文档库 最新最全的文档下载
当前位置:文档库 › 动生电动势和感生电动势同时存在的试题解题策略

动生电动势和感生电动势同时存在的试题解题策略

动生电动势和感生电动势同时存在的试题解题策略
动生电动势和感生电动势同时存在的试题解题策略

原创作品 严禁盗用

第 1 页 共 3 页 动生电动势和感生电动势同时存在的试题解题策略

张阿兵

电磁感应的条件是: 闭合回路磁通量发生变化。即:?Φ变化,见情况可归为3种类型:

1. 通常把导体棒切割磁感线运动时所产生的电动势称为动生电动势

即:B 不变,(S 变)切割类。E BLV =。。。动生电动势

2. 由于磁感应强度变化引起的电动势称为感生电动势

即:B 变,(S 不变)感生类。B E n S t

?=?。。。感生电动势 3. 闭合回路或闭合回路中部分导体在磁场中做切割磁感线运动同时磁场变化,这种情况产生的感应电动势大小

为:

()()BS B S E n

n n S B t t t t

?Φ???===+???? 其中S n B BLV t ?=?即:动生电动势,B n S t ??即:感生电动势。 对于第3类,两者同时存在问题比较复杂,在近年的高考模拟试题中,常常出现导体棒切割磁感线的同时磁感应强度强弱也在发生变化的情况。此类问题,如果处理方法不当,难得其果,现介绍两种常用的方法。 方法一:运用12B E E E BLV n

S t ?=+=+?解答。即:分别计算出动生感应电动势和感生感应电动势,然后代数和。

应用注意12,E E 的方向问题,当12,E E 方向相同时,取“+”; 当12,E E 方向相反时,取“-”

所以方向相同或相反指各自产生的感应电流在回路中流动方向情况。 方法二:运用E n t

?Φ=?直接计算 具体方法是:先任取t 时刻,写出()t Φ表达式,然后求导可得:'E =Φ。两种方式,都应掌握,因在不同题中两种方法的繁简程度有区别。

具体见例题:

例1.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可以忽略的导线相连,两导轨间的距离0.20l =m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k=0.020T/s .一电阻不计的金属杆可在导轨上无摩擦的滑动,在滑动过程中保持与导轨垂直.在t=0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s 时金属杆所受的安培力.

解法一:用a 表示金属杆的加速度,在t 时刻,金属杆的位移212

L

at = 回路总电阻R=2Lr 0,

此时杆的速度v=at ,

杆与导轨构成的回路的面积S=L l ,回路中的感应电动势 12E E E =+其中:21E BLV Kt l at Klat ==??=

设B 方向垂直纸面向里,由右手定则知:1I 的方向为逆时针

2221122

B E S K l at Klat t ?==??=?

计算动生电动势的方法

计算动生电动势的方法 在高中物理第二册电磁感应这一章中,经常看到一些计算动生电动势的习题,计算动生电动势的步骤是:①弄清所求的电动势是瞬时电动势还是平均电动势。 ②确定导体切割磁感线的有效长度、运动速度、V与B之间的夹角。③将B、L、V、θ的值代入动生电动势公式E=BLVsinθ中,求出电动势的值。 现举例介绍计算动生电动势的方法。 1 导体平动产生的电动势的计算方法 例1,如图1所示,导体abc以V=2m/s的速度沿水平方向向右运动,ab=bc=1m,导体的bc段与水平方向成30°角,匀强磁场的磁感应强度B=0.4T,方向垂直纸面向里,导体abc水平向右运动时产生的电动势是多少? 解:导体abc水平向右运动时,导体的ab段不切割磁感线,不产生电动势。 导体的bc段切割磁感线的有效长度L=lsin300 =1×0.5m=0.5m 导体的bc段的速度方向与磁感应强度方向之间的夹角θ=90° 导体的bc段产生的瞬时电动势E2=BLVsinθ=0.4×0.5×2×sin90°=0.4V,导体abc 产生的电动势E=E1+E2=0+0.4V=0.4V 2 导体转动产生的电动势的计算方法 例2,如图2所示,长L=1m的导体OA绕垂直于纸面的转轴O以ω=10rad/s 的角速度转动,匀强磁场的磁感应强度,B=0.2T,方向垂直纸面向里,求导体OA产生的电动势。 解:导体OA在匀强磁场中绕轴O转动时,导体各部分的速度不同,可将导体各部分速度的平均值代入动生电动势公式E=BLVsinθ中,求出导体OA产生的平均电动势。 导体OA切割磁感线的有效长度L=1m 导体OA的平均速度V==1×102m/s=5m/s 导体OA的速度与方向磁感应强度方向的夹角θ=90° 导体OA产生的平均电动势E=BLVsinθ=0.2×1×5×sin90°=1V 3 线圈转动产生的电动势的计算方法

感生电动势和动生电动势要点及例题解析(答案)

1 [典型例题] 例1 如图1所示,在竖直向下的磁感应强度为B 的匀强磁场中,有两根水平放置且足够长的平行金属导轨AB 、CD ,在导轨的AC 端连接一阻值为R 的电阻,一根质量为m 的金属棒ab ,垂直导轨放置,导轨和金属棒的电阻不计。金属棒与导轨间的动摩擦因数为μ,若用恒力 F 沿水平向右拉导体棒运动,求金属棒的最大速度。 分析:金属棒向右运动切割磁感线,产生动生电动势,由右手定则知,棒中有ab 方向的电流;再由左手定则,安培力向左,导体棒受到的合力减小,向右做加速度逐渐减小的加速运动;当安培力与摩擦力的合力增大到大小等于拉力F 时,加速度减小到零,速度达到 最大,此后匀速运动,所以, m g BIL F μ+=, R BLV I = 2 2)(L B R mg F V μ- = 例2 如图2所示,线圈内有理想的磁场边界,当磁感应强度均匀增加时,有一带电量为q ,质量为m 的粒子静止于水平放置的平行板电容器中间,则此粒子带 ,若线圈的匝数为n ,线圈面积为S ,平行板电容器的板间距离为d ,则磁感应强度的变化率为 。 分析:线圈所在处的磁感应强度增加,发生变化,线圈中有感生电动势;由法拉第电 磁感应定律得, t B t nS n E ????==φ ,再由楞次定律线圈中感应电流沿逆时针方向,所以,板间的电场强度方向向上。带电粒子在两板间平衡,电场力与重力大小相等方向相反,电场力竖直向上,所以粒子带正电。 B qns E q mg ?= = q n s m g d t B = ?? [针对训练] 1.通电直导线与闭合线框彼此绝缘,它们处在同一平面内,导线位置与线框对称轴重合,为了使线框中产生如图3所示的感应电流,可采取的措施是:

感应电动势方向判断

左手定则、右手定则和安培定则 A比B的电势高,B是电源正极,A是电源负极 在高中物理部分有三种“定则”①左手定则②右手定则③安培定则(用的是右手) ①左手定则:1.用于判断通电直导线在磁场中的的受力方向 2.用于判断带电粒子在磁场中的的受力方向 方法:伸开左手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,让磁感线穿入手心,并使四指指向电流的方向,大拇指所指的方向就是通电导线所受安培力的方向(书上定义),我在这里想说一点,是不是左手定则只可以判断受力方向,我的答案是非也,在判断力的方向时,是知二求一(知道电流方向与磁场方向求力的方向),所以也可以知道力与电流求磁场,或是知道力与磁场求电流。 ②右手定则:1.用于判断运动的直导线切割磁感线时,感应电动势的方向。 方法:伸开右手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,大拇指所指的方向为直导线运动方向,四指方向即是感应电动势的方向。 ③安培定则:1.判断通电直导线周围的磁场情况。 2.判断通电螺线管南北极。 3.判断环形电流磁场的方向。 方法:右手握住通电导线,让伸直的拇指的方向与电流的方向一致,那么,弯曲的四指所指的方向就是磁感线的环绕方向; 右手握住通电螺线管,四指的方向与电流方向相同,大拇指方向即为北极方向。 谢谢,物理友人 感应电动势方向判断 右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。 电磁学中,右手定则判断的主要是与力无关的方向。 感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极

动生电动势公式的推导及产生的机理

动生电动势公式的推导及产生的机理 摘要:在本文中,应用导数的知识推导出动生电动势在各种特殊情况下的表达形式,并进一步探究了动生电动势产生的机理。揭示了产生动生电动势的实质是运动电荷在磁场中受到洛伦磁力的结果。 关键词:电磁感应定律;动生电动势;洛伦磁力 法拉第电磁感应定律告诉我们,只要通过回路所围面积中的磁通 量发生变化,回路中就会产生感应电动势。由公式 s B dS φ=??可知,使磁通量发生变化的方法是多种多样的,但从本质上讲,可归纳为两类:一类是磁场保持不变,导体回路或导体在磁场中的运动;另一类是导体回路不动,磁场发生变化。前者产生的感应电动势称为动生电动势,后者产生的电动势为感生电动势。在本文中,主要对动生电动势公式的推导及其产生的机理作浅显的阐释。 一、动生电动势在各种特殊情况下的表达形式 在磁场保持不变的情况下,由于导体回路或导体运动而产生的感应电动势称为动生电动势 (一)、在磁场中运动的导线内的动生电动势 例1,如图1所示,一个由导线做成的回路ABCDA,其中长度为l 的导线段AB在磁感应强度为B的匀强磁场中以速度V向右作匀速直线运动,AB、V和B 三者相互垂直,求运动导线AB 段上产生的动生电动

势。 解析:由题意可知,导线AB 、V 和B 三者相互垂直。若在dt 时间内,导线AB 移动的距离为dx ,如右图所示,则在这段时间内回路面积的增量为dS ldx =。如果选取回路面积矢量的方向垂直纸面向里,则通过回路所围面积磁通量的增量为: d ΦB S Bldx == 根据法拉第电磁感应定律知,导线AB 内所产生的感应电动势为[1] d Φε dt =- 其中,负号代表感应电动势的方向。所以,在运动导线AB 段上产生的动生电动势的表达式为 dx εBlv dt Bl =-=- 即运动导线AB 段上产生的动生电动势的 大小为:Blv ,方向:B A →. 例2、如图2所示,在方向垂直纸面向 内的均匀磁场 B 中,一长为 l 的导体棒 OA 绕其一端 O 点为轴,以角速度大小 为ω逆时针转动,求导体棒OA 上所产生 的动生电动势。 解析:设导体棒OA 在t ?时间内所转过的角度为θ?,所扫过的扇形面积为: 212 S l θ=?

感应电动势大小计算

感应电动势大小的计算 适用学科高中物理适用年级高中二年级适用区域安徽课时时长(分钟)60 知识点1、电磁感应产生的条件、法拉第电磁感应定律 2、导线切割磁感线感应电动势的公式 教学目标1、理解感应电动势的概念,明确感应电动势的作用。 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能与磁通量的变化相区别。 3、理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应定律及应用。 4、知道公式θ是如何推导出的,知道它只适用于导体切 割磁感线运动的情况。会用它解答有关的问题。 5、通过法拉第电磁感应定律的建立,进一步揭示电与磁的关系,培养学生空间思维能力和通过观察、实验寻找物理规律的能力。 教学重点理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应定律及应用 教学难点法拉第电磁感应定律及应用 教学过程 一、复习预习 1、复习楞次定律; 2、复习感应电流产生的条件; 3、通过感应电流方向的判断。 二、知识讲解 (一)、感应电动势 在电磁感应现象中产生的电动势叫感应电动势. 注意:(1)不管电路是否闭合,只要穿过电路的磁通量发生变化都产生感应电动势;(2)

产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源的内阻;(3)要产生感应电流,电路还必须闭合,感应电流的大小不仅与感应电动势的大小有关,还与闭合电路的电阻有关. (二)、法拉第电磁感应定律 1.内容:回路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比. 2.公式t ??Φ (1 1 ) 式中n 为线圈匝数,t ??Φ 称磁通量的变化率. 注意它与磁通量Φ和磁通量变化量ΔΦ的区别. 说明:(1)若B 不变,线圈面积S 变化,则t S ??. (2)若S 不变,磁感应强度B 变化,则t B ??. (三)、运动导体做切割磁感线运动时,产生感应电动势的大小,其中v 为导体垂直切割磁感线的速度,L 是导体垂直于磁场方向的有效长度. 四、转动产生感应电动势 1.导体棒(长为L )在磁感应强度为B 的匀强磁场中匀速转动(角速度为ω时),导体棒产生感应电动势. ??? ??? ??? -===)(212102 2212 L L B E L B E E ωω以任意点为轴时以端点为轴时以中点为轴时 2.矩形线圈(面积为S )在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势ωθ,θ为线圈平面与磁感线方向的夹角.该结论与线圈的形状和转轴具体位置无关(但是轴必须与B 垂直). 考点1: 严格区别磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率t ??Φ 磁通量Φ表示穿过一平面的磁感线条数,磁通量的变化量ΔΦ=Φ2-Φ1,表示磁通量变化的 多少,磁通量的变化率t ??Φ表示磁通量变化的快慢.Φ大,ΔΦ及t ??Φ不一定大;t ??Φ 大, Φ及ΔΦ也不一定大.它们的区别类似于力学中的v 、Δv 及t v ??的区别. 考点2: 对t ??Φ 的理解 1.公式t ??Φ 计算的是在Δt 时间内的平均电动势;公式中的v 代入瞬时速度,则E 为瞬时电 动势;v 代入平均速度,则E 为平均电动势.这样在计算感应电动势时,就要审清题意是求平均电动势还是求瞬时电动势,以便正确地选用公式.

动生电动势和感生电动势

§6-2 动生电动势和感生电动势 动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。 感生电动势:仅由磁场的变化而产生的感应电动势。 一 动生电动势 图6 - 5 动生电动势 动生电动势的产生可以用洛伦兹力来解释。 长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。每个自由电子受到的洛伦兹力为 B v F ?-)(=e , 方向从b 指向a ,在其作用下自由电子向下运动。 如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。 电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即 B v F K ?=-= e . 动生电动势为 ε ??+ -??=?= l B v l K d )(d b a . (6.4) 均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ? B = 0,没有动生电动势产生。因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。 普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)

在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。这时,在整个线圈L 中产生的动生电动势为 ε l B v d )() (??= ?L . (6.5) 图6 - 6 洛伦兹力不作功 洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。然而,当导体棒与导轨构成回路时会有感应电流出现,这时感应电动势却是要作功的。 感应电动势作功能量的来源:在运动导体中的自由电子不但具有导体本身的运动速度v ,而且还具有相对于导体的定向运动速度u ,与此相应的洛伦兹力u ⊥F u . 自由电子所受到的总的洛伦兹力为 B v u F ?+-)(= e v u F F +=, 它与合成速度v u +垂直,总的洛伦兹力不对电子作功,即 0)(=+?v u F . 利用0=?v F v 和0=?u F u ,由上式可得 )(v u F +?0)()(=?+?=+?+=v F u F v u F F u v u v , 或 u F v F ?=?-v u . 实际上,为了使导体棒能够在磁场中以速度v 匀速运动,必须施加外力F 0,以克服洛伦兹力的一个分力u =F e -?u B . 利用上式的结果可以看到,F 0克服u F 所作的功为 u F v F v F ??-?v u ==0. 外力克服洛伦兹力的一个分量u F 所作的功0?F v ,通过洛伦兹力的另一个分量v F 对电子的定向运动作了正功v ?F u ,从而全部转化成了感应电流的能量。因此,洛伦兹力并不提供能量,而只是传递能量。洛伦兹力在这里起了能量转化作用,其前提是运动物体中必须有能够自由移动的电荷。

知识讲解 电磁感应现象 感应电流方向的判断(提高)

物理总复习:电磁感应现象 感应电流方向的判断 编稿:李传安 审稿:张金虎 【考纲要求】 1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件; 2、理解楞次定律的基本含义与拓展形式; 3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练 运用。 【知识络】 【考点梳理】 考点一、磁通量 1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。即 cos BS φθ'=。 2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。 3、磁通量的单位:Wb 21 1Wb T m =?。 要点诠释: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。另外,磁通量与线圈匝数无关。 磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。穿过某一面积的磁通量一般指合磁通量。 (2)磁通量的变化21φφφ?=-,它可由B 、S 或两者之间的夹角的变化引起。 4、磁通量的变化 要点诠释: (一)、磁通量改变的方式有以下几种 (1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。 (2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 (3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B 不变,而S 增大或减小。 (4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。

高中阶段推导动生电动势的四种方法辨析

高中阶段推导动生电动势的四种方法辨析 山东省邹城市第一中学物理组 陈霞(273500) 一、根据法拉第电磁感应定律推导 若导轨间距为l ,运动速度为v ,匀强磁场的磁感应强 度为B ,B 、l 、v 两两垂直,如图1所示,根据法拉第电磁感应定律Blv t t Blv t S B t E =??=???=??Φ=。 二、根据洛仑兹力与电场力平衡来推导 在磁感应强度为B 的匀强磁场中,直导线ab 以垂直磁场的速度v 匀速运动,导体中的自由电子也同样在磁场中做定向运动,因此会受到洛仑兹力的作用, evB F =洛,方向竖直向下,使电子向导线的b 端积聚,同时使a 端显出正电性, 从而产生一个向下的电场。当电场力与洛仑兹力达到平衡时,电荷停止积累,在a 、b 两端形成稳定的动生电动势。设此时ab 间的电势差为U ,则有eU evB U Blv l =?=。如果用导线将两端连起来,就产生了电流,运动的导线就是电源,洛仑兹力不断的把自由电子从电源的正极拉到负极,使电路里产生稳定持续的电流,洛仑兹力就是非静电力,U Blv =中的U 就是感应电动势E ,即E Blv =。 三、根据能量守恒定律推导 如图2所示,自由电荷随导体运动的速度为1v ,受到的洛 仑兹力为B ev F 11=,自由电子沿导体做定向移动的速度为2v ,受到的洛仑兹力B ev F 22=。1F 与2v 同向,做正功,2F 与1v 反向,做负功,但电子的合速度为v ,洛仑兹力的合力为evB F =,F 垂直v ,所以洛仑兹力总的不做功,即洛仑兹力并不提供能量,1F 做的正功与2F 做的负功,正好抵消。 1F 做正功使自由电子沿导体定向运动产生电能,2F 做负功,使自由电子沿导体运动方向的速度减小。从大量自由电子的宏观表现来看,阻力2F 的宏观表现就是安培力,外力必须克服安培力做功将其他形式的能量转化为电能。洛仑兹力起到能量传递的作用,并没有对外输出能量,这与洛仑兹力永不作功并不矛盾! 当导体棒匀速运动时,回路中的电功率为P EI =,克服安培力做功的功率为× × × × × × × × × × × 图1 图2

应用楞次定律判断感应电动势的方法

授课计划表

感应电动势:在电磁感应现象里面,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象中产生的电动势叫做。 要求学员以电磁感应现象来判定感应电流方向做个实验:(1)在研究判定感应电流方向的实验中,为了能明确感应电流的具体

方向,有一个如图(a )所示的重要实验步骤(查明灵敏电流计指针偏转方向 和电流方向间的关系【电流计指针是电流哪边流进往哪边偏】)。 (2)(多选题)经检验发现:电流从灵敏电流计右边接线柱流入时其指针向右偏转.图(b )所示是通电螺线管L 1加速插入螺线管L 2时的情景.通过以上信息可以判断出_____ (A )通电螺线管L 1的下端相当于条形磁铁的N 极 (B )两通电螺线管中电流的环绕方向一定相反 (C )如通电螺线管L 1匀速插入螺线管L 2时,灵敏电流计指针将指在正中央 (D )如通电螺线管L 1减速插入螺线管L 2时,灵敏电流计指针将向右偏转. 二、 电磁感应定律 1. 法拉第电磁感应定律:线圈中感应电动势的大小与通过同一线圈的 磁通变化率(即变化快慢)成正比。 公式: 其式中: N--线圈的匝数,匝; △t--磁通变化所需的时间,s ; △Ф--N 匝线圈的磁通变化量,Wb ; е--在△t 时间内感应电动势的平均值,V 。 2.楞次定律: 1)楞次定律是用来判定线圈中的感应电动势或感应电流的方向。 其内容是:当穿过线圈的磁通(原有的磁通)变化时,感应电动势的方向总是企图使它的感应电流产生的磁通阻碍原有磁通的变化。 t Φ t Φe ΔΔΔΔN ==

也就是说,当线圈原磁通增加时,感应电流就要产生与它方向相反的磁通去阻碍它的增加;当线圈中的磁通减少时,感应电流就要产生与它方向相同的磁通去阻碍它的减少。 2)对‘阻碍’的理解: 谁起阻碍作用? --感应电流产生的磁场; 阻碍什么? --引起感应电流的磁通量的变化; ‘阻碍’就是感应电流的磁场总与原磁场的方向相反吗? --不一定!‘增反减同’; 阻碍是阻止吗? --否,只是使磁通量的变化变慢; 为何阻碍? --遵守能量守恒定律。 3.思考与讨论: 如图A.B都是很轻的铝环,环A是闭合的,环B是断开的,用磁铁的任一极去接近环A, (1)A环将 (A)和磁铁相互吸引(B)和磁铁相互排斥 (C)和磁铁之间没有力的作用(D)无法判断和磁铁之间没有力的作用

感应电动势 自感

一、法拉第电磁感应定律 1.感应电动势 (1)概念:在电磁感应现象中产生的电动势。 (2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。 (3)方向判断:感应电动势的方向用楞次定律或右手定则判断。 2.法拉第电磁感应定律 (1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数。 (3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =E R +r 。 3.导体切割磁感线时的感应电动势 (1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度。 (2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速 转动产生感应电动势E =Bl v =12Bl 2ω(平均速度等于中点位置的线速度12 lω)。 二、自感、涡流 1.自感现象 (1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。 (2)自感电动势 ①定义:在自感现象中产生的感应电动势叫做自感电动势。 ②表达式:E =L ΔI Δt 。 (3)自感系数L ①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。 ②单位:亨利(H),1 mH =10-3 H,1 μH =10- 6 H 。 2.涡流 当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡所以叫涡流。 高频考点一 法拉第电磁感应定律的理解及应用 例1.(2016·北京理综·16)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直。磁感应强度B 随时间均匀增大。两圆环半径之比为2∶1,圆环中产生

高中物理动生电动势和感生电动势

动生电动势和感生电动势 法拉第电磁感应定律:只要穿过回路的磁通量发生了变化,在回路中就会有感应电动势产生。而实际上,引起磁通量变化的原因不外乎两条:其一是回路相对于磁场有运动;其二是回路在磁场中虽无相对运动,但是磁场在空间的分布是随时间变化的,我们将前一原因产生的感应电动势称为动生电动势,而后一原因产生的感应电动势称为感生电动势。 注意:动生电动势和感生电动势的名称也是一个相对的概念,因为在不同的惯性系中,对同一个电磁感应过程的理解不同: (1)设观察者甲随磁铁一起向左运动:线圈中的自由电子相对磁铁运动,受洛仑兹力作用,作为线圈中产生感应电流和感应电动势的原因。-动生电动势。 (2)设观察者乙相对线圈静止:线圈中的自由电子静止不动,不受磁场力作用。产生感应电流和感应电动势的原因是运动磁铁(变化磁场)在空间产生一个感应(涡旋)电场,电场力驱动使线圈中电荷定向运动形成电流。-感生电动势 一、动生电动势 导体或导体回路在磁场中运动而产生的电动势称为动生电动势。 动生电动势的来源: 如 图,运动导体内每个电子受到方向向上的洛仑兹力为: ;正负电荷积累在导体内建立电场 ;当 时达到动态平衡,不再有宏观定向运动,则导体 ab 相当一个电源,a 为负极(低电势),b 为正极(高电势),洛仑兹力 就是非静电力。 可以使用法拉第定律计算动生电动势:对于整体或局部在恒定磁场中运动的闭合回路,先求出该回路的磁通F 与t 的关系,再将对t 求导,即可求出动生电动势的大小。 (2)动生电动势的方向可由楞次定律确定。 二、感生电动势 处在 磁场中的静止导体回路,仅仅由磁场随时间变化而产生的感应电动势,称为感生电动势。 感生电场:变化的磁场在其周围空间激发一种电场,称之为感生电场。而产生感生电动势的非静电场正是感生电场。 感生电动势: 回路中磁通量的变化仅由磁场变化引起,则电动势为感生电动势 .若闭合回路是静止的,它所围的面积S 也不随时间变化。 感生电场与变化磁场之间的关系: (1)变化的磁场将在其周围激发涡旋状的感生电场,电场线是一系列的闭合线。 (2)感生电场的性质不同于静电场。 静电场 感生电场 场源 正负电荷 变化的磁场 力线 起源于正电荷,终止于负电荷 不闭合曲线 作用力 法拉第电磁感应定律 一、1、关于表达式t n E ??=φ 【公式在应用时容易漏掉匝数n ,变化过程中磁场方向改变的情况容易出错,并且感应电动势E 与φ、φ?、 t ??φ的关系容易混淆不清。】 2、应用法拉第电磁感应定律的三种特殊情况:(1)E=Blv, (2)ω2 2 1Bl E = ,(3)E=nBs ωsin θ(或E=nBs ωcos θ) 二、1、φ、φ?、 t ??φ同v 、△v 、 t v ??一样都是容易混淆的物理量

感应电动势的大小例题解析

法拉第电磁感应定律——感应电动势的大小·典型例题解析 【例1】如图17-13所示,有一夹角为θ的金属角架,角架所围区域内存在匀强磁场中,磁场的磁感强度为B,方向与角架所在平面垂直,一段直导线ab,从角顶c贴着角架以速度v向右匀速运动,求:(1)t时刻角架的瞬时感应电动势;(2)t时间内角架的平均感应电动势? 解析:导线ab从顶点c向右匀速运动,切割磁感线的有效长度de随时间变化,设经时间t,ab运动到de的位置,则 de=cetanθ=vttanθ (1)t时刻的瞬时感应电动势为:E=BLv=Bv2tanθ·t (2)t时间内平均感应电动势为: E= ·· ·θ θ· ?Φ??? t B S t B vt vt t Bv t === 1 21 2 2 tan tan 点拨:正确运用瞬时感应电动势和平均感应电动势表达式,明确产生感应电动势的导体是解这个题目的关键. 【例2】如图17-14所示,将一条形磁铁插入某一闭合线圈,第一次用0.05s,第二次用0.1s,设插入方式相同,试求: (1)两次线圈中平均感应电动势之比? (2)两次线圈之中电流之比? (3)两次通过线圈的电量之比? 解析:

(1) (2) (3).·.·. E E t t t t I I E R R E E E q q I t I t 1 21 22 1 1 2 1 2 1 2 1 2 11 22 2 1 2 1 1 1 === === == ?Φ ? ? ?Φ ? ? ? ? 点拨:两次插入时磁通量变化量相同,求电荷量时电流要用平均值. 【例3】如图17-15所示,abcd区域里有一匀强磁场,现有一竖直的圆环使它匀速下落,在下落过程中,它的左半部通过水平方向的磁场.o是圆环的圆心,AB是圆环竖直直径的两个端点,那么 [ ] A.当A与d重合时,环中电流最大 B.当O与d重合时,环中电流最大 C.当O与d重合时,环中电流最小 D.当B与d重合时,环中电流最大 点拨:曲线在垂直于磁感线和线圈速度所确定的方向上投影线的长度是有效切割长度. 参考答案:B 【例4】如图17-16所示,有一匀强磁场B=1.0×10-3T,在垂直磁场的平面内,有一金属棒AO,绕平行于磁场的O轴顺时针转动,已知棒长L=0.20 m,角速度ω=20rad/s,求:(1)O、A哪一点电势高?(2)棒产生的感应电动势有多大? 点拨:取棒中点的速度代表棒的平均速度 参考答案

变压器感应电动势方向电机学电工学物理学

如果有错误,联系我,进一步学习修正,便于大家学习 引导:你看到这篇文章,你会感到荣幸,因为节省了你许多纠结的时间,学习更多的知识 变压器感应电动势方向怎么判断呢? 这个问题我困惑了好久好久,经过我日夜苦想,也没琢磨出来,最后学了电路,弄明白了这 个问题。 其实总共三种规则,1实际方向2电工惯例3电机惯例(学习《大学物理》就看1 学习《电工》就看2 学习《电 机学》就看3 都学过可以全部参考) 下面我给出正确方向,再给出电工学里的感应电动势方向和电机学里的感应电动势方向。(这 三种方向无论原边还是副规定都是不一样的,造成学习混乱,后果不堪设想,为了广大学子 日后学习方便,请认真阅读) 前提:电流增加(电流减大,感应电动势阻碍增加) 1这是实际的方向 规则:电磁感应定律感应右手定则楞次定律 电动势方向:从负到正 电压方向:正到负

U1-感应电动势e1=0 则u1等于感应电动势,说明感应电动势方向都和选的正方向一样 这个式子只能说明,电动势的方向和电流的方向是相反的,不能说明和磁通的方向相反(磁通的方向是向上的,电动势方向是线圈的方向,和电流方向相反)

下面也是正确的方法主要看右边的绕线方式 2下面给出电工学规定正方向

一看就和实际的不对,为什么呢,看原边,从U1的下面开始顺时针环形一圈,u1电压升,e1电压升,那不就是电压升了两次吗?u1+e1=0则u1=-e1,u1和e1方向相反了,但是图上是相同了。 电动学里原边的正方向:感应电动势符合右手定则,电流的方向和电压的方向和感应电动势方向(负到正)一样 副边:为了供电电流是流出的所以上正下负 3下面是电机学里的感应电动势

感应电动势方向的判断

楞次定律的理解和应用 1.正确理解楞次定律中“感应电流的磁场总是阻碍引起感应电流的磁通量的变化”这句话的关键是“阻碍”二字.具体地说有四层意思需要搞清楚: (1)谁阻碍谁?是感应电流的磁通量阻碍引起感应电流的磁场(原磁场)的磁通量. (2)阻碍什么?阻碍的是磁通量的变化,而不是阻碍磁通量本身. (3)如何阻碍?磁通量增加,感应电流的磁场方向与原磁场的方向相反;当磁通量减少时,感应电流的磁场方向与原磁场的方向相同. (4)结果如何?阻碍并不是阻止,只是延缓了磁通量的变化快慢,结果是增加的还是增加,减少的继续减少. 2.楞次定律也可以理解为: (1)阻碍相对运动,即“来拒去留”; (2)使线圈面积有扩大或缩小的趋势; (3)阻碍原电流的变化 考点2 右手定则与楞次定律 对部分导体在磁场中做切割磁感线运动时产生的感应电流方向可用右手定则来判定. 导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定感应电流方向的右手定则也是楞次定律的特例. 用右手定则能判定的,一定也能用楞次定律判定.只是不少情况下, 不如用右手定则判定来得方便简单.反过来, 图12-1-1 用楞次定律能判定的,用右手定则却不一定能判断出来.例如图12-1-1中,闭合圆形导线中的磁场逐渐增强时,感应电流的方向用右手定则就无法判定(因为并不切割),而用楞次定律则可很容易地判定出来. 如图12-1-2所示,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下.当磁铁向下运动时(但未插入线圈内部)()

图12-1-2 A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引 B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥 C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引 D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥 【答案】B 【解析】磁铁向下运动,由楞次定律“阻碍相对运动”知,线圈上端相当于条形磁铁的N 极,再由安培定则知线圈中感应电流方向与图示方向相同. 1.如图12-1-12所示,通电直导线通过导线环的中心并与环面垂直,在直导线中的电流逐渐增大的过程中() 图12-1-12 A.穿过圆环的磁通量逐渐增加,圆环中有感应电流 B.穿过圆环的磁通量逐渐增加,圆环中无感应电流 C.穿过圆环的磁通量保持恒定,圆环中有感应电流 D.穿过圆环的磁通量始终为零,圆环中无感应电流 解析:由于环面和磁感线在同一平面内,环中无磁感线通过. 答案:D 课程小结 1、产生感应电流的条件:①闭合电路的一部分导体在磁场中做切割磁感线运动。 ②闭合电路的磁通量发生变化(本质)。 2、感应电流的方向: ①右手定则:

§16 怎样计算感应电动势

§16 怎样计算感应电动势 电磁感应定律的内容是: 不论采取什么方法,只要穿过闭合回路的磁通量ф发生变化(或使磁感应线受到一段线路的切割),就会在闭合线路(或该段线路)中激起电动势i ε,而其大小正比于磁通量的变化率(或切割磁感应线的速率),其方向由楞次定律决定。电磁感应定律的数学表示式是: i d dt εΦ =- 式中的负号是楞次定律的数学表示:(感应电动势的方向遵循楞次定律),该式只适用于SI 制。 闭合线路中的电阻为R ,则线路中的感应电流为: 1i i d I R R dt εΦ = =- 设在1t 、2t 时刻穿过线路的磁通量分别为1Φ、2Φ,则感应电量的绝对值为: ()211 i q R = Φ-Φ 一、感应电动势方向的判别 切割磁感应线产生的动生电动势方向,可以由右手法则判别:大拇指表示速度方向,食指表示磁场方向,由中指表示动生电动势的方向。 动生电动势方向,用楞次定律也能判别。楞次定律的内容是:闭合回路中产生的感应电动势具有确定的方向,它总是使感应电流所产生的通过回路面积的磁通量去补偿或者反抗引起感应电流的磁通量的变化。应用楞次定律来判别感应电流的方向,最好分四步进行:①明确原来磁场的方向;②搞清磁通量变化是增大还是减小;③根据楞次定律确定感应电流所产生的磁场方向;④根据感应电流的磁场方向,利用安培定律确定感应电动势的方向。 金属棒切割磁感应线时没有闭合电路,如何应用楞次定律来判别感应电动势的方向呢?可作一闭合回路,如图2-16-1。 图2-16-1a 作了一个闭合回路,根据楞次定律可判别i ε的方向: ① 原来磁场的文笔 氏面向里;

② 向里的磁通量在棒的运动中增加; ③ 感应电流的磁通量应该反抗上述磁通量的增加,所以感应电流的磁场应该垂直纸面向 外; ④ 根据楞次定律,判得感应电流的方向应该是逆时针方向。该方向即为回路中感应电动 势的方向。 按照图2-16-1b 所作的回路,利用楞次定律判得感应电流的方向(即感应电动势的方向)是 时针的。 因此,AB 的电动势,两种不同回路羊得的都是A →B 。应该指出:这两个回路中,只有金属棒在运动,回路中其它部分都是不运动的,因此,只有从属棒中才有动生电动势,即回路中总电动势,等于AB 中的感应电动势。 让我们再看一个例子: 在圆柱形体积内均匀分布着磁场,且以 (0)dB C dt =>在变化 。场中如图2-16-2所示置一金属棒AB ,试用楞次定律判别AB 中i ε的方向。 用楞次定律判别i ε的方向,同上例中一样要选择一闭合回路。当选用ABCA 回路时,判得i ε的方向是逆时针的;当选用ABDA 回路时,判得i ε方向也是逆时针的。这样对AB 而言,前者是B →A ,后者是A →B 。这是说明的AB 中i ε的方向随回路选择而异呢?不。因为用楞次定律判别的i ε是整个闭合回路总的感应电动势的方向,而不是只指ABABCA 与ABDA 两回路中,除了AB 有i ε之外,在 BCA 和BDA 上也都存在感应电动势。AB 中的感应电动势与总的i ε的方向不一定相同。因 此,要决定AB 中的i ε的方向,还应算出BCA 或BDA 中的i ε,再将它从i ε中扣掉,就可知道AB 中i ε的方向,无论选哪一个回路,都是A →B 的。 这表明:用楞次定律判别i ε的方向,是指闭合路中总的感应电动势的方向。用楞次定律判别回路中某一段线路上i ε的方向,一般是不能得出结果的。然而,如果回路中感应电动势的只存在在 待判别的一段线路上,这时可用楞次定律直接判断该段线路上的i ε的方向。

电磁感应电动势高低的判断(切割地磁场问题)

【题目】 如图是飞机在上海市由北向南飞行表演过程画面,当飞机从水平位置飞到竖直位置时,相对于飞行员来说,关于飞机的左右机翼电势高低的说法正确的是() A.不管水平飞行还是竖直向上飞行,都是飞机的左侧机翼电势高 B.不管水平飞行还是竖直向上飞行,都是飞机的右侧机翼电势高 C.水平飞行时,飞机的右侧机翼电势高;竖直向上飞行时,飞机的左侧机翼电势高 D.水平飞行时,飞机的左侧机翼电势高;竖直向上飞行时,飞机的右侧机翼电势高 【答案】D 【题目分析】 1、考查知识点:地磁场、电磁感应现象中感应电流方向的判断、右手定则 2、分析: (1)地磁场分析: 地磁场分布:如下图近似于把一个磁铁棒放到地球中心,地磁北(N)极处于地理南极附近,地磁南(S)极处于地理北极附近。磁极与地理极不完全重合,存在磁偏角(在这个题分析中可以忽略)。因此可以根据电磁铁磁感线特点画出地磁场的磁感线。 地磁场的分解:在不考虑磁偏角的情况下,除了赤道处磁场方向与地面平行外,其他地方地磁场的磁感线与地面并不平行,南半球的磁感线斜向上从南极出发,北半球的磁感线斜向下回到北极。因此在南半球磁场可以分解为竖直向上的竖直分量和由南向北的水平分量,北半球则可以分解为竖直向下的竖直分量和由南向北的水平分量(如下图所示)。

(2)物理模型建立:对由北向南飞行的飞机来说,飞机的机翼可以等效为一根沿着东西方向水平放置的导体棒,题目的问题就可以简化为导体棒切割磁感线的物理模型。沿水平方向以及沿着竖直向上方向切割磁场线。 (3)右手定则(动生电动势方向判断):伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。此时导体棒充当电源,电源内部电流从负流向正,所以b 端电势高。 (4)题目解答:飞机表演过程中由北向南拉升表演,水平飞行时只切割竖直向下的磁场分量,根据右手定则可知,大拇指指向南(运动方向),掌心向上(磁感线垂直穿过掌心),此时四个手指的方向指向飞机左侧机翼(相对飞行员),因此左侧机翼电势高。飞机竖直向上飞行时,只切割水平向北的磁场分量,根据右手定则可知,大拇指方向竖直向上(运动方向),掌心指向南(磁感线垂直穿过掌心),此时四个手指的方向指向飞机右侧机翼(相对飞行员),因此右侧机翼电势高。

感生电动势与动生电动势的产生机理

感生电动势与动生电动势的产生机理 一、电动势是什么 电动势即电子运动的趋势,能够克服导体电阻对电流的阻力,使电荷在闭合的导体回路中流动的一种作用。这种作用来源于 相应的物理效应或化学效应。通常还伴随着能量的转换,因为 电流在导体中(超导体除外)流动时要消耗能量,这个能量必须 由产生电动势的能源补偿。 电动势是反映电源把其他形式的能转换成电能的本领的物理量。 在电源内部,非静电力把正电荷从负极板移到正极板时要对电荷做功,这个做功的物理过程是产生电源电动势的本质。非 静电力所做的功,反映了其他形式的能量有多少变成了电能。 因此在电源内部,非静电力做功的过程是能量相互转化的过程。 二、什么是感生电动势及动生电动势 感生电动势和动生电动势都来源于物理效应。 根据法拉第电磁感应定律:只要穿过回路的磁通量发生了变化,在回路中就会有感应电动势产生。感应电动势的大小 (为磁通量的变化量,为时间, 为线圈匝数)

当磁场不变,导体因切割磁感线而产生的感应电动势称为动生电动势。 当回路面积不变,磁场激发的感生电场使回路中产生的电动势叫感生电动势。 三、二者产生机理 动生电动势的产生机理是由于外力使导体或回路切割磁感线,而使导体内自由电子受到洛伦兹力定向移动产生。 感生电动势的产生机理是固定回路中的磁场发生变化,是回路中的磁通量变化,变化的磁场产生了有旋电场,有旋电场对回路中的电荷的作用力是一种非静电力,它引起了感生电动势。 二者的区别是产生电动势的非静电力不同,动生电动势是洛伦兹力,而感生电动势的则不是。 四、二者的辨析

例题:如下图中所示,图1中通电线管A不动,A中电流大小也不变,金属圆环B由远处向A靠近. 图2中金属圆环B不动,通电螺线管A也不动,但使A中的电流变大.图3中金属圆环B不动,通电螺线管A中电流大小不变,让A从远处插入B。问这三种情况下产生的电动势分别是什么电动势?

感生电动势与动生电动势的异同

读《感生电动势与动生电动势的相对性》、《动生电动势还是感生电动势》及《论感生电动势和动生电动势的统一》 有感 土木一班陈文伟1004010133 学完电磁学,让我对电与磁的本质有了进一步的体会,这与高中学到的完全不在同一个层次上,其中让我感慨最多的是动生电动势与感生电动势。感生电动势:“导体回路在磁场中无运动,由于磁场的变化而引起B通量变化,这时产生的感应电动势称为感生电动势。”而动生电动势:“磁场保持不变,由于导体回路或导体在磁场中运动而引起B通量的变化,这时产生的感应电动势称为动生电动势。”于是对于两种电动势的区别,我们可以理解为,由感生电场产生的电动势是感生电动势,因导体运动而与洛伦兹力有关的电动势是动生电动势。在看了《感生电动势与动生电动势的相对性》这篇文章之后,我了解二者是相对的,同样是感应电动势,在一种参考系中是动生电动势,在另一个参考系中可能就是感生电动势。同一物理过程在不同参考系中结论是不一样的,我们可以运用相对论把两种不同的描述统一起来,这篇文章即通过坐标变换在一定程度上消除了动生电动势与感生电动势的界限,即通过坐标变换,它们是可以转换的,但一般不可能完全转换。于是就有了感生电动势与动生电动势的异同。 不同点:动生电动势:磁场不随时间变化而导体回路的整体或局部运动所产生的感应电动势; 感生电动势:导体所围回路面积不变而磁场随时间变化所产生的感应电动势。 相对性:在电磁学中把感应电动势分为动生和感生两种形式,这在一定的程度

上只有相对意义。例如,在某些情况下,可能通过参照系的选取,将感生电动势视为动生电动势。然而,坐标变换只能在一定程度上消除动生与感生的界限。在普遍情况下,不可能通过坐标变换,把感生电动势完全归结为动生电动势,反之亦然。 相对论认为,涡旋电场和磁场是统一的,是在不同参照系下观察同一电磁场的结果。在关联于磁场的参照系看来,运动电荷受到了洛伦兹力——磁场力,而在关联于运动电荷的参照系看来,运动磁场感生了一个电场,静止电荷受到了一个感生电场的电场力。于是两种定义便在相对论的基础上统一起了。物理学家曾经对此做过研究,发现如果以上分析没有错误,那么两种电动势的区分只具有相对的意义,只是为了研究某类问题的方便而作的划分。 从相对论的角度出发,麦克斯韦方程组电磁场是一个统一场,涡旋电场和磁场是在不同参照系下观察同一个电磁场的结果,不论是动生电动势还是感生电动势,都是由于相对运动牵涉到参照系变换而产生的物理现象。自然本身是统一的,事实可以是同一个事实,理论只是对自然的说法,一种解读。说法可以不同,在一些场景中用某种说法比较简单,比较合理,在另一些场景中用另一种说法比较简单,比较合理,这是允许的。在这种允许有一个前提,就是两种说法的统一。 总体观之,现在的我们是不会满足对同一事实的不同解释的,“这种非对称性似乎不是现象的本质”,我们将会在更高层次上寻求理论的统一。这与自然界有很多相似的地方,任何事物不可能脱离其他事物而单独存在,哲学上也证明了这一点。所以如果找到了理论上的内在联系,事物之间就能在更深的层次上统一起来,就会产生理论的飞跃。如果找不到理论间的联系,就会引起对立理论的论争,而这种论争则会使理论得以充分展现,也会带来科学的进步,更好的造福于

相关文档
相关文档 最新文档