文档库 最新最全的文档下载
当前位置:文档库 › 空间向量与立体几何(一)

空间向量与立体几何(一)

空间向量与立体几何(一)
空间向量与立体几何(一)

空间向量与立体几何(一) 空间向量及线性运算知识精讲

核心知识点一:空间向量的有关概念

空间向量用

有向线段表示。

用一个字母表示,如图,此向量的起点是A ,终点是B ,可记

作a ,也可记作AB ,其模记为||||a AB 或。

长度为0的向量叫做零向量,记为0。 的有向线段表示同一向量或相等向量。注意:

1. 向量是既有大小又有方向的量,其中长度可以比较大小,而方向无法比较大小。一般来说,向量不能比较大小。

2. 零向量的方向是任意的,同平面向量中的规定一样,0与任何空间向量平行。

3. 单位向量的模都相等且为1,而模相等的向量未必是相等向量。

4. 空间向量是可以平移的,空间中的任意两个向量都可以用同一平面内的两条有向线段表示,所以空间任意两个向量是共面的。

核心知识点二:空间向量的加减运算、数乘运算

1. 空间向量的加减运算

类似平面向量,定义空间向量的加、减法运算(如图):

OB OA AB a b =+=+;CA =OA -OC a b -=。

2. 空间向量的数乘运算

(1)定义:实数λ与空间向量a 的乘积a λ仍然是一个向量,称为向量的数乘运算。 (2)向量与的关系:

模的关系

3. 运算律

(1)交换律:=+a b b a +; (2)结合律:(=(+)a b c a b c ++)+ (3)数乘运算律: 设λ,μ是实数,则有 ①分配律:()a b a b λλλ+=+; ②结合律:()()a a λμλμ=。

核心知识点三:共线向量与共面向量基本定理

数对(x 如果l 为经过点A 平行于已知非零向量a 的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+,

①其中a 叫做直线l 的方向向量,如图所示。若在l 上取AB a =,则①式可化为OP OA t AB =+。

如图,空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP xMA yMB =+ ,或对空间任意一点O 来说,有 OP OM xMA yMB =++。

注意:

1. λa 是一个向量。当λ=0或a =0时,a λ=0。

2. 平面向量的数乘运算的运算律推广到空间向量的数乘运算,结论仍然成立。

3. 共线向量的充要条件及其推论是证明共线(平行)问题的重要依据,条件b ≠0不可遗漏。

4. 直线的方向向量是指与直线平行或共线的向量。一条直线的方向向量有无限多个,它们的方向相同或相反。

5. 共面向量的充要条件给出了空间平面的向量表示式,说明空间中任意一个平面都可以由一点及两个不共线的平面向量表示出来。另外,还可以用OP =x OA +y OB +z OC ,且x +y +z =1判断P ,A ,B ,C 四点共面。

1. 主要内容:

(1)空间向量的基本概念

(2)空间向量的加减、数乘运算及它们的运算律 (3)共线向量基本定理 (4)共面向量基本定理 2. 数学思想:化归与转化思想 3. 数学方法:类比法

(答题时间:20分钟)

一、选择题

1. 给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点也相同;③若空间向量a ,b 满足|a |=|b |,则a =b ;④若空间向量,,m n p 满足=,m n ,

=,n p ,则=,m p ;⑤空间中任意两个单位向量必相等。其中正确命题的个数为( )

A. 4

B. 3

C. 2

D. 1

2. 下列命题中正确的个数是( )

①若a 与b 共线,b 与c 共线,则a 与c 共线。 ②向量a ,b ,c 共面,即它们所在的直线共面。 ③若a ∥b ,则存在唯一的实数λ,使a =λb 。 A. 0

B. 1

C. 2

D. 3

3. 已知向量AB ,AC ,BC 满足||=||+||AB AC BC ,则( ) A.=+AB AC BC B.=-AB AC BC C.AC 与BC 同向 D.AC 与CB 同向

4. 在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11AC 是( ) A. 有相同起点的向量 B. 等长向量 C. 共面向量 D. 不共面向量

1. 答案:D

解析:零向量的方向是任意的,但并不是没有方向,故①错;

当两个空间向量的起点相同,终点也相同时,这两个向量必相等,但两个向量相等,不一定起点相同、终点也相同,故②错;

根据相等向量的定义,要保证两个向量相等,不仅模要相等,而且方向也要相同,但③中向量a 与b 的方向不一定相同,故③错;

命题④显然正确;

对于命题⑤,空间中任意两个单位向量的模均为1,但方向不一定相同,故不一定相等,故⑤错。 2. 答案:A

解析:①当b =0时,a 与c 不一定共线,故①错误;

②中a ,b ,c 共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误;

③当b 为零向量,a 不为零向量时,λ不存在。 3.答案:D

解析:由条件可知,C 在线段AB 上,故D 正确。 4.答案:C

解析:根据题意易知,11AC =AC =1D C -1D A ,所以向量1D A 、1D C 、11AC 是共面向量。

空间向量及线性运算典例精析

例题1 已知平行六面体ABCD-A 1B 1C 1D 1,M 为B 1C 的中点,化简下列各向量表达式,并标出化简结果的向量。

(1)1AB AD AA ++; (2)1DD AB BC -+; (3)11

()2

AB AD DD BC ++

-。 【解析】(1)1111

AB AD AA AC AA AC CC AC ++=+=+= (2)1111()DD AB BC DD AB AD DD DB BD -+=--=-= (3)111111

()()222

AB AD DD BC AC CC CB AC CB ++

-=++=+ AC CM AM =+=

总结提升:

(1)始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量。

(2)在空间向量的加法运算中,若是多个向量求和,还可利用多边形法则。如图,

1122334455OA A A A A A A A A OA ++++=

即首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量。求若干个向量的和可以将其转化为首尾相接的向量求和。

例题2 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断与是否共线。

【解析】∵M ,N 分别是AC ,BF 的中点, 四边形ABCD ,ABEF 都是平行四边形, ∴MN =MC +CB +BN

12AC +CB +1

2 =12(BC -BA )+CB +1

2(BA +BE ) =12BC +CB +1

2

BE

=1

2

(CB+BE)

=1

2 CE。

∴CE∥MN,即CE与MN共线。

总结提升:判定向量共线就是充分利用已知条件找到实数x,使a xb

=成立,同时要充分利用空间向量运算法则,结合具体的图形,化简得出a xb

=,从而得出//

a b,即a与b共线。

例题3 对于任意空间四边形ABCD,E,F分别是AB,CD的中点。

试证:EF与BC,共面。

【解析】空间四边形ABCD中,E,F分别是AB,CD上的点,

则=++DF,

=+BC+CF。①

又E,F分别是AB,CD的中点,故有EA=-EB,

DF=-CF。②

将②代入①中,两式相加得2 =+BC。

所以=1

2

1

2

BC,即与BC,共面。

总结提升:利用向量法证明向量共面问题,关键是熟练进行向量的表示,恰当应用向量共面的充要条件。解答本题实质上是证明存在实数x,y使向量EF=x AD+y BC成立,也就是用空间向量的加、减法则及运算律,结合图形,用AD,BC表示EF。

1. 化简空间向量式的常用思路

(1)统一成加法后利用空间多边形法则化简;

(2)利用向量的减法法则,即利用OA OB BA

-=化简;

(3)利用AB OB OA =-把各个向量转化成与空间的某一点有关的向量化简。 2. 在几何体中用已知向量表示其他向量时的解答技巧

灵活运用空间向量的加法与减法法则,尽量走边路(即沿几何体的边选择途径),多个向量运算时,先观察分析“首尾相接”的向量使之结合,使用减法时,把握“共起点,方向指向被减向量”。

3. 利用共线向量定理可解决的主要问题及方法

(1)判定共线:判定两向量,(0)a b b ≠是否共线,即判断是否存在实数λ,使a b λ=。 (2)求解参数:已知两非零向量共线,可求其中参数的值,即利用“若//a b λ,则a b λ=(λ∈R )”。

(3)判定或证明三点(如P ,A ,B )是否共线: ①考察是否存在实数λ,使PA=λPB ;

②考察对空间任意一点O ,是否有OP =OA+t AB ; 4. 利用共面向量定理需注意的问题

在利用p 与,a b 共面 p xa yb =+时,一定注意,a b 不能共线。向量共面的充要条件是处理向量共面问题的主要依据。

(答题时间:30分钟)

一、选择题

1. 在正方体ABCD -A 1B 1C 1D 1中,1DD -+BC 化简后的结果是( ) A. 1BD B. B D 1 C. B 1

D. 1DB

2. 在平行六面体ABCD -A ′B ′C ′D ′中,模与向量A B ''的模相等的向量有( ) A. 7个 B. 3个 C. 5个

D. 6个

3. 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点。若11B A =a ,

11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是( )

A. -

12a +1

2

b +

c B.

12a +1

2

b +c

C.

12a -1

2

b +

c D. -

12a -1

2

b +

c 4. 已知空间向量a ,b ,且AB =a +2b ,BC =-5a +6b ,CD =7a -2b ,则一定共线的三点是( )

A. A ,B ,D

B. A ,B ,C

C. B ,C ,D

D. A ,C ,D

5. 在四面体O -ABC 中,OA =a ,OB =b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =( )

A. 12a -14b +1

4c B. a -1

2

b +

1

2

c C. 12a +14b +14

c

D. 14a +12b +14

c

二、解答题

6. 已知P 是正方形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值:

(1)=+x +y ; (2)PA =x PO +y PQ +PD 。

7. 已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF =

32CB ,CG =3

2

CD 。 求证:四边形EFGH 是梯形。

1. 答案:A

解析:由正方体的性质可得1DD -+BC =1DD -DC +BC =1CD +BC =

1BD 。

2. 答案:A

解析:|''C D |=|DC |=|''D C |=|CD |=|BA |=|AB |=|''A B |=|''B A |。 3. 答案:A

解析:B 1=B 1+BM =B 1+1

2(AD -AB )=B 1+12AD -12AB

=-1

2

a +1

2

b +

c 。 4. 答案:A

解析:BD =BC +CD =(-5a +6b )+(7a -2b ) =2a +4b =2,∴A ,B ,D 三点共线。 5. 答案:C

解析:OE =OA +AE =OA +1

2

AD =OA +

12×1

2(AB +AC ) =+1

4(-+-)

=12+14+1

4 =12a +14b +14

c 。

6. 解:(1)∵OQ =PQ -PO

=PQ -

1

2(PA +PC ) =PQ -12-1

2,

∴x =y =-1

2

(2)∵PA+PC=2PO,∴PA=2PO-PC。

又∵PC+PD=2,∴PC=2-PD。

从而有PA=2PO-(2-PD)=2PO-2+PD。∴x=2,y=-2。

7. 证明:∵E,H分别是AB,AD的中点,

∴AE=1

2

AB,AH=

1

2

AD,

EH=AH-AE=1

2

AD-

1

2

AB=

1

2

(AD-AB)

=1

2

BD=

1

2

(CD-CB)=

1

2

3

2

CG-

3

2

CF)

=3

4

(-)=

3

4

∴∥且||=3

4

||≠||。

又点F不在上,∴四边形EFGH是梯形。

空间向量的数量积运算

核心知识点一:空间向量的夹角

(1)定义:已知两非零向量a b,,在空间中任取一点O,作OA a OB b

==

,,则∠AOB 叫做向量a b,的夹角。

记法:a b

<>

,,

范围:[0,π]

图示:

(2)空间向量垂直:如果=2

a b π

<>,

,那么向量a b ,互相垂直,记作a b ⊥。

核心知识点二:空间向量的数量积

)c a b a c +=?+?

特别地:||a a a ?==a a ? 为a b ,的夹角,则cos ||||

a b

a b θ?=

|||||b a b ≤(当//a b 时等号成立))可以求向量的模或夹角,进而求两点间的距离或两直线所成角)可证明两非零向量垂直,进而证明两直线垂直

核心知识点三:投影向量

(1)如图(1),c 为向量a 在向量b 上的投影向量:||cos ,c a a b =<> (2)如图(2),c 为向量a 在直线l 上的投影向量

(3)如图(3),c 为向量a 在平面α上的投影向量,向量a ,A B ''的夹角就是向量a 所在直线与平面α所成的角。

注意:

1. 两个非零向量才有夹角,当两个非零向量同向共线时,夹角为0,反向共线时,夹角为π。

2. 两个向量的数量积是数量,它可正、可负、可为零。

3. 数量积a b ?的几何意义是:a b ?等于a 的长度||a 与b 在a 的方向上的投影||cos b θ的乘积。

例题1 如图所示,已知正四面体OABC 的棱长为1,点E ,F 分别是OA ,OC 的中点。求下列向量的数量积:

(1)OA ·OB ; (2)EF ·BC ;

(3)(OA +OB )·(CA +CB )。

【解析】(1)正四面体的棱长为1,则|OA |=|OB |=1。△OAB 为等边三角形,∠AOB =60°,于是:

OA ·OB =|OA ||OB |cos 〈OA ,OB 〉

=|OA ||OB |cos ∠AOB =1×1×cos 60°=2

1

(2)因为E ,F 分别是OA ,OC 的中点, 所以EF//

2

1

AC , 于是EF ·BC =|EF ||BC |cos 〈EF ,BC 〉

21

|CA |·|BC |cos 〈AC ,BC 〉 =21×1×1×cos 〈CA ,CB 〉 =21×1×1×cos 60°=4

1。 (3)(OA +OB )·(CA +CB )=(OA +OB )·(OA -OC +OB -OC ) =(OA +OB )·(OA +OB -2OC )

=OA 2+OA ·OB -2OA ·OC +OB ·OA +OB 2-2OB ·OC =1+

21-2×21+21+1-2×2

1

=1。 总结提升:在几何体中进行向量的数量积运算,要充分利用几何体的性质,把待求向量用已知夹角和模的向量表示后再进行运算。

例题2 如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值。

【解析】∵1BA =BA +1AA =BA +1BB ,AC =BC -BA ,且BA ·BC =1BB ·BA =1BB ·BC =0,

∴1BA ·AC =-2BA =-1。

又|AC |=2,|1BA |

=21+=3, ∴111cos ,|

|||

BA AC BA AC BA AC <>=

=-

则异面直线BA 1与AC 所成角的余弦值为

6

6

。 总结提升:利用数量积求异面直线所成角的余弦值的方法:

例题3 如图所示,平行六面体ABCD -A 1B 1C 1D 1中,从同一顶点出发的三条棱的长都等于1,且彼此的夹角都是60°,求对角线AC 1和BD 1的长。

【解析】∵AC 1=AB +AD +AA 1, ∴|AC 1|2=AC 12=(AB +AD +AA 1)2

=AB 2+AD 2+AA 12+2(AB ·AD +AB ·AA 1+AD ·AA 1)=1+1+1+2(cos 60°+cos 60°+cos 60°)=6。

∴|AC 1|=6,即对角线AC 1的长为6。 同理,|BD 1|2=BD 12=(AD +AA 1-AB )2

=AD 2+AA 12+AB 2+2(AD ·AA 1-AB ·AA 1-AD ·AB )=1+1+1+2(cos 60°-cos 60°-cos 60°)=2。

∴|1BD |=2,即对角线BD 1的长为2。

总结提升:求两点间的距离或某条线段的长度的方法:先将此线段用向量表示,然后用其他已知夹角和模的向量表示此向量,最后利用2||a a a ,通过向量运算去求||a ,即得所求距离。

例题4 已知空间四边形ABCD 中,AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC 。

【证明】∵AB⊥CD,AC⊥BD,

∴AB·CD=0,AC·BD=0。

∴AD·BC=(AB+BD)·(AC-AB)

=AB·AC+BD·AC-AB2-AB·BD

=AB·AC-AB2-AB·BD

=AB·(AC-AB-BD)=AB·DC=0。

∴AD⊥BC,从而AD⊥BC。

总结提升:用向量法证明垂直的方法:把未知向量用已知向量来表示,然后通过向量运算进行计算或证明。

1. 求两向量的数量积时,关键是搞清楚两个向量的夹角。在求两个向量的夹角时,可用平移向量的方法,把一个向量平移到与另一个向量的起点相同。

2. 利用向量的数量积求两点间的距离,可以转化为求向量的模的问题。其基本思路是将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式||=

a a a 求解即可。

3. 利用空间向量的数量积解决几何中的夹角垂直关系,其思路是将直线的方向向量用已知向量表示,然后进行数量积的运算。

(答题时间:30分钟)

一、选择题

1. 如图,已知空间四边形每条边和对角线长都等于a,点E,F,G分别是AB,AD,DC 的中点,则下列向量的数量积等于a2的是()

A. 2BA·AC

B. 2AD·BD

C. 2FG·CA

D. 2EF·CB

2. 如图,已知P A⊥平面ABC,∠ABC=120°,P A=AB=BC=6,则PC等于()

A. 62

B. 6

C. 12

D. 144

3. 已知向量a b,是平面α内两个不相等的非零向量,非零向量c在直线l上,则0

c a?=,且0

c b?=是l⊥α的()

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

4. 设A,B,C,D是空间不共面的四点,且满足AB·AC=0,AC·AD=0,AB·AD =0,则△BCD是()

A. 钝角三角形

B. 锐角三角形

C. 直角三角形

D. 不确定

二、填空题

5. 如图,在平行六面体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90°,∠BAA1=∠DAA1=60°,则对角线AC1的长度等于________。

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

(三)立体几何与空间向量

(三)立体几何与空间向量 1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC. (1)求证:PC⊥平面MBD; (2)求直线PB与平面MBD所成角的正弦值. (1)证明连接AC,由P A⊥平面ABCD, BD?平面ABCD,得BD⊥P A, 又BD⊥AC,P A∩AC=A, P A,AC?平面P AC, ∴BD⊥平面P AC,又PC?平面P AC,∴PC⊥BD. 又PC⊥BM,BD∩BM=B, BD,BM?平面MBD, ∴PC⊥平面MBD. (2)解方法一由(1)知PC⊥平面MBD, 即∠PBM是直线PB与平面MBD所成的角. 不妨设P A=1,则BC=1,PC=3,PB= 2. ∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC, ∴sin∠PBM=cos∠BPC=PB PC=2 3 = 6 3, 故直线PB与平面MBD所成角的正弦值为 6 3. 方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),

不妨设P A =AB =1, 则P (0,0,1),B (1,0,0),C (1,1,0). 由(1)知平面MBD 的一个法向量为PC → =(1,1,-1), 而PB → =(1,0,-1). ∴cos 〈PB →,PC → 〉=(1,0,-1)·(1,1,-1)2×3=63, 故直线PB 与平面MBD 所成角的正弦值为 63 . 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点. (1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为 7 4 ,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF . 因为点G 为△ABC 的重心, 所以AG AO =2 3,且O 为BC 的中点. 又由题意知,AM →=23AF → , 所以AG AO =AM AF =23, 所以GM ∥OF . 因为点N 为AB 的中点,

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

高中数学必背公式——立体几何与空间向量(供参考)

高中数学必背公式——立体几何与空间向量 知识点复习: 1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。 2. 在计算空间几何体体积时注意割补法的应用。 3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。 4.求角:(1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>= 1212122 222 2 2 1 1 1 222 |||||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:二面角l αβ--的平面角cos |||| m n arc m n θ?=或cos ||||m n arc m n π?- (m ,n 为平面α,β 的法向量). 5. 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|| || AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: || || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,

空间向量与立体几何知识点归纳总结52783

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1 )向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

立体几何与空间向量

中档大题规范练2 立体几何与空间向量 1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点. (1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离; (3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为 63?若存在,求出PQ QD 的值;若不存在,请说明理由. (1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD . (2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,- 1). 则????? u · CP →=-x +z =0,u · PD →=y -z =0,取z =1,得u =(1,1,1), B 点到平面PDC 的距离d =|BP →·u ||u |=33 . (3)解 假设存在,则设PQ →=λPD → (0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ), 设平面CAQ 的法向量为m =(a ,b ,c ),

则????? m ·AC →=0,m ·AQ →=0,即????? a + b =0, (λ+1)b +(1-λ)c =0, 所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为 63 , 所以|m·n||m||n |=63 , 所以3λ2-10λ+3=0, 所以λ=13或λ=3(舍去),所以PQ QD =12 . 2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE . (1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小. (1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系, 则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE , ∴D 1F →=23D 1E →=23 (1,1,-2) =(23,23,-43 ), DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43 )

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式 cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求 两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的范围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距

立体几何空间向量练习

立体几何空间向量练习 1.在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题. (1)求EF的长 (2)证明:EF∥平面AA1D1D; (3)证明:EF⊥平面A1CD. 2.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A 1B与C1D所成角的余弦值; (2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的 角)的余弦值.

3.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设P A=1,AD=2. (1)求平面BPC的法向量; (2)求二面角B﹣PC﹣A的正切值. 4.如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知 BM=2,CD=3,AD=4,AA1=5. (1)求直线A1C和平面ABCD的夹角; (2)求点A到平面A1MC的距离.

5.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2,AD=CD=1,E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)若二面角P﹣AC﹣E的余弦值为, 求直线P A与平面EAC所成角的正弦值. 6.如图,在正三棱柱ABC﹣A1B1C1中,D为AC的中点. (1)证明:AB1∥平面BC1D; (2)证明:BD⊥平面AA1C1C; (3)若AA1=AB,求直线BC1与平面AA1C1C所成角的正弦值.

7.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l. (1)证明:l⊥平面PDC; (2)已知PD=AD=1,Q为l上的点,QB=, 求PB与平面QCD所成角的正弦值. 8.如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点. (Ⅰ)求证:BC1∥平面AD1E; (Ⅱ)求直线AA1与平面AD1E所成角的正弦值.

立体几何与空间向量

10 第七部分 立体几何与空间向量 一、知识梳理 (一)基本知识梳理:见《步步高》文科P123—124 ;理科P135—137 . (二)要点梳理: 1。平面的基本性质是高考中立体几何的重点容.要掌握平面的基本性质,特别注意:不共线的三点确定一个平面.考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形. [例]已知线段AB 长为3,A 、B 两点到平面α的距离分别为1与2,则AB 所在直线与平面α所成角的大小为_____; 解析:要注意到点A 、B 是平面α同侧还是在平面α的两侧的情况.当A 、B 在平面α的同侧时,AB 所在直线与平面α所成角大小为31arcsin ;当A 、B 在平面α的两侧时,AB 所在直线与平面α所成角为 2 π. 2。线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直. [例]已知平面βα,,直线b a ,.有下列命题:(1) βαβα////a a ?????;(2)αββα//a a ?? ?? ⊥⊥ (3)βαβα////??????⊥⊥b a b a ;(4)βαβα////??? ? ?? ??b a b a .其中正确的命题序号是______. 解析:立体几何中的符号语言所描述的问题是高考命题中的重点,基本上每年的高考在选择或填空题中都会有涉及,要充分理解符号语言所体现的几何意义.(1)体现的是两平面平行的一个性质:若两平面平行,则一个平面的任一直线与另一平面平行.(2)要注意的是直线a 可能在平面α.(3)注意到直线与平面之间的关系:若两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直.且垂直于同一直线的两个平面平行.(4)根据两平面平行的判定知,一个平面两相交直线与另一个平面平行,两平面才平行.由此知:正确的命题是(1)与(3). 3。直线与平面所成角的围是]2, 0[π ;两异面直线所成角的围是]2 ,0(π .一般情况下,求二面角往往是指定 的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可. [例]设A 、B 、C 、D 分别表示下列角的取值围:(1)A 是直线倾斜角的取值围;(2)B 是锐角;(3)C 是直线与平面所成角的取值围;(4)D 是两异面直线所成角的取值围.用“?”把集合A 、B 、C 、D 连接起来得到___. (答案:A C D B ???) 4。立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的围.当求出的余弦值为a 时,其所成角的大小应为||arccos a . [例]正方体ABCD -A 1B 1C 1D 1中,E 是AB 中点,则异面直线DE 与BD 1所成角的大小为_____. (答案:515 arccos ) 特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是 不一样的.本题中的向量1BD 与所成的角大小是两异面直线DE 与BD 1所成角的补角. 5。直线与平面所成角的求解过程中,要抓住直线在平面上的射影,转化到直角三角形中去求解.点到平面的距离的求解可以利用垂线法,也可以利用三棱锥的体积转化. C A 1 B 1 C 1 E

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

空间向量与立体几何知识总结(全国高考必备!)

y k i A(x,y,z) O j x z 辅导科目:数学 授课教师: 全国章 年级: 高二 上课时间: 教材版本:人教版 总课时: 已上课时: 课时 学生签名: 课 题 名 称 教 学 目 标 重点、难点、考点 教学步骤及内容 空间向量与立体几何 一、空间直角坐标系的建立及点的坐标表示 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a 在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设b a ,是空间两个非零向量,我们把数量>

空间向量与立体几何知识点学生

用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos ,a b a b a b ?<>= ?, 但务必注意两异面直线所成角θ的范围是0,2π?? ? ??, 故实质上应有:cos cos ,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sin θ=| cos φ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量;

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

相关文档 最新文档