文档库 最新最全的文档下载
当前位置:文档库 › 共源极放大器电路及原理

共源极放大器电路及原理

共源极放大器电路及原理
共源极放大器电路及原理

共源极放大器电路及原理

1)静态工作点的测试

上图为场效应管共源极放大器实验电路图。该电路采用的自给偏压的方式为放大器建立静态工作点,栅极通过R1接地,因R1中无电流流过,所以栅极与地等电位。即VG=0,可用万用表测出静态工作点IDQ和VDSQ值。

2)输入输出阻抗的测试

(1)输入阻抗的测量

上图是伏安法测试放大电路的连接图。其在输入回路中串接一取样电阻R,输入信号调整在放大电路用晶体管毫对地的交流电压VS与Vi,这样求得两端的电压为VR=VS-Vi,流过电阻R的电流实际就是放大电路的输入电流Ii。

根据输入电阻的定义得

2)输出阻抗的测量

放大器输出阻抗的大小,说明该放大器带负载的能力。用伏安法测试放大电路的输出阻抗的测试电路如下图所示。放大器输出阻抗的大小,说明该放大器带负载的能力。用伏安法测试放大电路的输出阻抗的测试电路如下图所示。

输入信号的频率仍选择在放大电路的中频段,输入信号的大小仍调整到确保输出信号不失真为条件,因此仍须用示波器监视输出信号的波形。

第一步在不接负载RL的情况下,用毫伏表测得输出电压V01。

第二步在接上负载RL的情况下,用毫伏表测得输出电压V02。则

3)高输入阻抗Zi的测试.

前面讲了一般放大器输入阻抗的测量方法,下面以场效应管源极跟随器为例,介绍高输入放大器的输入阻抗的测试方法。

类似于源极跟随器这样的高输入阻抗放大器的输入阻抗.往往可以等效成一个输入电阻Zi和一个输入电容Ci的并联形式,因此,必须分辨测出Ri和Ci的值才能确定输入阻抗Zi的值。

测量Ri,由于被测电路的输入阻抗很高,可以和毫伏表的输入阻抗相比拟,若将毫

伏表直接接到被测放大电路的输入端,会引起严重的测试误差.为了减少小毫伏表并联接入引起的测量误差,要求毫伏表的输入电阻远大于被测电路的输入电阻,一般要求大于20倍以上.对于一般的毫伏表来说,是无法满足这样的要求的.但是被测电路是一的源极跟随器.具有高输入阻抗,低输出阻抗的特点,因而,可以不直接测试放大电路的输入电压,而是测其输出电压。

如图3.3.4所示,电路中串入一个阻值较大的取样电阻R,测试时先将电阻R短路,测出放大器的输出电压,U01=Au.Ui.再拆除R的短路线,测出输出电压U02,则由于两次测试中Au和Ui都不变,从而可以从上面两方程中求得放大电路的输入电阻为

1.基本要求

(1)结型场效应管的特性曲线测试

a.转移特性曲线测试

按上图接线,调节VDD使VDS=5V,然后调节RW(10KΩ)

电位器,分别使VGS为0V ,-, -,-v,-,

-, -, -1 V ,-2 V, 相应测出对应的各个漏极电

流ID并记录之,在坐标纸上画出一条VDS=5V的转换特性曲线。

b. 结型场效应管漏极特性曲线测试

调节Rw电位器,固定VGS=0V,调节VDD分别使场效应管漏源电压VDS为0V,1V,2V,4V,6V,8V,10V,测出各对应的ID值,然后在坐标纸上将各点连成一条光滑的曲线。即可得VGS=0V时的一条漏极特性曲线。

c. 调节RW,分别固定VGS为-,-,重复上述

步骤,即可得出VGS=-,VGS=-时的另外两条特性曲线。

d. 跨导gm的测试

根据转移特性曲线数值,求出VGS在和之间时的跨导:

(2)按照本课件图3-7连接一个结型场效应管共源放大电路。调节Rs使VGSQ=,测量并记录VDSQ、IDQ。已知输入正弦波信号有效值Vi=150mv f=1000HZ VDD=12V RL=20kΩ,选2SK163(N沟道耗尽型场效应管)。

(3)测量电路的放大倍数Av、输入阻抗Ri、输出阻抗Ro并记录。

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

超重低音耳机放大器

超重低音耳机放大器 发布:电子diy来源:萬用電路板发布时间:2013-09-05 01:01:22 ?标签:超重低音耳机功放 ?成本:10元 ?人气:2563 ?器件:TDA2822 ?难度:1 ?得分:719分 这不是一款普通的耳机放大器,我在它前级加入低音提升电路后,可以让你使用耳机听到高保真的音响效果,特别是重低音效果,逼真感很强以至于用它听的时间长了会让人感到头晕,使用它必须得注意:你的耳机要能经得住低音的考验! 电路原理图(点击放大) 该电路中,前级采用无源衰减式音调控制电路,后级是用小功放芯片TDA2822M做的功率放大器,以便更强劲地驱动耳机。电路元件除了C5-C8这四个电容使用电解电容外,其它小电容全部使用涤纶电容。按照如上的电路,高低音均提升近10DB。为了增大低音成

分的比例,建议大家把R3和R4短路掉,以减小高音提升量,这时从耳机中出来的声音也更加柔和。如果还要增大低音提升量,可以减少C3和C4的取值。 使用这个超重低音耳机放大器大家必须了解一些问题: 1、耳机的素质,喜欢听低音的朋友,一定不能只在电路上下功夫,耳机的作用更大,一个好的耳机能将电路产生的音频信号淋漓尽致地发挥,听感也更加自然。而有些耳机本不具备很宽的频率响应,再怎么提升音源的低音成分都听不到很明显的效果,这种耳机不要使用。再者,有些国产耳机在低音增强时明显失真了,此时如果长时间在很强低音的情形下,势必会损伤耳机。 2、不要过分追求低音效果,毕竟是耳机不是音响,不能采取像重低音放大器那样的分频放大法,电路能有10DB的提升量就足矣。 3、不要使用大音量,对听力是相当有害的。 作品实物图:

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

AC-AUDIO H1004四通道耳机放大器 耳机分配器 说明书

Contents 1.OVERVIEW (1) 2.BEFORE YOU START (1) 1)Utilizing the User Manual (1) 2)Safety Precautions (2) 3.INSTALLATION (4) 1)Front panel (4) 2)Rear panel (5) 4.GETTING STARTED (6) 1)Using the MAIN IN connectors (6) 2)Connecting multiple headphones (6) 3)Audio connections (6) 5.SERVICE (7)

1. OVERVIEW Welcome to purchase the equipment by AC-AUDIO! With the H series, you have acquired a high-end headphone amplifier. Both H units were developed with the most demanding applications in mind: professional recording, radio and television studios, as well as CD/digital sound production. They were developed as benchmark units for judging mix-down quality as well as distribution amplifiers for flexible playback applications in studio environments. Balanced inputs and outputs The equipment features electronically servo-balanced inputs and outputs. The servo function automatically recognizes when unbalanced pins are assigned. It internally modifies the nominal signal level, thus preventing any occurrence of signal level difference between inputs and outputs (6 dB correction). 2. BEFORE YOU START 1) Utilizing the User Manual This user manual has been written in such a way to enable you an overview over the control elements of the unit and offers at the same time detailed information about possible applications. To facilitate quick look-ups, control elements have been described in groups depending on their function. Should you need detailed information about specific topics not covered in this manual, please visit our website at https://www.wendangku.net/doc/0b14871737.html,. For example, additional information about power amps and effects processors is found there. The following user manual is intended to familiarize you with the unit’s control elements, so that you can master all the functions. After having thoroughly read the user manual, store it at a safe place for future reference.

低噪声前置放大器电路的设计方法

低噪声前置放大器电路的设计方法 收藏此信息打印该信息添加:不详来源:未知 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压?

这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。 图1,建议选用的放大器 深入了解噪声 在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面: 热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。对于电阻及晶体

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

耳放制作HIFI耳机放大器 PCB 电路图 及全套设计资料

对于47耳放的完美改进制作高保真耳机放大器 之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。 虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。 所以,决定自己动手做一个耳放。 这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。便动手做了起来。 一、放大部分 47耳放是一位外国人设计的电路,电路如图。 因为电路中有较多以47为参数的元件所以称作47耳放。 传说中的47耳放结构其实是很简单的, 第一级运放进行负反馈控制放大倍数进行比例放大, 第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。 两个运放输出经过两个47欧匀流电阻输出致耳机。 因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。 曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。 于是,开工了。 首先线路图

电路没有添加音量电位器,只做了放大部分。这样一来功能比较独立,方便以后的各种组合。 47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。当然OPA2132的价格也是很高档的。我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。NE5532虽然指标相对于OPA2132较差,但是工作于+-15V时音色总体来说还是比较讨人喜欢的。单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。 由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。所以我在反馈电阻的位置串联了电容,也就是C03 C04两个电容,将直流反馈变为交流反馈,这样可以使输出中点控制在1MV以下。换成其他运放如果没有中点问题这个电容的位置可以直通。 反馈采样部分依然从输出取,并在R05 R06 上面并联了C05 C06,作用是超前补偿,不需要的话可以留空。 电源部分增加了两个退耦电解电容C07 C08,并习惯性的在两个电解上并联了小电容C09 C10。 最后增加伏地电阻R。伏地可以吸收一部分地线的干扰信号让信号地更加纯净。当然还有一个作用,那就是在布线的时候可以在视觉上隔离信号地与电源地,为合理布线带来方便。 线路做好了,接下来的工作就是布线了。 话说这个47耳放市面上卖的款式很多,但是在设计PCB的时候好像只注重外观而忽略了对布线的要求,最终导致一些电路声音不好,严重的甚至出现交流声。 吸取了别人的经验教训,所以在画这个板子的时候就注意了很多。 退耦电容两两一组,原则为电源经过退耦电容再连接至IC,这样可以有效吸收放大器工作时候产生的耦合信号,也可以避免由于电源线过长引起的干扰信号进入放大器。 简单说下地线。地线主要分为电源地和信号地,这两个地也可能是连在一起的,但是作用不同。电源地主要提供大电流电源,一般功率输

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

仪用放大器的应用电路设计

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________ 实验名称:仪用放大器的应用电路设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习并了解仪用放大器与运算放大器的性能区别。 2.掌握仪用放大器的电路结构及设计方法。 3.掌握仪用放大器的测试方法。 4.学习仪用放大器在电子设计中的应用。 二、实验内容和原理 1. 仪用放大器 仪用放大器是一种精密差动电压放大电路。 在实际的生产生活中,实际的信号获取单元经常需要面对强噪声背景下的微弱信号,这些强噪声将以共模的形式进入测量单元。虽然运放具有共模抑制比,但信号电压和共模电压一起被传送到输出端,将降低放大器的有效输出范围。 2.基本差动放大器与带输入缓冲的差动放大器 基本差动放大器:带输入缓冲的差动放大器: 3.标准的三运放构成的仪用放大器 造成差动放大器误差的两个主要因素为:运算放大器的参数和电阻器匹配的精确度。 若在输入运算放大器周围增加匹配电阻,把增益设臵放在前端实现,就构成了仪用放大器。 仪用放大器的传输函数为:

运放A1、A2 为同相差分输入方式。同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,来提高共模抑制比。 4.单片仪用放大器 5.双孔梁应变式传感器 力传感器单元是这个实验的传感器,为信号输入部分。它内部含有由4个全桥电路。

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs 类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V)

类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V 类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差

若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管 图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET 接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

HIFI耳机放大电路大全

HIFI耳机放大电路大全 对音响发烧友来说,发烧音响就等于烧钱,对一些经济条件不十分宽裕的发烧族来说,玩耳机就是一个很好的不需要太多的钱的最佳发烧途径了,原因很简单,一般来说,花两三百块钱连市面上劣质的音响器材都难买下来,但是却能买到一副很不错的发烧耳机,而且耳机的频率响应和各项指标一点都不逊于高档的扬声器单元,这也是耳机放大器DIY在国内外流行的主要原因,耳机放大器中,一般优秀的分立元件电路在国内外网站上都见过不少,还有电子管制作的,但是对一般的爱好者来说就是元器件难以寻找,管子的配对也是一个头痛的问题,电子管制作主要的变压器难已解决。 下面应网友的要求,特找来一些易于制作的耳机放大电路,供动手能力好一点的爱好者参考制作,电路图的来源于国内外网站,以及电子杂志。如果有侵犯了你的版权,请通知我,我会删去。 LC-KING A(甲)类耳机放大电路 上图为电路图,电路很简洁,前级放大推动为NE5532或其它类型的OP,U2A为DC SERVER,用于稳定中点的电位,推动级2SD882为NPN型功率三极管,该管工作在甲类状态,因此发热量较大,流经的R11,R31的电流可以通过改变它的阻值来调整,在制作时三极管要加散热器。

LC-KING的AB类放大器电路 上图为LC-KING 的甲已类功率放大电路,后级的放大由对管2SD882(NPN)和2SB772(PNP)TL072为直流伺服电路,起稳定电位的作用。 LC-KING的放大电路比较简洁,制作上并不困难,可以用洞洞板来完成,后极的三极管也可以换成其它的管子。放大器的电源对音质的影响也很大,用洼田电源当然是很好的,也可以用伺服电源,原图的电源有一点复杂,关键是有些元器件很偏,因此没有放到网上。

功率放大器电路设计资料

电子技术课程设计论文 ---功率放大器电路设计 院系:电气工程学院 专业:测控技术与仪器 班级: 姓名: 学号: 指导教师: 2014 年 6 月 24 日

目录 第一章绪论 (1) 第二章系统总体设计方案 (2) 2.1 功率放大电路 (2) 2.2放大器原理 (2) 2.3方案设计 (3) 2.3.1 前置放大极 (4) 2.3.3 三极管性能的简单测试 (4) 2.3.3 电路形式的选择 (4) 2.3.4 电路原理 (5) 第三章仿真及电路焊接及调试 (6) 3.1 Protues 简介 (6) 3.2 原理图绘制的方法和步骤 (6) 3.3 电路板的制作 (9) 3.4 电路焊接 (9) 3.5 元器件安装与调试 (10) 第四章元器件介绍 (11) 4.1 LM386 (11) 4.2 9013晶体管 (12) 4.3电容 (13) 4.4 扬声器 (13) 4.5驻极体 (14) 第五章总结 (15) 致谢 (16) 附录 (17)

第一章绪论 现在多用于高校功放课程设计的有两种电路,一种是集成功放 LM386组成的音频功率放大电路,一种是集成功放TDA2030A组成的音频功率放大电路。我们此次的课程设计所用的芯片是集成功放LM386。 本次音频功率放大系统的设计,我们采用了LM386音频功率放大器作为核心元件。它具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,主要应用于低电压消费类产品,广泛应用于录音机和收音机之中。应用LM386时,为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。

实用功放电路设计

题目五:实用低频功率放大器 一、设计任务与要求: (一)、任务: 设计并制作具有弱信号放大能力的低频功率放大器。 其原理示意图如下: (二)、要求: 1.在放大通道在正弦信号输入电压幅度为(5-700)mV,等效负值载电阻R1。:812下,放大通道应满足: a、额定输出功率P oK≥10W; b、带宽BW≥(50-1000)HZ; c、在P oK下和BW内的非线性失真系数≤3%; d、在P oK下的效率≥55%; e、在前置放大级输人端交流短路接地时,R L=8Ω上的交流声功率≤10mV。 2。自行设计并制作满足设计要求的稳压电源。 (三)、发挥部分(选作部分): 1. 测放大器的时间响应: a、方波发生器:由外供正弦信号源经变换电路产生正、负极性的对称方波。频率为1000HZ;上升和下降时间1≤uS;峰一峰值电压为200mV b、用上述方波激励放大通道时,在R8下,放大通道应满足 (1)、额定验出功率P ok≥10W; (2)、P oK下,输出波形上升或下降时间12≤uS; (3)、在P oK下,输出波形顶部斜降≤2% (4)、在P oK下,输出波形过冲电压≤5% (四)、设计电路、画布线图、编写调试步骤以及调试方法:根据任务要求,设计该低频功率 放大电路及电源电路,要求有电路、有参数及设计过程,画出布线图,并在面包板上插接、调试。 (五) 答辨: 答辨前必须完成下列资料 1.设计说明书:方案选择、设计过程、原理图、布线图及说明; 2.总结调试方法、测试技术指标: 整理原始记录数据 故障处理、(出现何现象、原因及解决办法)。 (六)、参考元器件型号: STK465 集成功率放大电路 uA741 0P-27/0P-37 电阻、电容、电位器、稳压块等。

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

测量放大电路的设计

测量放大电路的设计 作者: 【摘要】:测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真的放大,并且不对所测量的电路产生影响,这就是需要放大器有高的输入电阻和较高的共模抑制比。 【关键字】:放大电路二阶高通有源滤波器二级低通有源滤波器 一、设计技术与要求: 如图所示,测量放大器由基本测量放大器、二阶高通有源滤波器、二阶 低通有源滤波器三部分组成。 1、性能技术指标: (1)输入阻抗Ri>1m? (2)电压放大倍数Au≥1000(即输入信号Ui-p=1mv时,输出信号Uop-p>1v (3)频带宽度B=10?10KHZ (4)共模抑制比Kcmr>80dB 二:基本测量放大电路 如下图:放大器电路有两个同相放大器和一个基本差动放大电路组合而成;该电路具有输入阻抗高、电压增益容易调节,输出不包含共模信号等优点。若不接R时,该电路由于引入了串联负反馈,所以其差模输入电阻Rid和共模输入电阻Ric都很大;当接入电阻R后,由于R很小,则R与Rid(或Ric)并联后,该电路的差模输入电阻Rid≈2R,共模输入电阻Ric≈R/2。其中RL是负载电阻。 基本放大电路有(前置放大电路组成)下:

图(1) 1其中放大倍数: Aud1==1+2R2/R1=81 Aud1’==1+2R2/R1=31

2其中放大倍为: Aud2==Rf/R3=20 由上可知在前置放大电路中,总的放大倍数为: Aud==Aud1·Aud2=81·20=1620 Aud==Aud1’·Aud2=31·20=620 由以上电路图(2)可观察到,Ri1是一个高输入阻抗的模块的组合放大电路,即输入电阻 Ri1=∞Ω>1MΩ 但由于引入了电阻R,因此,其引入的R达到要求的指标,两个R串联电阻之和2R满足: R>0.5MΩ 为了有更好显示效果,取标称值R=1.2MΩ。 同时,共模抑制比K CMR ,由于放大电路由两级放大电路组成,K CM R1 表示第 一级放大电路的共模抑制比, K CMR2 表示第二级放大电路的共模抑制比,即该型运放的共模抑制比,则 K CMR = K CM R1 ·K CMR2 其中,K CM R1=Aud1/Auc1,K CMR2 = Aud2/Auc2。 又Aud1≥1,K CM R1 ≥1,因此有; Aud1≈1+2R2/R1=81,Aud1==1+2R2/R1=31, Auc1≈1 则有K CM R1=Aud1/Auc1≈Aud1≈81,K CM R1 =Aud1/Auc1≈Aud1≈31,

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的这种正温度热敏电阻WMZD,专为LED应用而研制的,其常用规格见表1,下面介绍一下该热敏电阻的应用特性。 20mA LED恒流源WMZD-5A20的应用 我们可以用1只WMZD-5A20与5只LED(20mA)串联组成一个标准单元,它的LED恒流源电流20mA,工作电压U=3V+5×3.4V=20.0V。3V是WMZD-A20电阻压降,3.4V是LED的正向导通电压(或2.8V~4.2V),它的恒流特性见图1中的电流曲线II。

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

o放大器电路图设计

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流:。 低失调电压漂移:μV/℃ 。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 图1 OP07外型图片

图2 OP07 管脚图 OP07芯片功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ 图3 OP07内部电路图

ABSOLUTE MAXIMUM RATINGS 最大额定值Symb ol符号Parameter参数 Value数 值 Unit 单 位 VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symb ol 符号Parameter 参数及测试条件最小 典 型 最 大 Unit 单位 Vio Input Offset Voltage 输入失调电压0℃ ≤ Tamb -6015 μV

相关文档
相关文档 最新文档