

1.減少捲气(同气孔).

2.冷却或防低模温.

14).粘模:

原因:1.鋅积附在模具表面.

2.熔汤冲击模具,造成模面损坏.

改善方法:

1.降低模具温度.

2.降低划面粗糙度.

3.加大拔模角.

4.镀膜.

5.改变充填模式.

6.降氏浇口速度.

引言:在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。

1.气孔类别

由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm 的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即:

(1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。种针孔容易与缩孔、缩松等

予以区别开来。

(2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。

(3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。

铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。

2.针孔的形成

铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散的气孔,即平常我们所说的针孔(gas porosity)。在氢气泡形成前达到的过饱和度是氢气泡形核的数目的函数,而氧化物和其他夹杂物则在起气泡核心的作用

在一般生产条件下,特别是在厚大的砂型铸件中很难避免针孔的产生。在相对湿度大的气氛中溶炼和浇注铝合金,铸件中的针孔尤其严重。这就是我们在生产中常常有纳闷干燥的季节总比多雨潮湿的时节铝合金铸件针孔缺陷少些的原因。一般说来,对铝合金而言,如果结晶温度围较大,则产生网状针孔的机率也就大得多③。这是因为在一般铸造生产条件下,铸件具有宽的凝固温度围,使铝合金容易形成发达的树枝状结晶。在凝固后期,树枝状结晶间隙部分的残留铝液可能相互隔绝,分别存在于近似封闭的小小空间之中,由于它们受到外界大气压力和合金液体的静压作用较小,当残留铝液进一步冷却收缩时能形成一定程度的真空(即补缩通道被阻塞),从而使合金中过饱和的氢气析出而形成针孔。

3.形成气孔的氢气的来源与析出

铝合金中气孔的产生,是由于铝合金吸气而形成的,但气体分子状态的气体一般不能溶解于合金液中,只有当气体分子分解为活性原子时,才有可能溶解。合金液中气体能溶解的数量多少,不仅与分子是否容易分解为活性原子有关,还直接与气体原子类别有关。在铝合金熔炼过程中,通常接触的炉气有:氢气、氧气、水蒸气、二氧化碳、二氧化硫等,这些气体主要是由燃料燃烧后产生的,而耐火材料、金属炉料及熔剂、与气体接触的工具等也可以带入一定量的气体,如新砌的炉衬、炉子的耐火材料、坩埚等,通常需要使用几天或几周的时间,其化学结合的氢才能充分从粘结剂中释放出来。一般而言,炉气成分是由燃料种类以及空气量来决定的。普通焦炭坩埚炉,炉气成分主要为二氧化碳、二氧化硫和氮气;煤气、重油坩埚炉主要为水蒸气、氮气;而对目前大多数熔炼厂家使用的电炉熔炼来说,炉气成分主要是氢气。因此,采用不同的熔炼炉熔炼时,铝合金的吸气量和产生气孔的程度是不同的。

铝合金生产实践证明,氢是唯一能大量溶解于铝或铝合金中的气体,是导致铝合金形成气孔的主要原因,是铝合金中最有害的气体,也是铝合金中溶解度最大的气体。在铸件凝固过程中由于氢的析出而产生的孔隙,不仅减少了铸件的实际截面积而且是裂纹源。惰性气体不能溶于铝或铝合金,其他气体一般与铝或铝合金反应形成铝的化合物,如Al2O3、AlCl3、AlN、Al4C3等等。由图1可知,氢在液态铝或铝合金中的溶液解度很大,而几乎不溶解于固态铝(在室温条件下,其溶解度约在0.003﹪以下)。

在铝合金熔炼时,周围空气中的氢气含量并不多,氢的最通常的来源是铝和水蒸气的反应,而水蒸气主要来源于炉气中的水分、设备及工具吸附的水分、一些材料的结晶水与铝锈Al(OH)2分解出来的水分等,其反应式如下:

3H2O(水蒸气)+2Al=Al2O3+6[H](1)

含镁铝合金由于还发生下列反应,更容易吸收氢:

H2O(水蒸气)+ Mg=MgO+2[H](2)

另外,金属炉料或回炉料带入的油污、有机物、盐类熔剂等与铝液反应也能生成氢:

4mAl+3CmHn=mAl4C3+3n[H] (3)

镁、钠、锂可以改变铝的表面的氧化膜,使活性氢原子容易进入;金属氟和铍则能在铝的表面形成更致密的氧化膜,降低氢向铝液或铝合金中扩散的速度,对铝合金起到保护作用。形成氢化物的元素,如钙、钛、锂、铯等金属均能强烈地扩大氢在铝液中的溶解度。不同温度下活性氢原子在铝液或铝合金中的溶解度见表1。

4.气孔对铝合金铸件性能的影响

针孔对铝合金性能的影响主要表现在能使铸件组织致密度降低,力学性能下降。为此,在铝合金铸件生产实践中,加强对气孔等级对力学性能的影响研究,通过控制针孔等级来保证铝合金铸件品质是非常重要的。针孔等级评定,低倍检验按GB10851-89进行,当有争议时按表2规定执行;X射线照相按GB11346-89铝合金铸件针孔分级标准执行,该标准选用目前工业生产中常用的两种合金ZL101(Al-Si-Mg系)和ZL201(Al-Cu-Mn系), 并在T4状态测定бb和σ5的试验结果表明(ZL101T4、ZL201ST4各种针孔试样的力学性能分别见表3、表4):铸件力学性能与针孔等级之间是线性相关关系,随着针孔等级级别增加,力学性能逐步下降;针孔等级每增加一级,力学性бb下降3%左右,σ5下降 5%左右。对铝合金铸件切取性能试样要求,铸件允许存在的针孔级别详见GB9438-8

这里应当指出的是,由于铸件壁厚效应的影响,即使针孔严重程度相同,壁厚大的部位力学性能下降,壁厚小的则较高。由于铸件的力学性能取决于多种因素,不仅与针孔等级有关,还与合金的化学成分的波动、铸件的凝固速度、热处理效果、其他缺陷的存在因素有关,所以同一级别的针孔试样,力学性能将在一个相当大的围波动。

5.铝合金铸件针孔形成的主要因素

综上所述,针孔是铝合金铸件中容易出现的且对铸件品质造成一定影响的一种铸造缺陷,氢是造成针孔的主要原因(有的资料介绍,铝液中所溶解的气体中

80%-90%是氢),而氢的主要来源是水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。影响针孔形成的主要因素有:

5.1 原材料、辅助材料的影响

在铝合金熔炼浇注过程中,所使用的原材料、辅助材料、一些材料中的结晶水和铝锈AL(OH)2分解会产生水分,造型材料中有多种有机和无机辅料带有的水分,铸型材料中的辅料、涂料等因为预热不良含有的水分等等,在铝合金熔炼浇注时,会因水蒸气的分解而产生大量的气体,这些气体都有可能导致铸件产生气孔。涂料中粘结剂,虽然可以增加涂层厚度,但也相应增大了发气量。

5.2 熔炼设备及工具的影响

不同熔炼设备熔化铝合金时,铝合金的吸气量和形成气孔的程度是不同的。新坩埚及有锈蚀、污物的旧坩埚,使用前应吹砂或用其他方法清除干净,并加热至700℃-800℃,保温2h-4 h,以去除坩埚所吸附的水分和其它化学物质,否则会因含有水分而在熔炼浇注时产生水蒸气而导致形成气孔。新砌的炉子,通常也需要使用几天或几周的时间进行烘炉干燥处理,否则耐火材料中含有的水分及化学结合的氢就无法释放而导致熔炼时形成气孔。

熔炼用的工具如浇包、除气用的钟罩等,使用前应将表面残余的金属、氧化皮等污物清除干净;铝镁合金使用的工具,使用前则要求放在光卤石等熔剂中洗涤干净。然后涂上防护涂料并进行预热烘干。如果预热不良,表面吸咐的水分,会在熔炼浇注过程因加热形成水蒸气而产生大量的气体,导致铸件针孔的形成。

5.3 气候的影响

一般情况下,周围空气中的氢气含量并不多,但空气中如果相对湿度大,则会增加合金液中气体的溶解度,形成季节性气孔,如在雨季,由于空气湿度大,铝合金熔炼时针孔产生的现象就严重些。当然,空气湿度大时,铝合金锭、熔炼设备、工具等也会因空气潮湿而增加表面水分的吸附量,因此更应注意采取有力预热烘干防护措施,以减少气孔的产生。

5.4 熔化操作的影响

铝合金熔炼时,由于氢气溶解到铝液中需要一个过程,因此加强熔炼过程的控制,对控制铝合金吸气量是大有文章可做的。生产实践表明,铝液吸氢是在表面进行的,它不仅与铝液表面的分压有关,还与合金熔炼温度、熔炼时间等有较大的关系。合金熔化温度越高,熔化时间和熔化后铝液保持时间越,氢在铝液中扩散就越充分,铝液吸氢量就越大,出现针孔的几率就越大。有人曾做试验,铝液存放时间越长,铝合金含气量近似成比例增加。因此,我们在大量生产条件下,为了减少铝合金熔炼时吸收氢气,一定要严格执行铝合金熔炼工艺规程,一般铝合金熔化后保持时间不能超过3h-5h,铝合金熔化温度也不能过高,一般控制在760℃

以下,最高初始熔炼温度不应超过920℃。

5.5 砂型铸造铸型的影响

铸型含水量高,铝合金中含氢量就越高。有人用同炉合金浇入不同含水量的铸型,经测定合金中氢气含量有很大区别③:铸型含水量为5%时,铸型中含氢量为

1.5ml/100g;铸型含水量为6%时,铸型中含氢量为

2.5ml/100g;铸型含水量为8%时,铸型中含氢量为

3.0ml/100g。因此砂型铸造铝合金时,最好采用干燥或表面干燥型,如用湿型,含水量应控制在6%以下。这是因为湿型铸造时,由于水分的汽化温度低,当加热到铝液熔化温度时,砂型中会产生大量的气体,随着压力增大,体积发生膨胀,压力大的气体就会进入型腔或型腔中的铝液,导致侵入性气孔的形成。

5.6 金属型铸造型腔的影响

由于金属型铸造没有退让性和无透气性等特点,金属型在充填和浇注过程中,型腔的气体一方面随着铝液金属的充填被压缩;另一方面又被迅速强烈加热,引起压力升高,结果造成充型反压力,阻碍铝液金属充填型腔,当压力超过一定极限时,气体就可能冲破金属液流束的表层,通过浇口向外逸出,破坏金属液连续流动,并造成强烈氧化,在气体穿越金属液时,如果受到初晶或凝固层的阻挡,便会留在金属液中形成气孔。当带有砂型的金属型铸造时,液体金属在充填过程中,砂型受到粘结剂分解以及涂料未烘干或金属型预热不充分的影响,都会增加型腔的气体量,当型腔的气体不能充分排出时,气体便滞留于铸件形成气孔,而部分残留气体则富集于铸型壁与金属液之间形成“气阻”,这些气阻则使铸件出现浇不足或冷隔缺陷。

6.预防铝合金铸件针孔形成的主要措施

由以上分析可知,铝合金铸件容易产生针孔缺陷。它与铝合金本身特性有关系,也与一系列的外界因素有关。为了避免或减少铝合金在熔炼时产生针孔,保证铝合金铸件具有优良品质,可针对性地采取适当的预防措施予以预防。

6.1 认真做好熔炼浇注时的准备工作

6.1.1 严格按工艺规程要求,正确处理好炉料。炉料使用前应用吹砂或其它方法去除炉料表面的锈迹、泥沙等污物,并进行炉料预热,预热温度:350℃-450℃,保持3h以上,严防带入水分和油污等。按QJ169-75要求的I类铸件,只允许使用一级回炉料,Ⅱ、Ⅲ类铸件允许使用二级回炉料,但Ⅱ类铸件回炉料的总量不允许超过70%,三级回炉料不允许用于基本产品的生产。

6.1.2 坩埚、锭模、熔炼工具,使用前应将表面油污、脏物等清除干净。并预热至120℃-250℃,涂以防护涂料。

6.1.3 新坩埚、新砌炉子、有锈蚀的旧坩埚,使用前应用吹砂其他方法将表面清除干净,并进行烘炉处理。一般应加热至700℃-800℃,保温2h-4h,以去除坩埚所吸附的水分及其它化学物质。

6.1.4 已经涂料的坩埚、锭模、熔炼工具使用前,均须预热,坩埚应预热至暗红色(500℃-600℃);熔炼工具应预热至200℃-400℃,保持2h以上(除使用感应炉熔炼合金时,坩埚可不预热外。)

6.2 严格执行工艺规程,力求做到快速熔炼

铝合金在熔炼时,要力求做到快速熔炼,缩短高温下停留的时间。Al-Mg合金和其它铝合金熔化后保持时间过长时,需要用熔剂覆盖铝合金液面,以防止铝合金吸气,一旦在生产过程中出现异常,要及时与现场技术人员取得联系,采取果断措施予以处理。根据QJ1182-87标准,每一炉合金从开始熔化到浇注完毕的时间,砂型铸造不得超过4h;金属型铸造不得超过6h;压铸不得超过8h;合金最高温度一般不超过760℃,坩埚底部涂料厚度不得小于60mm。

6.3 加强潮湿季节预防措施

在雨季或空气潮湿时节铸造铝合金,我们更应加注意采取预防去气防护措施,对熔炼用具、锭模、坩埚、炉料等都要严格按规进行预热处理,以防带入过多的水分和油污等,引起各类针孔的产生。

6.4 精炼去气,去除铝合金中的气体

一般情况下,所谓“去气”(又叫“除气”)就是去除合金中的气体,“精炼”就是指去除合金中的夹杂物。因铝合金熔炼时,除气和精炼两个工序多合并在一起进行,故在生产实践中习惯将这两个工序称为精炼。由于铝合金中的气体主要是氢气,去气也就是主要去除氢气。目前去气的主要办法是在铝合金过精炼除气剂制造大量的气体(气泡中的气体可能是铝液部经化学反应产生的,也可能性是经由部分精炼除气剂加入直接带入的),利用分压原理,让溶解于铝液中的氢原子向气泡扩散(此时气泡的分压为零),由于气泡比重轻,当气泡上浮到铝液表面时,气泡破裂,氢气逸入大气之中,最终达到去除氢气的目的(氯气及氯盐去气原理示意图见图2)。

图 2. 氯气及氯盐去氢原理示意图

目前,为了消除铝合金铸件针孔,最常用的办法是在熔化过程中用氯盐和氯化物除气,用氯气、氮气除气,用真空除气,用超声波除气,过滤除气等方法。,常用精炼除气剂的用途见表5。采用氯盐和氯化物除气剂除气时,要用钟罩将除气剂压入坩埚底部100mm,沿坩埚直径1/3处(距坩埚壁)的圆周匀速移动。为了

不使铝液大量喷溅,除气剂可分批加入,除气结束除渣,并按表6规定的时间进行静置。

6.5 增加气体在合金中的溶解度

采用快速或高压下凝固的方法,提高气体在铝合金中的溶解度,促进气体来不及或不能析出,从而达到消除针孔的目的。具体方法限于篇幅,在此不做过多阐述。

6.6 采用工艺方法进行除气

通常情况下,砂型铸造也可以采用静置、多扎出气孔和加大冒口等方法进行去气。这里仅以金属型铸造去气预防措施为例做一简易介绍。由于金属型铸造具有无透气性特点,在设计金属型时就必须有排气预防措施,其生产中常用的排气方式有:

(1)利用分型面或型腔零件的组合面的间隙进行排气:因为金属型零件在组合时,总会有间隙,一般分型间隙在0.08mm-0.15mm之间,活动零件间隙在0.1mm-0.2mm之间,利用这些间隙可用来排气,但不允许为了排气而过分扩大间隙,造成金属液阻塞,从而使铸件上毛刺增加,降低铸件尺寸精度。

(2)开排气槽:即在分型面或型腔零件的组合面上,芯座与顶杆表面上做排气槽,这样既能排气,又能蓄气,阻止液体金属流入,故在金属型铸造和金属型低压铸造时被广泛采用。

(3)设排气孔:排气孔一般开设在金属型的最高处,或金属型可能产生“气阻”的地方。

(4)设计排气塞:排气塞是金属型常用的排气设施。在一平面上需要设制数个排气塞时,可用一个排气环来代替,将它设计在型腔的“气阻”处,或型腔的大平面上,以便排气畅通。如在铸件肥厚部分设计排气塞,排气塞可用导热性好的铜制作,同时还可以起到加强铸件冷却的作用。排气塞安装的位置和数量,常在金属型修正时确定。在金属型小批量生产时,为简化排气塞的制作,常在需要设置排气塞的地方,钻ф5-10毫米的小孔,孔塞以水玻璃砂,也可以起到排气塞

的作用。

7.预防铝合金铸件气孔形成应遵循的工艺原则

以上分析了铝合金铸件气孔形成的主要因素,并针对性地论述了一系列相应的预防措施,目的就是要在铸件中防止生成气孔和夹杂,获得优良品质的铸件。从铸造工艺角度综合分析,预防气孔的生成,消除气孔和氧化夹杂,我们可以用“防”、“排”、“溶”三字工艺原则来概括。

“防”:就是要防止水分及各种污物进入坩埚或熔炉中。

“排”:就是要排除铝液中的氧化夹杂和氢气,因为只有有效去除悬浮在铝液中的弥散状的夹杂物(主要是Al2O3),才能防止铝液增氢,消除去氢障碍,从而获得纯净的铝液,浇出合格的铸件。“渣既尽,气必除”说的就是这个意思。

“溶”:就是要使铝液中的氢在凝固时能部分地或者全部地固溶在合金组织中,不致在铸件中形成气孔。

因此,在铝合金熔炼安排和选择“防”、“排”、“溶”三套工艺措施时,我们必须遵循“以防为主,以排为辅”的工艺原则,但最佳的熔炼或重熔方法,着眼点应仍放在“防”字上。

当然,铝合金熔炼或重熔时,贯彻“以防为主,以排队为辅”的原则,正确实施“防”、“排”、“溶”三套工艺措施,还必须具有过硬的熔炼操作基本功,熔炼操作基本功包括:精炼设备、熔炉炼工具的准备和处理,溶剂、变质剂的预制,精炼、变质除渣的技巧,搅拌操作的技巧和合理浇注等等,我们只有具备了过硬的操作基本功,才能真正有效地预防铝合金铸件气孔的形成。

铸件常见缺陷和处理

铸件常见缺陷和处理Last revision on 21 December 2020

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成 份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷)孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色 为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸 气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇 铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。

产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼

渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

压铸常见缺陷原因和改善方法

压铸常见缺陷原因及其改善方法 1).冷紋: 原因:熔汤前端的温度太低,相叠时有痕迹. 改善方法: 1.检查壁厚是否太薄(設計或制造) ,较薄的区域应直接充填. 2.检查形狀是否不易充填;距离太远、封閉区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.並注意是否有肋点或冷点. 3.缩短充填时间.缩短充填时间的方法:… 4.改变充填模式. 5.提高模温的方法:… 6.提高熔汤温度. 7.检查合金成分. 8.加大逃气道可能有用. 9.加真空裝置可能有用. 2).裂痕: 原因:1.收缩应力. 2.頂出或整缘时受力裂开. 改善方式: 1.加大圆角. 2.检查是否有热点. 3.增压时间改变(冷室机). 4.增加或缩短合模时间. 5.增加拔模角. 6.增加頂出銷. 7.检查模具是否有錯位、变形. 8.检查合金成分. 3).气孔: 原因:1.空气夾杂在熔汤中. 2.气体的来源:熔解时、在料管中、在模具中、离型剂. 改善方法: 1.适当的慢速. 2.检查流道转弯是否圆滑,截面积是否渐減. 3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方.

4.检查离型剂是否噴太多,模温是否太低. 5.使用真空. 4).空蚀: 原因:因压力突然減小,使熔汤中的气体忽然膨胀,冲击模具,造成模具損伤.改善方法: 流道截面积勿急遽变化. 5).缩孔: 原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处. 改善方法: 1.增加压力. 2.改变模具温度.局部冷却、噴离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔. 6).脫皮: 原因:1.充填模式不良,造成熔汤重叠. 2.模具变形,造成熔汤重叠. 3.夾杂氧化层. 改善方法: 1.提早切換为高速. 2.缩短充填时间. 3.改变充填模式,浇口位置,浇口速度. 4.检查模具強度是否足夠. 5.检查銷模裝置是否良好. 6.检查是否夾杂氧化层. 7).波紋: 原因:第一层熔汤在表面急遽冷却,第二层熔汤流過未能将第一层熔解,却又有足夠的融合,造成組织不同. 改善方法: 1.改善充填模式. 2.缩短充填时间.

铸件常见缺陷和处理

铸件常见缺陷和处理 The pony was revised in January 2021

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1

产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2)

缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3)

渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

压铸件的缺陷分析及检验

压铸件的缺陷分析及检验 一、流痕 ( 条纹 )( 抛光法去除 )A. 、模温低于 180( 铝合金 )b 、填充速度太高 c 、涂料过量 D 。金属流不同步。对 a 采取措施:调整内浇口面积 二、冷接: A 料温低或模温低, B ,合金成份不符,流动性差。 C ,浇口不合理,流程太长 D 。填充速度低 E 。排气不良。 F 、比压偏低。 三、。擦伤(扣模、粘模、拉痕、拉伤): A 型芯铸造斜度太小。 B ,型芯型壁有压伤痕。 C ,合金粘附模具。 D ,铸件顶出偏斜,或型芯轴线偏斜。 E ,型壁表面粗糙。 F ,脱模水不够。 G ,铝合金含铁量低于 0 。 6 %。措施:修模,增加含铁量。 四、凹陷(缩凹,缩陷,憋气,塌边) A .铸件设计不合理,有局部厚实现象,产生节热。 B ,合金收缩量大。 C ,内浇口面积太小。 D ,比压低。 E ,模温高 五、,气泡(皮下): A ,模温高。 B ,填充速度高。 C ,脱模水发气量大。 D ,排气不畅。 E ,开模过早。 F ,料温高。 六、气孔: A ,浇口位置和导流形状不当。 B ,浇道形状设计不良。 C ,压室充满度不够。 D ,内浇口速度太高,产生湍流。 E ,排气不畅。 F ,模具型腔位置太深。 G ,脱模水过多。 H ,料不纯。 七、缩孔: A ,料温高。 B ,铸件结构不均匀。 C ,比压太低。 D ,溢口太薄。 E ,局部模温偏高 八、花纹: A ,填充速度快。 B ,脱模水量太多。 C ,模具温度低。 九、裂纹: A ,铸件结构不合理,铸造圆角小等。 B ,抽芯及顶出装置在工作中受力不均匀,偏斜。 C ,模温低。 D ,开模时间长。 E ,合金成份不符。(铅锡镉铁偏高:锌合金,铝合金:锌铜铁高,镁合金:铝硅铁高 十、欠铸 A ,合金流动不良引起。 B ,浇注系统不良 C ,排气条件不良 十一、印痕(镶块或活动块及顶针痕等) 十二、网状毛刺: A ,模具龟裂。 B ,料温高。 C ,模温低。 D ,模腔表面不光滑。 E ,模具材料不当或热处理工艺不当。 F ,注射速度太高。

压铸件常见缺陷和处理

铸件常见缺陷和处理 一、飞边: 飞边就是铸件在分型面上(或活动部位处)突出过多的金属薄片。产生的原因有: 1.压射前机器的调整、操作不合适。 2.模具及滑块损坏,闭锁原件损坏 3.模具镶块及滑块磨损 4.模具强度不够造成变形 5.分型面上杂物未清理干净 6.投影面积计算不正确,超过锁模力 二、气泡 铸件表面下,聚齐气体因热胀将表面鼓起的泡,称为气泡。产生的原因: 1.模具温度过高 2.金属液卷入气体过多 3.涂料过多,浇入前未燃净,使挥发气体被包在铸件表面。 4.排气不畅 5.开模过早 三、孔穴 孔穴包括气孔和缩孔 气孔,气孔有两种:一种是金属液卷入气体形成内表面光亮和光滑、形状较为规则的孔洞,另一种是合金熔炼不正

确或精炼不够,气体溶解于合金中。压铸时,激冷甚剧,凝固很快,溶于金属中的气体来不及析出,使金属内的气体留在铸件内形成孔洞。产生的原因有: 1.浇口位置选择和导流不当,导致金属液进入型腔产生正面撞击及漩涡。 2.流道形状设计不良, 3.压室充满度不够 4.内浇口速度太高,形成端流。 5.排气不畅 6.模具型腔位置太深 7.机械加工于量太大 8.涂料过多,在填充前未燃尽 9.炉料不干净,精炼不良 缩孔,铸件在凝固过程中,由于金属补充不足形成的暗色、形状不规则的孔洞。产生的原因有: 1.合金规范不合适,浇入温度过高 2.金属液过热时间太长 3.比压太低 4.余料柄太薄,最终补压不到作用 5.内浇口截面积过小(主要是厚度不够) 6.溢流槽位置不对或容量不够

7.铸件结构不合理,有热节部位,并且该处无法用溢流槽解决 8.铸件的壁厚变化太大 四、夹杂 夹杂又称为夹物、砂眼、夹渣。在铸件表面或内部形成不规则的孔穴部分或全部充塞着杂物,产生的原因有: 1.炉料不干净 2.合金精炼不够,熔渣未除净 3.舀取金属液时带入熔渣及金属氧化物 4.模具未清里干净 5.涂料中石墨太多 五、冷豆 冷豆也称铁豆,其表现是嵌在铸件表面,未和铸件完全融合的金属颗粒,产生的原因有: 1.浇注系统设置不当 2.填充速度过快 3.金属过早进入型腔 六、麻面 产生的原因是由于填充时,金属液分散成密集液滴,高速撞击型壁,结果形成具有强烈流向的细小、密集的麻点区域。 七、印痕

压铸件常缺陷原因及解决方法

压铸件常缺陷原因及解决方法 压铸件常缺陷原因及解决方法压铸件常缺陷分析 压铸件抛丸后产品表面变色,主要是使用的抛丸有问题。若是使用不锈钢丸,在里面加少量铝丸,抛后产品表面白亮。 压铸件表面经常有霉点,严重影响铸件的外观质量,主要是脱模剂造成。目前,市面上大大小小生产脱模剂的厂家有一大批,其中不少厂质量存在各种问题,最 主要的就是对压铸件会产生腐蚀作用。一般压铸件厂不太注意,压铸件时间放得长一些,表面就会有白斑(霜状、去掉后呈黑色)出现,实际上已产生腐蚀。主要是脱模剂中有会产生腐蚀作用的成分。所以选择脱模剂一定不要只追求价格低,要讲性价比。 压铸件在抛丸后经常出现表面起皮现象,般由如下一些原因造成:1.模具或压射室(熔杯)未清理干净;2.压射压力不够,(还需注意压射时动模有否退让现象);3. 浇注系统开设有点问题,合金液进入型腔有紊流现象;4.模温问题等5.压射时金属液飞溅严重。 脱模剂一般不会渗透到压铸件里面。但劣质脱模剂会对压铸件表面产生腐蚀作用,而且会向内部渗透;另外,脱模剂发气量大的话,会卷入压铸件里面形成气孔。如果使用脱模膏之类的涂料不当时,会产生夹渣等缺陷。 用7005焊丝焊接7005压铸件,在焊接处出现油污和气泡,焊接方式为氩弧焊。一般存在如下问题:1.焊丝与压铸件表面有油污,未清洗干净;2.氩气不纯净,市售氩气有的里面杂质多,甚至含有水气,应选优质气。 合金压铸如果出模角度控制不好,经常出现粘模现角,如何来计算这个角度?压铸模出模斜度根据合金和铸件高度不同,有所不同。一般铝合金压铸件拔模高度从 3mm~250mm内壁出模斜度按5o30'~0o30',外壁出模斜度取其一半;圆型芯的出模斜度,按4o~0o30'。文字符号的出模斜度按10o~15o具体如何细分挡次和各挡次斜度值的选取,请参阅模具设计手册或压铸件标准等资料。 压铸件一般不进行T6处理.2.若进行T6处理,表面会变色(灰暗3.变形与否, 取决于压铸件本身的形状和在加热炉里放置是否得当.只要注意,一般不会变形. 4. 把刚出模的压铸件放进水里,起不到T6的效果. 锌合金电镀起泡。电镀不良可由电镀工艺和压铸件表面质量等因素引起。压铸 件应保证表面质量良好,不能有疏松、裂纹、气孔、气泡、缩孔、冷纹、针孔等缺陷,否则电镀后铸件表面易起泡,电镀层与基体脱离。_ |电镀前进行研磨及抛光时,注意不要研磨过度。因为压铸件在凝固过程中,表面因急冷而形成一层致密的冷硬层,而内部组织则可能有气孔、缩孔等缺陷。研磨时不要磨去这个良好的表层,否则电镀时会出现麻点、气泡等。另外,抛光轮不要压得太紧过热, 防止研磨剂与产品粘连,造成产品电镀不良。 本人现有一个ZN4-1材质的压铸件,经静电喷涂后表面有小疙瘩,怎么处理?急呀?另外电泳也不行,表面也有小疙瘩,到底此件可以采用什么方法表面喷黑?原因是压铸件本身质量问题。1.锌合金原材料纯净度;2.压铸生产时精炼除气扒渣问题;3.模具排气及脱模剂等。锌合金压铸件需表面处理的必须注意上述问题,与铝件不一样。另外熔化锌合金时瞬时最高温度不得超过450度,浇注温度400度。无论采用那种表面处理方法,处理时温度不得超过150度。 压铸件内有气孔产生,产生原因1.金属流动方向不正确,与铸件型腔发生正面冲击,产生涡流,将空气包围,产生气泡 2.内浇口太小,金属流速太大在空气未排除前,

锌合金压铸件常见缺陷及处理方法【干货】

锌合金压铸件常见缺陷及处理方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 锌合金压铸件是一种压力铸造的零件,是使用装好铸件模具的压力铸造机械压铸机,将加热为液态的锌或锌合金浇入压铸机的入料口,经压铸机压铸,铸造出模具限制的形状和尺寸的锌零件或锌合金零件,这样的零件通常就被叫做锌合金压铸件。 特点及应用: 近年来,我国锌合金压铸技术快速发展,带来的经济利益与市场效益不容小觑,据专家介绍,锌合金压铸技术主要有以下特点: 1、相对比重大。 2、铸造性能好,可以压铸形状复杂、薄壁的精密件,铸件表面光滑。 3、可进行表面处理:电镀、喷涂、喷漆、抛光、研磨等。 4、熔化与压铸时不吸铁,不腐蚀压型,不粘模。 5、有很好的常温机械性能和耐磨性。 6、熔点低,容易压铸成型。 要了解锌合金压铸首先要明白锌合金的一些特点,锌合金对锌合金压铸来说起着重要的作用。 锌合金压铸的主要特点有,锌合金的熔点较低,温度到达四百度时锌合金就产生融化过程,这在锌合金压铸中来说比较好成型。锌合金在融化和压铸的过程中不吸铁,而且锌合金

铸造性能好,在压铸过程中可以把很多形状复杂的精密件,压铸完成后铸件的表面显得十分光滑。同时,锌合金的比重相对较大。 锌合金压铸技术广泛应用在注塑工艺上,它的主要的优点就是在注重提高铸件质量。了解锌合金压铸的都知道,在铸件中流道和余料是铸件的一部分,在铸件里面它们苏没有什么利用的价值,但是这些还是被计入了铸件是成本上。同时型合金还有可回收性,一般的在会把这些余料返回原来的供货商,以换取新的材料。在供货商没有进行良好的处理,那么会导致空气的污染,会带来环境危害。锌合金压铸的回收方式还有很多种,而且锌合金压铸是以锌为主要的元素组成的合金,还有其他的一些合金元素,像铝、铜等。锌合金压铸的制造工艺通常也分为两种,一种为铸造锌合金,一种为变形锌合金。每种方式对锌合金铸造来说都有不同的特点所在。 锌合金压铸件目前广泛应用于各类装饰的表面,比如:皮带扣,领带夹,玩具,建筑装饰,家具配件,各类金属饰扣等,通常铸件表面的质量要求非常高.但在生产过程中,也难免会发生缺陷,东莞锌合金压铸厂家给大家介绍下锌合金压铸件常见缺陷原因和解决方法。 1、锌合金压铸件局部变形或表面有裂纹 原因:铸件壁太薄,收缩后变形;顶料杆数量不够或分布不均,导致受力不均匀;推料杆固定板在工作时发生偏斜,导致一面受力小,一面受力大,使产品产生裂纹和发生变形。解决方法为:调整和重新安装推杆固定板;增加顶料杆的数量,调整其分布位置,使铸件顶出受力均衡。 2、锌合金压铸件有一部分没有成形,型腔充不满 原因:空气排不出来;压机压力太小,金属液温度低,压铸模温度太低,金属液不足,压射速度太高。锌合金压铸厂告诉大家,可以采取的方法为:更换大压力的压铸机;提高压铸模和金属液温度;加足够的金属液,减小压射速度,加大进料口厚度。

压铸常见缺陷的改善方法

压铸常见缺陷的改善方法 发布时间:2006-12-31 10:41:10 浏览次数:43 1).冷紋: 原因:熔汤前端的温度太低,相叠时有痕迹. 改善方法: 1.检查壁厚是否太薄(設計或制造) ,较薄的区域应直接充填. 2.检查形狀是否不易充填;距离太远、封閉区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.並注意是否有肋点或冷点.3.缩短充填时间.缩短充填时间的方法:… 4.改变充填模式. 5.提高模温的方法:… 6.提高熔汤温度. 7.检查合金成分. 8.加大逃气道可能有用. 9.加真空裝置可能有用. 2).裂痕: 原因: 1.收缩应力. 2.頂出或整缘时受力裂开. 改善方式: 1.加大圆角. 2.检查是否有热点. 3.增压时间改变(冷室机). 4.增加或缩短合模时间.

5.增加拔模角. 6.增加頂出銷. 7.检查模具是否有錯位、变形. 8.检查合金成分. 3).气孔: 原因: 1.空气夾杂在熔汤中. 2.气体的来源:熔解时、在料管中、在模具中、离型剂. 改善方法: 1.适当的慢速. 2.检查流道转弯是否圆滑,截面积是否渐減. 3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方. 4.检查离型剂是否噴太多,模温是否太低. 5.使用真空. 4).空蚀: 原因:因压力突然減小,使熔汤中的气体忽然膨胀,冲击模具,造成模具損伤. 改善方法: 流道截面积勿急遽变化. 5).缩孔: 原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处.改善方法: 1.增加压力.

2.改变模具温度.局部冷却、噴离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔. 6).脫皮: 原因: 1.充填模式不良,造成熔汤重叠. 2.模具变形,造成熔汤重叠. 3.夾杂氧化层. 改善方法: 1.提早切換为高速. 2.缩短充填时间. 3.改变充填模式,浇口位置,浇口速度. 4.检查模具強度是否足夠. 5.检查銷模裝置是否良好. 6.检查是否夾杂氧化层. 7).波紋: 原因: 第一层熔汤在表面急遽冷却,第二层熔汤流過未能将第一层熔解,却又有足夠的融合,造成組织不同.改善方法: 1.改善充填模式. 2.缩短充填时间. 8).流动不良产生的孔: 原因:熔汤流动太慢、或是太冷、或是充填模式不良,因此在凝固的金属接合处有孔. 改善方法:

铸件常见缺陷修补及检验

铸件常见缺陷的鉴别、起因、修补及检验----------------------------------------------福联造型,呋喃树脂、酚醛树脂、覆膜砂专家 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。

产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼

渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

(推荐)铸件外观缺陷图

铸件常见缺陷 常见缺陷 缺陷的分类:铸件常见缺陷分为孔眼、裂纹、表面缺陷、残缺类缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格六大类。 1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、等。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:其表面一般比较光滑,主要呈梨形\圆形和椭圆形.一般在铸件表面露出,大孔常孤立存在,小孔则成群出现。(如图) 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔壁粗糙并带有技状晶,常出现在铸件最后凝固的部位,广义的缩孔包括缩松。(如图)

产生的原因是:金属在液体及凝固期间由于补缩不良而产生的孔洞,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:铸件断面上出现的分散而细小的缩孔.助高倍放大镜才能发现的缩松称为显微缩松,铸件有缩松的部位,在气密性实验时易渗漏。(如图) 产生的原因同以上缩孔。 1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。

渣眼的特征是:铸件浇注位置上表面的非金属夹杂物。通常在加工后发现与气孔并存,孔径大小不一,成群集结。(如图) 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:铸件内部或表面带有砂粒的孔洞(如图)。 。

简要分析常见压铸产品问题及原因

简要分析常见压铸产品问题及原因 流痕:在表面出现波浪或条纹,原因为流入模具内的熔汤熔融状态不充分。 缺料:由于模具充填不充分或入料口、溢料口设计不当而导致。 裂缝:由于外力产生微小的裂纹。原因为铸件凝固收缩,或脱模时模具有轻微的移动。 缩水:材料有像火山口一样的凹陷。原因为铸件在肉厚处的收缩。 起泡:铸件表面的砂孔,有像水泡或肿块凸起,为铸件开模或热处理时膨胀。积炭:熔汤熔着模具表面,使得铸件表面产生缺肉或粗糙的现象。 热裂纹:模具表面有热裂纹的伤痕时使得铸件表面产生同样形状的伤痕。 冲蚀:熔汤高温高速冲蚀模具,使得铸件产生与模具相同的伤痕。 脱皮:铸件表面部分剥离的现象,最易发生在表面光滑的铸件上。 针孔:针状细小的砂孔,或因卷入气体而产生小孔状的内部缺陷,此缺陷有时出现在表面上。 擦伤:由于磨损使表面不理想,有比较长的痕迹。 缩孔:因熔汤凝固收缩而产生的内部砂孔。 气孔:因卷入气体或空气导致铸件内部存在的砂孔。 玷污:其它材料或其它材料的加入使表面变色,如机器润滑油,离型剂等。 隔层:铸件层剥皮。 变形:塑料在模具中部分变形。 凹陷:由于不同的材料的结合度和收缩率不同,引起表面凹陷。 拉伤:铸件表面的磨损或磨擦使得表面不理想。 腐蚀:在材质表面有不连续的痕迹,由氧化引起。 凹痕:由于挤压或撞击而产生的凹坑。 毛刺:在孔或边有粗糙和锋利的棱角(相对于材料的厚度和凸起的高度)。 结合线:在两处或更多的材料融合点有线条(并且终止了结合或流动) 分模线:在模具的两块或镶块之间有一条明显的线,例如:如果模具安装不当,在模 具的主要部分能明显的看到明显的看到微小的凸起的线条 模具制作工艺流程: 审图—备料—加工—模架加工—模芯加工—电极加工—模具零件加工—检验—装配—飞模—试模—生产 A:模架加工:1打编号,2 A/B板加工,3面板加工,4顶针固定板加工,5底板加工 B:模芯加工:1飞边,2粗磨,3铣床加工,4钳工加工,5CNC粗加工,6热处理,7精磨,8CNC精加工,9电火花加工,10省模 C:模具零件加工:1滑块加工,2压紧块加工,3分流锥浇口套加工,4镶件加工 模架加工细节

铸造铸件常见缺陷分析报告

铸造铸件常见缺陷分析 铸造工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 常见铸件缺陷及产生原因

缺陷名称特征产生的主要原因 气孔 在铸件部或表 面有大小不等 的光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 砂眼在铸件部或表 面有型砂充塞 的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,浇口方向不对,金属液冲坏了砂

型;④合箱时型腔或浇口散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有 一层型砂①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 错型铸件沿分型面 有相对位置错①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压

压铸常见缺陷原因及其改善方法

压铸常见缺陷原因及其改善方法 1).冷纹:原因:熔汤前端的温度太低,相叠时有痕迹. 改善方法: 1.检查壁厚是否太薄(设计或制造),较薄的区域应直接充填. 2 .检查形状是否不易充填;距离太远、封闭区域(如鳍片(fin)、凸起)、被阻挡区域、圆角太小等均不易充填.并注意是否有肋点或冷点. 3. 缩短充填时间.缩短充填时间的方法:… 4. 改变充填模式. 5. 提高模温的方法:… 6. 提高熔汤温度. 7. 检查合金成分. 8. 加大逃气道可能有用. 9. 加真空装置可能有用. 2).裂痕: 原因:1.收缩应力. 2. 顶出或整缘时受力裂开. 改善方式: 1. 加大圆角. 2. 检查是否有热点. 3. 增压时间改变(冷室机). 4. 增加或缩短合模时间. 5. 增加拔模角. 6. 增加顶出销. 7. 检查模具是否有错位、变形. 8. 检查合金成分. 3).气孔: 原因:1.空气夹杂在熔汤中. 2. 气体的来源:熔解时、在料管中、在模具中、离型剂. 改善方法: 1. 适当的慢速. 2. 检查流道转弯是否圆滑,截面积是否渐减.

3. 检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方. 4.检查离型剂是否喷太多,模温是否太低. 5.使用真空. 4) .空蚀:原因:因压力突然减小,使熔汤中的气体忽然膨胀,冲击模具,造成模具损伤.改善方法: 流道截面积勿急遽变化. 5) .缩孔:原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处. 改善方法: 1.增加压力. 2.改变模具温度.局部冷却、喷离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔. 6) .脱皮: 原因:1.充填模式不良,造成熔汤重叠.2.模具变形,造成熔汤重叠. 3.夹杂氧化层. 改善方法: 1.提早切换为高速. 2.缩短充填时间.3.改变充填模式,浇口位置,浇口速度. 4.检查模具强度是否足够. 5.检查销模装置是否良好.6.检查是否夹杂氧化层. 7) .波纹: 原因:第一层熔汤在表面急遽冷却,第二层熔汤流过未能将第一层熔解,却又有足够的融合,造成组织不同. 改善方法: 1.改善充填模式. 2.缩短充填时间. 8) .流动不良产生的孔:原因:熔汤流动太慢、或是太冷、或是充填模式不良,因此在凝固的金属接合处有孔. 改善方法:1.同改善冷纹方法.

压铸件常见缺陷和处理

压铸件常见缺陷和处理Last revision on 21 December 2020

铸件常见缺陷和处理 一、飞边: 飞边就是铸件在分型面上(或活动部位处)突出过多的金属薄片。产生的原因有: 1.压射前机器的调整、操作不合适。 2.模具及滑块损坏,闭锁原件损坏 3.模具镶块及滑块磨损 4.模具强度不够造成变形 5.分型面上杂物未清理干净 6.投影面积计算不正确,超过锁模力 二、气泡 铸件表面下,聚齐气体因热胀将表面鼓起的泡,称为气泡。产生的原因: 1.模具温度过高 2.金属液卷入气体过多 3.涂料过多,浇入前未燃净,使挥发气体被包在铸件表面。 4.排气不畅 5.开模过早 三、孔穴 孔穴包括气孔和缩孔 气孔,气孔有两种:一种是金属液卷入气体形成内表面光亮和光滑、形状较为规则的孔洞,另一种是合金熔炼

不正确或精炼不够,气体溶解于合金中。压铸时,激冷甚剧,凝固很快,溶于金属中的气体来不及析出,使金属内的气体留在铸件内形成孔洞。产生的原因有: 1.浇口位置选择和导流不当,导致金属液进入型腔产生正面撞击及漩涡。 2.流道形状设计不良, 3.压室充满度不够 4.内浇口速度太高,形成端流。 5.排气不畅 6.模具型腔位置太深 7.机械加工于量太大 8.涂料过多,在填充前未燃尽 9.炉料不干净,精炼不良 缩孔,铸件在凝固过程中,由于金属补充不足形成的暗色、形状不规则的孔洞。产生的原因有: 1.合金规范不合适,浇入温度过高 2.金属液过热时间太长 3.比压太低 4.余料柄太薄,最终补压不到作用 5.内浇口截面积过小(主要是厚度不够) 6.溢流槽位置不对或容量不够

铸件常见缺陷和处理

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。

缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。

1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆

压铸件常见缺陷及处理1

压铸件常见缺陷及处理 一、飞边: 飞边就是铸件在分型面上(或活动部位处)突出过多的金属薄片。产生的原因有: 1.压射前机器的调整、操作不合适。 2.模具及滑块损坏,闭锁原件损坏 3.模具镶块及滑块磨损 4.模具强度不够造成变形 5.分型面上杂物未清理干净 6.投影面积计算不正确,超过锁模力 二、气泡 铸件表面下,聚齐气体因热胀将表面鼓起的泡,称为气泡。产生的原因: 1.模具温度过高 2.金属液卷入气体过多 3.涂料过多,浇入前未燃净,使挥发气体被包在铸件表面。 4.排气不畅 5.开模过早 三、孔穴 孔穴包括气孔和缩孔 气孔,气孔有两种:一种是金属液卷入气体形成内表面光亮和光滑、形状较为规则的孔洞,另一种是合金熔炼不正确或精炼不够,气体溶解于合金中。压铸时,激冷甚剧,凝固很快,溶于金属中的气体来不及析出,使金属内的气体留在铸件内形成孔洞。产生的原因有: 1.浇口位置选择和导流不当,导致金属液进入型腔产生正面撞击及漩涡。 2.流道形状设计不良, 3.压室充满度不够 4.内浇口速度太高,形成端流。 5.排气不畅 6.模具型腔位置太深 7.机械加工于量太大 8.涂料过多,在填充前未燃尽 9.炉料不干净,精炼不良 缩孔,铸件在凝固过程中,由于金属补充不足形成的暗色、形状不规则的孔洞。产生的原因有: 1.合金规范不合适,浇入温度过高 2.金属液过热时间太长 3.比压太低 4.余料柄太薄,最终补压不到作用 5.内浇口截面积过小(主要是厚度不够) 6.溢流槽位置不对或容量不够 7.铸件结构不合理,有热节部位,并且该处无法用溢流槽解决 8.铸件的壁厚变化太大 四、夹杂

夹杂又称为夹物、砂眼、夹渣。在铸件表面或内部形成不规则的孔穴部分或全部充塞着杂物,产生的原因有: 1.炉料不干净 2.合金精炼不够,熔渣未除净 3.舀取金属液时带入熔渣及金属氧化物 4.模具未清里干净 5.涂料中石墨太多 五、冷豆 冷豆也称铁豆,其表现是嵌在铸件表面,未和铸件完全融合的金属颗粒,产生的原因有: 1.浇注系统设置不当 2.填充速度过快 3.金属过早进入型腔 六、麻面 产生的原因是由于填充时,金属液分散成密集液滴,高速撞击型壁,结果形成具有强烈流向的细小、密集的麻点区域。 七、印痕 顶出原件引起:表现是在铸件表面上出现凹痕或凸痕,产生原因: 1.顶出原件调整不正确 2.推杆端部模损 3.推杆面积太小 4.开模过早 镶件或活动部分引起:表现在铸件平整的表面上出现阶梯痕迹,产生的原因有: 1.镶件部分松动 2.活动部分松动或磨损 3.镶件的侧壁表面由动定模互相穿插的镶件所形成 八、裂纹 铸件的基体被破坏或断开,形成细长的缝隙,呈不规则线性,在外力的作用下有发展的趋势,这种缺陷称为裂纹 原因: 铸件结构和形状引起的: 1.铸件的壁厚处与壁薄相接处转变剧烈 2.铸件上的转折处圆角不够 3.铸件上能安装推杆的位置不够,造成推杆分布不均衡 4.铸件设计上考虑不周收缩时产生应力而撕裂 模具的成型零件表面质量不好,装固不稳引起的: 1.成型表面沿出模方向有凹陷(或凹坑),铸件脱出撕裂 2.凸的成型表面其根部加工痕迹未能消除,铸件被撕裂 3.成型零件装固有偏斜,阻碍铸件脱出 顶出造成的: 1.模具的顶出原件安置不合理(位置或个数) 2.顶出机构偏斜,顶出力不均衡 3.模具的顶出机构与压铸机上的顶出器的连接不合理,或有歪斜,或动作不协调 4.顶动顶出时的机器顶杆长短不一致,液压顶出的顶棒长短不一致 合金的成分引起:

压铸常见缺陷原因及其改善方法

压铸常见缺陷原因及其改善方法 1).冷纹: 原因:熔汤前端的温度太低,相叠时有痕迹. 改善方法: 1.检查壁厚是否太薄(设计或制造) ,较薄的区域应直接充填. 2.检查形状是否不易充填;距离太远、封闭区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.并注意是否有肋点或冷点. 3.缩短充填时间.缩短充填时间的方法:… 4.改变充填模式. 5.提高模温的方法:… 6.提高熔汤温度. 7.检查合金成分. 8.加大逃气道可能有用. 9.加真空装置可能有用. 2).裂痕: 原因:1.收缩应力. 2.顶出或整缘时受力裂开. 改善方式: 1.加大圆角. 2.检查是否有热点. 3.增压时间改变(冷室机). 4.增加或缩短合模时间. 5.增加拔模角. 6.增加顶出销. 7.检查模具是否有错位、变形. 8.检查合金成分. 3).气孔: 原因:1.空气夹杂在熔汤中. 2.气体的来源:熔解时、在料管中、在模具中、离型剂. 改善方法: 1.适当的慢速. 2.检查流道转弯是否圆滑,截面积是否渐减. 3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方.

4.检查离型剂是否喷太多,模温是否太低. 5.使用真空. 4).空蚀: 原因:因压力突然减小,使熔汤中的气体忽然膨胀,冲击模具,造成模具损伤.改善方法: 流道截面积勿急遽变化. 5).缩孔: 原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处. 改善方法: 1.增加压力. 2.改变模具温度.局部冷却、喷离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔. 6).脱皮: 原因:1.充填模式不良,造成熔汤重叠. 2.模具变形,造成熔汤重叠. 3.夹杂氧化层. 改善方法: 1.提早切换为高速. 2.缩短充填时间. 3.改变充填模式,浇口位置,浇口速度. 4.检查模具强度是否足够. 5.检查销模装置是否良好. 6.检查是否夹杂氧化层. 7).波纹: 原因:第一层熔汤在表面急遽冷却,第二层熔汤流过未能将第一层熔解,却又有足够的融合,造成组织不同. 改善方法: 1.改善充填模式. 2.缩短充填时间.

锌合金压铸件常见缺陷及处理方法

锌合金压铸件常见缺陷及处理方法 锌合金压铸件目前广泛应用于各种装饰方面,如家具配件、建筑装饰、浴室配件、灯饰零件、玩具、领带夹、皮带扣、各种金属饰扣等,因此对铸件表面质量要求较高,同时要求有良好的表面处理性能。 缺陷表征:压铸件表面有突起小泡、压铸出来就发现、抛光或加工后显露出来、喷油或电镀后出现。产生原因: 1.孔洞引起:主要是气孔和收缩机制,气孔往往是圆形,而收缩多数是不规则形。 (1)气孔产生原因:a金属液在充型、凝固过程中,由于气体侵入,导致铸件表面或内部产生孔洞。b涂料挥发出来的气体侵入。c合金液含气量过高,凝固时析出。当型腔中的气体、涂料挥发出的气体、合金凝固析出的气体,在模具排气不良时,最终留在铸件中形成的气孔。 (2)缩孔产生原因:a金属液凝固过程中,由于体积缩小或最后凝固部位得不到金属液补缩,而产生缩孔。b厚薄不均的铸件或铸件局部过热,造成某一部位凝固慢,体积收缩时表面形成凹位。由于气孔和缩孔的存在,使压铸件在进行表面处理时,孔洞可能会进入水,当喷漆和电镀后进行烘烤时,孔洞内气体受热膨胀;或孔洞内水会变蒸气,体积膨胀,因而导致铸件表面起泡。 2.晶间腐蚀引起: 锌合金成分中有害杂质:铅、镉、锡会聚集在晶粒交界处导致晶间腐蚀,金属基体因晶间腐蚀而破碎,而电镀加速了这一祸害,受晶间腐蚀的部位会膨胀而将镀层顶起,造成铸件表面起泡。特别是在潮湿环境下晶间腐蚀会使铸件变形、开裂、甚至破碎。 3.裂纹引起:水纹、冷隔纹、热裂纹。 水纹、冷隔纹:金属液在充型过程中,先进入的金属液接触型壁过早凝固,后进入金属液不能和已凝固金属层熔合为一体,在铸件表面对接处形成叠纹,出现条状缺陷。水纹一般是在铸件表面浅层;而冷隔纹有可能渗入到铸件内部。 热裂纹:a当铸件厚薄不均,凝固过程产生应力;b过早顶出,金属强度不够;c顶出时受力不均d过高的模温使晶粒粗大;e有害杂质存在。 以上因素都有可能产生裂纹。当压铸件存在水纹、冷隔纹、热裂纹,电镀时溶液会渗入到裂纹中,在烘烤时转化为蒸气,气压顶起电镀层形成起泡。 解决缺陷方案: 控制气孔产生,关键是减少混入铸件内的气体量,理想的金属流应不断加速地由喷嘴经过分流锥和浇道进入型腔,形成一条顺滑及方向一致的金属流,采用锥形流道设计,即浇流应不断加速地由喷嘴向内浇口逐渐减少,可达到这个目的。在充填系统中,混入的气体是由于湍流与金属液相混合而形成气孔,从金属液由浇铸系统进入型腔的模拟压铸过程的研究中,明显看出浇道中尖锐的转变位和递增的浇道截面积,都会使金属液流出现湍流而卷气,平稳的金属液才有利于气体从浇道和型腔进入溢流槽和排气槽,排出模外。 对于缩孔:要使压铸凝固过程中各个部位尽量同时均匀散热,同时凝固。可通过合理的水口设计,内浇口厚度及位置,模具设计,模温控制及冷却,来避免缩孔产生。对于晶间腐蚀现象:主要是控制合金原料中有害杂质含量,特别是铅<0.003%。注意废料带来的杂质元素。 对于水纹、冷隔纹,可提高模具温度,加大内浇口速度,或在冷隔区加大溢流槽,来减少冷隔纹的出现。 对于热裂纹:压铸件厚薄不要急剧变化以减少应力产生;相关的压铸工艺参数作调整;降低模温。

锌合金压铸件缺陷及原因

压铸件常见缺陷分析 一、锌合金压铸件表面有花纹,并有金属流痕迹产生原因: 1、通往铸件进口处流道太浅。 2、压射比压太大,致使金属流速过高,引起金属液的飞溅。 调整方法:1、加深浇口流道。2、减少压射比压。 二、锌合金压铸件表面有细小的凸瘤产生原因: 1、表面粗糙。 2、型腔内表面有划痕或凹坑、裂纹产生。 调整方法:1、抛光型腔。2、更换型腔或修补。 三、铸件表面有推杆印痕,表面不光洁,粗糙产生原因: 1、推件杆(顶杆)太长; 2、型腔表面粗糙,或有杂物。 调整方法:1、调整推件杆长度。2、抛光型腔,清除杂物及油污。 四、锌合金压铸件表面有裂纹或局部变形产生原因: 1、顶料杆分布不均或数量不够,受力不均: 2、推料杆固定板在工作时偏斜,致使一面受力大,一面受力小,使产品变形及产生裂纹。 3、铸件壁太薄,收缩后变形。 调整方法: 1、增加顶料杆数量,调整其分布位置,使铸件顶出受力均衡。 2、调整及重新安装推杆固定板。 五、锌合金压铸件表面有气孔产生原因: 1、润滑剂太多。 2、排气孔被堵死,气孔排不出来。 调整方法:1、合理使用润滑剂。2、增设及修复排气孔,使其排气通畅。 六、铸件表面有缩孔产生原因: 压铸件工艺性不合理,壁厚薄变化太大。金属液温度太高。 调整方法:1、在壁厚的地方,增加工艺孔,使之薄厚均匀。2、降低金属液温度。 七、铸件外轮廓不清晰,成不了形,局部欠料产生原因: 1、压铸机压力不够,压射比压太低。 2、进料口厚度太大; 3、浇口位置不正确,使金属发生正面冲击。 调整方法: 1、更换压铸比压大的压铸机; 2、减小进料口流道厚度; 3、改变浇口位置,防止对铸件正面冲击。 八、铸件部分未成形,型腔充不满产生原因: 1、压铸模温度太低; 2、金属液温度低; 3、压机压力太小, 4、金属液不足,压射速度太高; 5、空气排不出来。 调整方法:1、提高压铸模,金属液温度;2、更换大压力压铸机。3、加足够的金属液,减小压射速度,加大进料口厚度。 九、压铸件锐角处充填不满产生原因: 1、内浇口进口太大; 2、压铸机压力过小; 3、锐角处通气不好,有空气排不出来。 调整方法:1、减小内浇口。2、改换压力大的压铸机。3、改善排气系统 十、铸件结构疏松,强度不高产生原因: 1、压铸机压力不够; 2、内浇口太小; 3、排气孔堵塞。

相关文档
相关文档 最新文档