文档库 最新最全的文档下载
当前位置:文档库 › 关于抛物线焦点的公式(精编文档).doc

关于抛物线焦点的公式(精编文档).doc

关于抛物线焦点的公式(精编文档).doc
关于抛物线焦点的公式(精编文档).doc

【最新整理,下载后即可编辑】

北 京 四 中

撰 稿:安东明 编 审:安东明 责 编:辛文升 本周重点:圆锥曲线的定义及应用

本周难点:圆锥曲线的综合应用

本周内容:

一、圆锥曲线的定义

1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF 1|+|PF 2|=2a, (2a>|F 1F 2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即

{P|||PF 1|-|PF 2||=2a, (2a<|F 1F 2|)}。

3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。

二、圆锥曲线的方程。

1.椭圆:

+=1(a>b>0)或+=1(a>b>0)(其中,

a 2=

b 2+

c 2) 2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c 2=a 2+b 2)

3.抛物线:y 2=±2px(p>0),x 2=±2py(p>0)

三、圆锥曲线的性质

1.椭圆:+=1(a>b>0)

(1)范围:|x|≤a,|y|≤b

(2)顶点:(±a,0),(0,±b)

(3)焦点:(±c,0)

(4)离心率:e=∈(0,1)

(5)准线:x=±

2.双曲线:-=1(a>0, b>0)

(1)范围:|x|≥a, y∈R

(2)顶点:(±a,0)

(3)焦点:(±c,0)

(4)离心率:e=∈(1,+∞)

(5)准线:x=±

(6)渐近线:y=±x

3.抛物线:y2=2px(p>0)

(1)范围:x≥0, y∈R

(2)顶点:(0,0)

(3)焦点:(,0)

(4)离心率:e=1

(5)准线:x=-

四、例题选讲:

例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。

解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。

注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点

到准线的距离等等)不受椭圆的位置的影响。

例2.椭圆+=1的离心率e=,则m=___________。 解:(1)椭圆的焦点在x 轴上,a 2=m ,b 2=4,c 2=m-4,e 2=

==m=8。

(2)椭圆的焦点在y 轴上,a 2=4,b 2=m ,c 2=4-m ,e 2=

==m=2。

注意:椭圆方程的标准形式有两个,在没有确定的情况下,两种情况都要考虑,切不可凭主观丢掉一解。

例3.如图:椭圆+=1(a>b>0),F 1为左焦点,A 、B 是两个顶点,P 为椭圆上一点,PF 1⊥x 轴,且PO//AB ,求椭圆的离心率e 。

解:设椭圆的右焦点为F 2,由第一定义:

|PF 1|+|PF 2|=2a,

∵ PF 1⊥x 轴,∴ |PF 1|2+|F 1F 2|2=|PF 2|2,

即(|PF 2|+|PF 1|)(|PF 2|-|PF 1|)=4c 2,

∴ |PF 1|=。

∵ PO//AB ,∴ ΔPF 1O ∽ΔBOA,

∴ = c=b a=c, ∴ e==

。 又解,∵ PF 1⊥x 轴,∴ 设P(-c, y)。

由第二定义:=e |PF 1|=e(x 0+)=(-c+)=,

由上解中ΔPF 1O ∽ΔBOA,得到b=c

e=。 例4.已知F 1,F 2为椭圆+=1的焦点,P 为椭圆上一点,且∠F 1PF 2=,求ΔF 1PF 2的面积。

分析:要求三角形的面积,可以直接利用三角形的面积公式,注意到椭圆中一些量之间的关系,我们选用面

积公式S=absinC 。

解法一:S Δ=|PF 1|·|PF 2|·sin

|PF 1|+|PF 2|=2a=20,

4×36=4c 2=|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ,

即(|PF 1|+|PF 2|)2-3|PF 1||PF 2|=4×36,

|PF 1|·|PF 2|=

∴ S Δ=××=。

解法二:S Δ=|F 1F 2|·|y P |=×12×y P =6|y P |,

由第二定义:=e |PF 1|=a+ex P =10+x P ,

由第一定义:|PF 2|=2a-|PF 1|=10-x P ,

4c 2=|F 1F 2|2=(10+x P )2+(10-x P )2-2(10+x P )(10-x P )cos , 144=100+=, =64(1-)=64×, S Δ=6|y P |=6×=。

注意:两个定义联合运用解决问题。从三角形面积公式均可得到结果。初学时最好两种办法都试试。

例5.椭圆+=1 的焦点为F 1和F 2,点P 在椭圆上,若线段PF 1的中点在y 轴上,求:|PF 1|,|PF 2|。

分析:先要根据题意画出图形,然后根据已知量,将关于|PF 1|,|PF 2|的表达式写出来,再求解。

解:如图,∵O 为F 1F 2中点,PF 1中点在y 轴上,∴PF 2//y 轴,∴PF 2⊥x 轴,

由第一定义:|PF 1|+|PF 2|=2a=4,

|PF 1|2-|PF 2|2=|F 1F 2|2,

(|PF 1|-|PF 2|)(|PF 1|+|PF 2|)=4×9=36,

例6.椭圆:+=1内一点A (2,2),F 1,F 2为焦点,P 为椭圆上一点,求|PA|+|PF 1|的最值。

解:

|PA|+|PF 1|=|PA|+2a-|PF 2|=10+|PA|-|P

F 2|≤|AF 2|+10=2+10,

|PA|+|PF 1|=|PA|+10-|PF 2|=10-(|PF 2|-|P

A|)≥10-|AF 2|=10-2。

注意:利用几何图形的性质:三角形两边之和大于第三边,两边之差小于第三边。

例7.已知:P 为双曲线-=1(a>0, b>0)上一点,F 1,F 2为焦点,A 1,A 2为其顶点。求证:以PF 1为直径的圆与以A 1,

A 2为直径的圆相切。

证明:不妨设P 在双曲线的右支上,

设PF 1中点为O ', A 1A 2中点为O ,

|OO '|=|PF 2|,圆O 半径为

|A 1A 2|,圆O '半径为|PF 1|

由双曲线定义:|PF 1|-|PF 2|=|A 1A 2|

|PF 1|-|A 1A 2|=|PF 2|=|OO'|

∴ 两个圆相内切。

注意:可以自己证出P 在左支时,两圆

相外切。

例8.已知:过抛物线y 2=2px(p>0)焦点F

的直线与抛物线交于P ,Q 两点。求证:以

线段PQ 为直径的圆与准线相切。

证明:由定义知,如图:|PP '|=|PF|, |QQ '|=|QF| |PQ|=|PP '|+|QQ '|,|PQ|=(|PP '|+|QQ '|), 故圆心到准线的距离等于圆的半径,即圆和准线相切。

五、课后练习

1. 椭圆+=1上一点P 与椭圆两焦点连线互相垂直,则ΔPF 1F 2的面积为( )

A 、20

B 、22

C 、28

D 、24

2. 若点P(a,b)是双曲线x 2-y 2=1右支上一点,且P 到渐近线距离为,则a+b=( )

A、-

B、

C、-2

D、2

3. 焦点在直线3x-4y-12=0上的抛物线的标准方程是()

A、y2=16x或x2=16y

B、y2=16x或x2=-16y

C、x2=-12y或y2=16x

D、x2=16y或y2=-12x

4. 已知:椭圆+=1(a>b>0)上两点P、Q,O为原点,OP⊥OQ,求证:+为定值。

六、练习答案:

1. D

2. B

3. C

4. 设P(|OP|cosα, |OP|sinα), Q(|OQ|cos(α+90°),

|OQ|sin(α+90°)),利用两点距离公式及三角公式,+

=。

关于抛物线焦点的公式(精编文档).doc

【最新整理,下载后即可编辑】 北 京 四 中 撰 稿:安东明 编 审:安东明 责 编:辛文升 本周重点:圆锥曲线的定义及应用 本周难点:圆锥曲线的综合应用 本周内容: 一、圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF 1|+|PF 2|=2a, (2a>|F 1F 2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即 {P|||PF 1|-|PF 2||=2a, (2a<|F 1F 2|)}。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 二、圆锥曲线的方程。 1.椭圆: +=1(a>b>0)或+=1(a>b>0)(其中, a 2= b 2+ c 2) 2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c 2=a 2+b 2) 3.抛物线:y 2=±2px(p>0),x 2=±2py(p>0) 三、圆锥曲线的性质 1.椭圆:+=1(a>b>0) (1)范围:|x|≤a,|y|≤b (2)顶点:(±a,0),(0,±b)

(3)焦点:(±c,0) (4)离心率:e=∈(0,1) (5)准线:x=± 2.双曲线:-=1(a>0, b>0) (1)范围:|x|≥a, y∈R (2)顶点:(±a,0) (3)焦点:(±c,0) (4)离心率:e=∈(1,+∞) (5)准线:x=± (6)渐近线:y=±x 3.抛物线:y2=2px(p>0) (1)范围:x≥0, y∈R (2)顶点:(0,0) (3)焦点:(,0) (4)离心率:e=1 (5)准线:x=- 四、例题选讲: 例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。 解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。 注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点

抛物线的焦点弦经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1: p x x AB ++=21 结论2:若直线L 的倾斜角为θ,则弦长θ 2 sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= 由弦长公式得 θ θθ2 2212sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θΘ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =? 结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x = =∴==Θ 结论6:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3) BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5) 2 121214M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 Θ11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 ∴M 1F ⊥AB BF AF F M ?=∴2 1 Θ AM 1⊥BM 1 F B F A 90111⊥?=∠∴Θ又B AM

抛物线的焦点与准线

抛 物 线 的 焦 点 与 准 线 ( 高 中 知 识 有 关 ) 九上P54、活动2(新书) 一、高中知识:文科选修(1-1)P53-55;理科选修(1-1)P56-59 抛物线的几个定义:把平面内与一个定点F 和一条定直线L 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线L 叫做抛物线的准线. 公式:抛物线c bx ax y ++=2 的焦点为)414,2(2a b ac a b +--,准线为a b a c y 4142--= 1) 交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2>0). (1)求b 的值. (2)求x 1?x 2的值. (3)分别过M ,N 作直线l :y=﹣1的垂线,垂足分别是 M 1和N 1.判断△M 1FN 1的形状,并证明你的结论. (4)对于过点F 的任意直线MN ,是否存在一条定直线 m ,使m 与以MN 为直径的圆相切.如果有,请求出这条直线m 的解析式;如果没有,请说明理由.

=; (3)(3分)若射线NM 交x 轴于点P ,且PA ×PB =100 9 ,求点M 的坐标. 抛物线的焦点与准线(高中知识有关)答案 1、(2010黄冈市,25,15分)【分析】.(1)抛物线的顶点为C (1,1),可设解析式为y =a (x -1)2+1,又因抛物线过原点,可得a =-1,所以y =-(x -1)2+1,化简得y =-x 2+2x ,即可求字母a ,b ,c 的值;(2)由FM =FP ,PM 与直线5 4 y =垂直,可得

53344y -=-,∴14y =,代入y =-x 2+2x ,解得1x =±P 坐标为(114 ) 或(1-1 4),所以分两种情况,通过计算可得△PFM 为正三角形;(3)由PM =PN 可得54 y -, 整理得,23920216t yt y -+-=,解得134t =,23 24 t y =-(舍 3 ), 出点的坐标,在第(3)问中要注意解关于t 的字母系数方程,本题有一定的区分度. 【推荐指数】★★★★★ 2、2012年山东潍坊市24.(本题满分ll 分) 解:(1)设抛物线对应二次函数的解析式为y =ax 2+bx +c , 由???+-==-++=c b a c c b a 2401240 解得???=-==41 1 0a c b

抛物线的焦点弦-经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1:p x x AB ++=21 p x x p x p x BF AF AB ++=+++ =+=2121)2 ()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2 sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= : 由弦长公式得θ θθ22212 sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =?

()8 sin 2sin sin 2221sin 21sin 21sin 2 1 sin 21322 20P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB = ∴=???=??=+?=??+??= +=????θθθθθ?θ 结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x = =∴== 结论6:以AB 为直径的圆与抛物线的准线相切 : 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴= 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 - (5)2 1212 1 4M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 1 11111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴ ?=∠=∠+∠9011111M AA M FA F AA ?=∠+∠∴90111FM A AFA ∴M 1F ⊥AB BF AF F M ?=∴2 1 AM 1⊥BM 1 F B F A 90111⊥?=∠∴ 又B AM ?=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,2 212 1 AB B M AM =+ ()()()2 12 12 11 2 42MM MM BB AA BF AF ==+=+= ,

抛物线焦点弦的弦长公式

关于抛物线焦点弦的弦长公式 在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题: (1)已知:抛物线的方程为 px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A B 两点, 且弦AB 的倾斜角为θ,求弦AB 的长。 解:由题意可设直线AB 的方程为)2(p x k y - =)2 (π θ≠将其代入抛物线方程整理得: 0)84(42 2 2 2 2 =+ +-k p k x k x p p ,且θtan =k 设A,B 两点的坐标为),(),,( 2 2 1 1 y x y x 则:k k x x p p 22 2 1 2+=+, 4 2 21p x x = ) (sin ) (2 212 2 24211||θp AB x x x x k = -+=+ 当2 π θ= 时,斜率不存在,1sin =θ,|AB|=2p.即为通径 而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗?这只能代表开口向右时的 弦长计算公式,其他几种情况不尽相同。 现在我们来探讨这个问题。 (2)已知:抛物线的方程为 )0(22 >=p py x ,过焦点的弦AB 交抛物线于A,B 两点, 直线AB 倾斜角为θ,求弦AB 的长。 解:设A,B 的坐标为),(),,(2 211y x y x ,斜率为k )tan (θ=k ,而焦点坐标为)2 ,0(p ,故AB 的方程为kx p y =- 2 ,将其代入抛物线的方程整理得: ,022 2 =- -p x pkx 从而p x x x x pk 2 2121,2- ==+, 弦长为:) (cos )(2 212 2 24211||θp AB x x x x k = -+ =+ p AB 2||,1cos ,0===θθ,即为通径。 而 px y 22 -=与(1)的结果一样,py x 22 -=与(2)的结果一样,但是(1)与(2) 的两种表达式不一样,为了统一这两种不同的表达式,只须作很小的改动即可。现将改动陈述于下: (3)已知:抛物线的方程为 px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A ,B 两点,且弦AB 与抛物线的对称轴的夹角为θ,求弦AB 的长。

抛物线焦点的公式

北京四中撰稿:安东明编审:安东明责编:辛文升 本周重点:圆锥曲线的定义及应用 本周难点:圆锥曲线的综合应用 本周内容: 一、圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 二、圆锥曲线的方程。 1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2) 2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2) 3.抛物线:y2=±2px(p>0),x2=±2py(p>0) 三、圆锥曲线的性质 1.椭圆:+=1(a>b>0) (1)范围:|x|≤a,|y|≤b (2)顶点:(±a,0),(0,±b) (3)焦点:(±c,0) (4)离心率:e=∈(0,1) (5)准线:x=± 2.双曲线:-=1(a>0, b>0) (1)范围:|x|≥a, y∈R (2)顶点:(±a,0) (3)焦点:(±c,0)

(4)离心率:e=∈(1,+∞) (5)准线:x=± (6)渐近线:y=±x 3.抛物线:y2=2px(p>0) (1)范围:x≥0, y∈R (2)顶点:(0,0) (3)焦点:(,0) (4)离心率:e=1 (5)准线:x=- 四、例题选讲: 例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。 解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。 注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点到准线的距离等等)不受椭圆的位置的影响。 例2.椭圆+=1的离心率e=,则m=___________。 解:(1)椭圆的焦点在x轴上,a2=m,b2=4,c2=m-4,e2===m=8。 (2)椭圆的焦点在y轴上,a2=4,b2=m,c2=4-m,e2===m=2。 注意:椭圆方程的标准形式有两个,在没有确定的情况下,两种情况都要考虑,切不可凭主观丢掉一解。 例3.如图:椭圆+=1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1⊥x轴,

过抛物线的焦点的弦的一般性质

过抛物线的焦点的弦的一般性质 不妨设抛物线方程为)0(22>=p px y ,则焦点)0,2(p F ,准线l 的方程:2p x -=. 过焦点F 的直线交抛物线于A(x 1,y 1)、B(x 2,y 2)两点,又作AA 1⊥l , BB 1⊥l ,垂足分别为A 1、B 1. 基本概念: 1.若AB 垂直于抛物线的对称轴,则称线段AB 为抛物线的通径。|AB|= . 2.设P(x 0,y 0)是抛物线y 2=2px(p>0)上的一点,则P 到抛物线焦点F 的距离|PF|称为P 点 的焦半径。|PF|= ;直线AB 经过抛物线y 2=2px(p>0)的焦点,且与抛物线相 交于A(x 1,y 1)、B(x 2,y 2)(AB 则为抛物线的焦点弦). 结论1:4221p x x =? (定值),2 2212k p p k x x +=+. 结论2:221p y y -=? (定值),k p y y 221= +. 结论3:(1)弦长p x x p x p x BB AA BF AF AB ++=+++=+=+=2121112 2||||||||||. (2) 若AB 所在的直线的倾斜角为α,则 α 2sin 2||p AB =.

结论4:若此焦点弦AB 被焦点F 分成n m ,两部分,则p n m 211=+. 结论5:抛物线)0(22>=p px y 的焦点弦中通径最小. 结论6:以焦点弦AB 为直径的圆与抛物线的准线l 相切. 结论7:以抛物线焦半径||AF 为直径的圆与y 轴相切. 结论8:F B F A 11⊥. 结论9:若M 为11B A 的中点,则AB MF ⊥. 结论10:在梯形AA 1B 1B 中,两对角线AB 1与BA 1相交于点抛物线顶点O .

一道经典的抛物线弦长问题

一道经典的抛物线弦长问题 设过抛物线22(0)y px p =>的焦点F 的直线l 与抛物线相交于1122(,),(,)A x y B x y ,直线OA 与OB 的斜率分别为12,k k ,直线l 的倾斜角为α, 求证: 22,,1cos 1cos sin p p p AF BF AB ααα ===-+。 证明:由122y k x y px =??=?得212A p x k =, 同理222B p x k =。 因为1OA = ,所以21 2p OA k =, 同理,222p OB k =。 设:2 p l x ty =+, 代入抛物线方程22y px =得2220y pty p --=, 所以212122,y y pt y y p +==-,所以21212()2x x t y y p pt p +=++=+ 所以22 122212222(1)2(1).tan sin p AB x x p pt p p t p αα =++=+=+=+= 由2220y pty p --= 得y pt =±1tan t α =, 所以不妨设12(cos 1)(cos 1),sin sin p p y y αααα+-==, 所以22 112(1cos )22sin y p x p αα +==, 所以242222211 42(1cos )(1cos )4sin sin p p OA x y αααα++=+=+2 2(1cos )p α==-L (明显得不到!!!) 搞得我证了很久,去百度了一下,才知道你的前两个结论有误,应该是AF 与BF 。 121(cos 1)(1cos ).sin sin 1cos 1cos p p p AF αααααα ++==?==-- BF 同样可推导出。 另证:由抛物线定义,cos AF AF p α=+,所以1cos p AF α = -。 再计算得出1cos p BF α=+,所以22sin p AB AF BF α=+=

关于抛物线焦点的公式

北京四中 撰稿:安东明编审:安东明责编:辛文升 本周重点:圆锥曲线的定义及应用 本周难点:圆锥曲线的综合应用 本周内容: 一、圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 二、圆锥曲线的方程。 1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2) 2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2) 3.抛物线:y2=±2px(p>0),x2=±2py(p>0) 三、圆锥曲线的性质 1.椭圆:+=1(a>b>0) (1)范围:|x|≤a,|y|≤b (2)顶点:(±a,0),(0,±b) (3)焦点:(±c,0) (4)离心率:e=∈(0,1) (5)准线:x=± 2.双曲线:-=1(a>0, b>0) (1)范围:|x|≥a, y∈R (2)顶点:(±a,0) (3)焦点:(±c,0)

(4)离心率:e=∈(1,+∞) (5)准线:x=± (6)渐近线:y=±x 3.抛物线:y2=2px(p>0) (1)范围:x≥0, y∈R (2)顶点:(0,0) (3)焦点:(,0) (4)离心率:e=1 (5)准线:x=- 四、例题选讲: 例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。 解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。 注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点到准线的距离等等)不受椭圆的位置的影响。 例2.椭圆+=1的离心率e=,则m=___________。 解:(1)椭圆的焦点在x轴上,a2=m,b2=4,c2=m-4,e2===m=8。 (2)椭圆的焦点在y轴上,a2=4,b2=m,c2=4-m,e2===m=2。 注意:椭圆方程的标准形式有两个,在没有确定的情况下,两种情况都要考虑,切不可凭主观丢掉一解。 例3.如图:椭圆+=1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,

抛物线焦点弦的性质

抛物线焦点弦的性质 1、焦点弦定义:过焦点的直线割抛物线所成的相交弦。 2、焦点弦公式:设两交点),(),(2211y x B y x A ,可以通过两次焦半径公式得到: 当抛物线焦点在x 轴上时,焦点弦只和两焦点的横坐标有关:(0)p >若 抛物线22y px =,(21x x p AB ++=抛物线22y px =-,(21x x p AB +-= 当抛物线焦点在y 轴上时,焦点弦只和两焦点的纵坐标有关:(0)p >若 抛物线22x py =,(21y y p AB ++=抛物线22x py =-,(21y y p AB +-=3、通径:过焦点且垂直于对称轴的相交弦 直接应用抛物线定义,得到通径:p d 2= 4、焦点弦常用结论: 结论1:韦达定理?????=-=px y p x k y 2)2(20222=--?p y k p y 和04 )2(2 2222=++-p k x p p k x k 221p y y -=?和4 21x x = 结论2:p x x AB ++=21 证:p x x p x p x BF AF AB ++=+++ =+=2121)2()2( 结论3:若直线L 的倾斜角为θ,则弦长θ2sin 2p AB = 证: (1)若2π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2π θ≠时, 则?????=-=px y p x k y 2)2(20222=--?p y k p y ?????-==+?221212p y y k p y y θsin 24422221p p k p y y =+=-?θθ221sin 2sin 1p y y AB =-=? 结论4: 过焦点的弦中通径长最小 p p 2sin 21sin 22≥∴ ≤θ θ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =? 011sin sin 22 OAB OBF AF S S S OF BF OF AF θ????=+=??+?? ()21112sin sin sin 2222sin p p OF AF BF OF AB θθθθ=?+=??=???22sin p θ=238OAB S P AB ?∴= 结论5:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2221 11AB BF AF BB AA MM =+=+= 故结论得证 结论6:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠ ∴∠=∠∴∠=∠∴=

圆锥曲线的焦点弦公式及应用(难)

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以。 图1

(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时, 设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点 且斜率为的直线交的两支于两点。若,则___

抛物线焦点弦的弦长公式

关于抛物线焦点弦的弦长公 式 在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题: (1)已知:抛物线的方程为px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A B 两点,且弦AB 的倾斜角为θ,求弦AB 的长。 解:由题意可设直线AB 的方程为)2 (p x k y -=)2 (π θ≠将其代入抛物线方程整理得: 0)84(42 2 2 2 2 =+ +-k p k x k x p p ,且θtan =k 设A,B 两点的坐标为),(),,(2211y x y x 则:k k x x p p 2 2 212+= +,4 2 21p x x = 当2 π θ= 时,斜率不存在,1sin =θ,|AB|=2p.即为通径 而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。 现在我们来探讨这个问题。 (2)已知:抛物线的方程为)0(22 >=p py x ,过焦点的弦AB 交抛物线于A,B 两点,直线AB 倾斜角为θ,求弦AB 的长。 解:设A,B 的坐标为),(),,(2 21 1y x y x ,斜率为k )tan (θ=k ,而焦点坐标为)2 ,0(p , 故AB 的方程为kx p y =- 2 ,将其代入抛物线的方程整理得: ,022 2 =- -p x pkx 从而p x x x x pk 2 2121,2- ==+, 弦长为:) (cos ) (2 212 2 24211||θp AB x x x x k = -+=+ p AB 2||,1cos ,0===θθ,即为通径。 而px y 22 -=与(1)的结果一样,py x 22 -=与(2)的结果一样,但是(1)与 (2)的两种表达式不一样,为了统一这两种不同的表达式,只须作很小的改动即

抛物线焦点弦的弦长公式补充

抛物线焦点弦的弦长公 式补充 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

关于抛物线焦点弦的弦长公式补充 高县中学 吴伦红 在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题: (1)已知:抛物线的方程为px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A B 两点,且弦AB 的倾斜角为θ,求弦AB 的长。 解:由题意可设直线AB 的方程为)2 (p x k y -=)2 (π θ≠将其代入抛物线方程整理得: 0)84(42 2 2 2 2 =+ +-k p k x k x p p ,且θtan =k 设A,B 两点的坐标为),(),,(2211y x y x 则:k k x x p p 2 2 2 12+= +,4 2 21p x x = 当2 π θ=时,斜率不存在,1sin =θ,|AB|=2p.即为通径 而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。 现在我们来探讨这个问题。 (2)已知:抛物线的方程为)0(22 >=p py x ,过焦点的弦AB 交抛物线于A,B 两点,直线AB 倾斜角为θ,求弦AB 的长。

解:设A,B 的坐标为),(),,(2 21 1y x y x ,斜率为k )tan (θ=k ,而焦点坐标为)2 ,0(p , 故AB 的方程为kx p y =- 2 ,将其代入抛物线的方程整理得: ,022 2 =- -p x pkx 从而p x x x x pk 2 2121,2- ==+, 弦长为:) (cos )(2 212 2 24211||θp AB x x x x k = -+=+ p AB 2||,1cos ,0===θθ,即为通径。 而px y 22 -=与(1)的结果一样,py x 22 -=与(2)的结果一样,但是(1)与 (2)的两种表达式不一样,为了统一这两种不同的表达式,只须作很小的改动即可。现将改动陈述于下: (3)已知:抛物线的方程为px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A ,B 两点,且弦AB 与抛物线的对称轴的夹角为θ,求弦AB 的长。 解:由题意可设直线AB 的方程为)2 (p x k y -=)2 (π θ≠将其代入抛物线方程整 理得: 0)84(42 2 2 2 2 =+ +-k p k x k x p p , 若倾斜角2 π α<,则θαθαtan tan ,===k ; 若倾斜角,2 π α> 则)tan(tan ,θπαθπα-==-=k 。 设A,B 两点的坐标为),(),,(2211y x y x

抛物线焦点弦的弦长公式

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 关于抛物线焦点弦的弦长公式 在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题: (1)已知:抛物线的方程为 px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A B 两点,且弦AB 的倾斜角为θ,求弦AB 的长。 解:由题意可设直线AB 的方程为)2(p x k y - =)2 (π θ≠将其代入抛物线方程整理得: 0)84(42 2 2 2 2 =+ +-k p k x k x p p ,且θtan =k 设A,B 两点的坐标为 ) ,(),,(2 21 1y x y x 则: k k x x p p 2 2 2 1 2+=+, 4 2 2 1 p x x = ) (sin ) (2 212 2 24211||θp AB x x x x k = -+=+ 当2 π θ= 时,斜率不存在,1sin =θ,|AB|=2p.即为通径 而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗?这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。 现在我们来探讨这个问题。 (2)已知:抛物线的方程为 )0(22 >=p py x ,过焦点的弦AB 交抛物线于A,B 两 点,直线AB 倾斜角为θ,求弦AB 的长。 解:设A,B 的坐标为),(),,(2 211y x y x ,斜率为k )tan (θ=k ,而焦点坐标为)2 ,0(p ,故AB 的方程为kx p y =- 2 ,将其代入抛物线的方程整理得: ,022 2 =- -p x pkx 从而p x x x x pk 2 2121,2- ==+,

关于抛物线焦点弦的弦长公式补充

关于抛物线焦点弦的弦长公式补充 高县中学 吴伦红 在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题: (1)已知:抛物线的方程为px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A B 两点,且弦AB 的倾斜角为θ,求弦AB 的长。 解:由题意可设直线AB 的方程为)2 (p x k y - =)2 (π θ≠ 将其代入抛物线方程整理得: 0)84(42 2 2 2 2 =+ +-k p k x k x p p ,且θtan =k 设A,B 两点的坐标为),(),,( 2 2 1 1 y x y x 则: k k x x p p 2 2 2 1 2+= +, 4 2 2 1 p x x = ) (sin ) (2 2 1 2 2 24 211||θp AB x x x x k = -+ =+ 当2 π θ= 时,斜率不存在,1sin =θ,|AB|=2p.即为通径 而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗?这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。 现在我们来探讨这个问题。 (2)已知:抛物线的方程为)0(22 >=p py x ,过焦点的弦AB 交抛物线于A,B 两点,直线AB 倾斜角为θ,求弦AB 的长。 解:设A,B 的坐标为),(),,(2 21 1y x y x ,斜率为k )tan (θ=k ,而焦点坐标为)2 , 0(p , 故AB 的方程为kx p y =- 2 ,将其代入抛物线的方程整理得: ,022 2 =- -p x pkx 从而p x x x x pk 2 212 1,2- ==+ , 弦长为:) (cos ) (2 2 1 2 2 24 211||θp AB x x x x k = -+ =+ p AB 2||,1cos ,0===θθ,即为通径。 而 px y 22 -=与(1)的结果一样,py x 22 -=与(2)的结果一样,但是(1)与(2) 的两种表达式不一样,为了统一这两种不同的表达式,只须作很小的改动即可。现将改动陈述于下: (3)已知:抛物线的方程为 px y 22 =)0(>p ,过焦点F 的弦AB 交抛物线于A ,B 两点,且弦AB 与抛物线的对称轴的夹角为θ,求弦AB 的长。

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用 湖北省阳新县高级中学邹生书 焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有 ;(2)当焦点外分弦时(此时曲线为双曲线),有 。 证明设直线是焦点所对应的准线,点在直线上的射影分别为, 点在直线上的射影为。由圆锥曲线的统一定义得,,又 ,所以。 (1)当焦点内分弦时。 如图1,,所以 。 图1 (2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右 焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的 离心率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得, 所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜 角为的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴 左侧时,设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___ 解设直线与焦点所在的轴的夹角为,则,又,代 入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式 ,代入公式得,所以所以,所以。 定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准 距(焦点到对应准线的距离)为。过点的弦与曲线的焦点所在的轴的夹

高中数学抛物线焦点弦的有关结论

抛物线焦点弦的有关结论 知识点1:若AB 是过抛物线()022>=p px y 的焦点F 的弦。设(),,11y x A ()22,y x B ,则 (1)4 2 21p x x =;(2)221p y y -= 证明:如图, (1)若AB 的斜率不存在时, 依题意,2 21p x x ==4221p x x =∴ 若AB 的斜率存在时,设为,k 则? ? ? =2:k y AB () 04222222 222 2=++-?=?? ? ??-p k px k x k px p x k .4221p x x =∴ 综上:.4 2 21p x x = (2)p y x p y x 2,22 22211== ,,22142 221p y y p y y ±=?=∴ 但22121,0p y y y y -=∴< (2)另证:设2 :p my x AB + =与px y 22=联立,得22122,02p y y p pmy y -=∴=-- 知识点2:若AB 是过抛物线()022>=p px y 的焦点F 的弦。设(),,11y x A ()22,y x B ,则(1);21p x x AB ++=(2)设直线AB 的倾斜角为α证明:(1)由抛物线的定义知 ,2 ,221p x BF p x AF +=+= p x x BF AF AB ++=+=∴21 (2)若,2,90210p x x = ==则α由(1)知2p AB ==若px y p x k y AB 2,2:,9020=??? ? ? -=≠与设α联立,得

() 04222222 222 2 =++-?=??? ? ?-p k px k x k px p x k (),22221k k p x x +=+∴() 22211 2k k p p x x AB +=++=∴,而αtan =k , () α αα2 22sin 2tan tan 12p p AB =+=∴ 知识点3:若AB 是过抛物线()022>=p px y 的焦点F 的弦,则以AB 为直径的圆与抛物线的准线相切。 证明:过点B A 、,11B A 、过AB 中点M 向准线引垂线,垂足为,N 设以AB 为直径的圆的半径为,r . 2211r MN MN BB AA BF AF AB r =∴=+=+== ∴以AB 为直径的圆与抛物线的准线相切。 知识点4:若AB 是过抛物线()022>=p px y 的焦点的准线引垂线,垂足分别为,11B A 、则0 1190=∠FB A 。 证明借助于平行线和等腰三角形容易证明 知识点5:若AB 是过抛物线()022>=p px y 的焦点x 轴相交于点K ,则.BKF AKF ∠=∠ 证明:过点B A 、分别作准线的垂线,垂足分别为11////BB KF AA B B BF A A AF FB AF K B K A 1111,===∴而 B B A A K B K A 1111=∴ B B K B A A K A 1111=∴,而01190=∠=∠K BB K AA K AA 1?∴∽K BB 1? KB B KA A 11∠=∠∴ BKF AKF ∠=∠∴

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线

(3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015 103383c a c a a b a c c c ???===??????∴????? ???-===?????? 52 b ∴== 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题

相关文档
相关文档 最新文档