文档库 最新最全的文档下载
当前位置:文档库 › 最新高中概率高考真题总结

最新高中概率高考真题总结

最新高中概率高考真题总结
最新高中概率高考真题总结

全国各地高考及模拟试卷试题分类----------概率

选择题

1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( B )

A .

12

1 B .

2

1 C .

6

1 D .

3

1 2.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概

率是 ( D )

A .

45

2

B.

15

2 C.

3

1 D.

15

7 3.甲乙两人独立的解同一道题,甲乙解对的概率分别是

21,p p ,那么至少有1人解对的概率

是 ( D )

A.

21p p +

B.

21p p ?

C. 211p p ?-

D.)1()1(121p p -?--

4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率

是 ( B )

A.

51 B. 52 C. 53 D. 5

4 5.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和

为偶数的概率是 ( C ) A 、

12 B 、12n C 、121n n -- D 、121

n n ++ 6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名

女生的概率是 ( C ) A .

45

2 B .

15

2 C .

15

7 D .

3

1 7.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色

外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再 从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的

( B )

A .

5

1

B .

1009 C .100

1 D .

5

3

8.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A 中任取一个元素

用a i (i=1,2,3,4,5)表示,在B 中任取一个元素用b j (j=1,2,3,4,5)表示,则 所取两数满足a i >b I 的概率为( B )

A 、

43 B 、53 C 、21 D 、5

1 9.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随

机选择3个点,刚好构成直角三角形的概率是( B )

A.

10.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽

出的概率不小于0.6,则至少应抽出产品 ( C ) A.7个 B.8个 C.9个 D.10个

11.甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的

概率是0.6,那么其中至少有1人解决这个问题的概率是( D ) A 、0.48 B 、0.52 C 、0.8 D 、0.92

填空题

1.纺织厂的一个车间有n (n>7,n ∈N )台织布机,编号分别为1,2,3,……,n ,该车 间有技术工人n 名,编号分别为1,2,3,……,n .现定义记号ij a 如下:如果第i 名 工人操作了第j 号织布机,此时规定ij a =1,否则ij a =0.若第7号织布机有且仅有一人 操作,则=+++++747372717

n a a a a a 1 ;若3132333432n a a a a a +++++=,

说明了什么: 第三名工人操作了2台织布机 ;

2.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一

人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览的概率为

2

3

.(用分数表示) 3.某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾

客从0~9这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5 个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是___

5

42

____. 4.某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现从中选出 3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max = _ 119

120

_

解答题

1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投 中相互之间没有影响,求:

(1)两人各投一次,只有一人命中的概率;

(2)每人投篮两次,甲投中1球且乙投中2球的概率. 解:

(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分

(2)P 2=[12C 0.6(1-0.6)]·[2

2C (0.7)2

(1-0.7)0

]=0.2352. 12分

2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85, 且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;

(2)三台机床中至少有一台能正常工作的概率.

解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分 (2)三台机床至少有一台能正常工作的概率是

P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分 3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,

(1)所求事件的概率为:

P=P (A ·B )+P (A ·B )+P (A ·B )

=0.7×0.2+0.3×0.8+0.7×0.8 =0.94.

6分

(2)所求事件的概率为:

P=C 230.72

×0.3×C 130.8×0.22

=0.042336.

12分

4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为

31,21,3

2

,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率.

1.甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投 中相互之间没有影响,求:

(1)两人各投一次,只有一人命中的概率;

(2)每人投篮两次,甲投中1球且乙投中2球的概率.

解:

(1)P 1=0.6(1-0.7)+(1-0.6)0.7=0.46. 6分

(2)P 2=[12C 0.6(1-0.6)]·[2

2C (0.7)2

(1-0.7)0

]=0.2352. 12分

2.工人看管三台机床,在某一小时内,三台机床正常工作的概率分别为0.9,0.8,0.85, 且各台机床是否正常工作相互之间没有影响,求这个小时内: (1)三台机床都能正常工作的概率;

(2)三台机床中至少有一台能正常工作的概率.

解:(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分 (2)三台机床至少有一台能正常工作的概率是

P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分 3.甲、乙两名篮球运动员,投篮的命中率分别为0.7与0.8. (1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率. 解:设甲投中的事件记为A ,乙投中的事件记为B ,

(1)所求事件的概率为:

P=P (A ·B )+P (A ·B )+P (A ·B )

=0.7×0.2+0.3×0.8+0.7×0.8 =0.94.

6分

(2)所求事件的概率为:

P=C 230.72

×0.3×C 130.8×0.22

=0.042336.

12分

4.沿某大街在甲、乙、丙三个地方设有红、绿交通信号灯,汽车在甲、乙、丙三个地方 通过(绿灯亮通过)的概率分别为

31,21,3

2

,对于在该大街上行驶的汽车, 求:(1)在三个地方都不停车的概率; (2)在三个地方都停车的概率; (3)只在一个地方停车的概率. 解:(1)P=31×21×32=91

. 4分 (2)P=32×21×31=9

1

8分 (3)P=

32×21×32+31×21×32+31×21×31=18

7.

12分

5.某种电路开关闭合后,会出现红灯或绿灯闪动.已知开关第一次闭合后,出现红灯和

出现绿灯的概率都是2

1

,从开关第二次闭合起,若前次出现红灯,则下一次出现红灯 的概率是31,出现绿灯的概率是32,若前次出现绿灯,则下一次出现红灯的概率是5

3

出现绿灯的概率是

5

2

(1

(2)三次发光中,出现一次红灯,两次绿灯的概率是多少? 解:(1)如果第一次出现红灯,则接着又出现红灯的概率是

21×31

, 如果第一次出现绿灯,则接着出现红灯的概率为21×5

3

∴第二次出现红灯的概率为21×31+21×53=15

7

. 6分

(2)由题意,三次发光中,出现一次红灯,两次绿灯的情况共有如下三种方式: ①出现绿、绿、红的概率为

21×52×53; ②出现绿、红、绿的概率为21×53×32

③出现红、绿、绿的概率为21×32×5

2

; 10分

所求概率为21×52×53+21×53×32+21×32×52=75

34

. 12分

6.袋内装有35个球,每个球上都记有从1到35的一个号码,设号码n 的球重3

2

n -5n+15

(1)如果任意取出1

(2)如果任意取出2球,试求它们重量相等的概率

解:(1)由不等式3

2

n -5n+15>n ,得n>15,或n<3.

由题意,知n=1,2或n=16,17,…,35.于是所求概率为3522

. 6分 (2)设第n 号与第m 号的两个球的重量相等,其中n

2

m -5m+15,

∴(n -m )(n+m -15)=0, ∵n ≠m ,∴n+m=15,

10分

∴(n ,m )=(1,14),(2,13),…,(7,8).

故所求概率为85

1

5957C 7235==. 12分

7.口袋里装有红色和白色共36个不同的球,且红色球多于白色球.从袋子中取出2个球, 若是同色的概率为1

2

,求: (1) 袋中红色、白色球各是多少?

(2) 从袋中任取3个小球,至少有一个红色球的概率为多少?

解:(1)令红色球为x 个,则依题意得22362236361

2

x x C C C C -+=, (3分)

所以2

27218350x x -+?=得x=15或x=21,又红色球多于白色球,所以x=21.所以

红色球为21个,白色球为15个. ( 6分) (2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B ,

则P (B )=1--P (A )=3

15336

1C C - =191

204 (12分)

8.加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为

910876

、、、987

,且各道工序互不影响 (1)求该种零件的合格率

(2)从加工好的零件中任取3件,求至少取到2件合格品的概率

(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率

(用最简分数表示结果) 解:(1)该种零件合格率为198763

109875P =

???= (2)该种零件的合格率为35,则不合格率为2

5

,从加工好的零件中任意取3个,

至少取到2件合格品的概率2233

23332381()()()555125

P C C =+=

(3)恰好连续2次抽到合格品的概率

22233223223216

()1()()1()5555555625

P =??+??+??=

9.同时抛掷15枚均匀的硬币一次 (1)试求至多有1枚正面向上的概率;

(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等? 请说明理由.

解: (1)记“抛掷1枚硬币1次出现正面向上”为事件A ,P (A )=

2

1, 抛掷15枚硬币1次相当于作15次独立重复试验, 根据几次独立重复试验中事件A 发生K 次的概率公式, 记至多有一枚正面向上的概率为P 1 则P 1= P 15(0)+ P 15(1)=

150

15)21(C +15

115)21(C =20481

(2)记正面向上为奇数枚的概率为P 2,则有

P 2= P 15(1)+ P 15(3)+…+ P 15(15)=

151

15)21(C +15315)21(C +…+15

1515)21(C

=C C 31511515()21(++…+C 15

15)–2

12)21(1415=?

又“出现正面向上为奇数枚”的事件与“出现正面向上为偶数枚” 的事件是对立事件,记“出现正面向上为偶数枚” 的事件的概率为P 3

∴ P 3=1–

21=2

1

∴相等

10.如图,用D C B A ,,,

工作且元件D C ,至少

有一个正常工作时,系统M 正常工作.已知

元件D C B A ,,,正常工作的概率依次为0.5,0.6,0.7,0.8,求元件连接成的系统M 正常工作的概率)(M P .

解:由A ,B 构成系统F ,由C ,D 构成系统那么系统F 正常工作的概率

)](1[)(B A P F P ?-=,系统G 正常工作的概率为)](1[)(D C P G P ?-=,

由已知,得752.0)()()(=?=G P F P M P ,故系统M 正常工作的概率为0.752.

11.有一批种子,每粒发芽的概率为3

2

,播下5粒种子,计算: (Ⅰ)其中恰好有4粒发芽的概率; (Ⅱ)其中至少有4粒发芽的概率;

(Ⅲ)其中恰好有3粒没发芽的概率. (以上各问结果均用最简分数作答)

解:(Ⅰ)243

80

)31()3

2

(4

4

5=??C

(Ⅱ)243

112

2433224380)32()31()32(544

5=

+=

+C (Ⅲ)243

40243410)32()31(2

335=

?=C 12.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.

(1)摸出2个或3个白球; (2)至少摸出一个黑球.

解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,

则 73

)(,73)(4

8

1

325482325=?==?=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=7

6

即摸出的4个球中有2个或3个白球的概率为7

6

…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则

P (C )=141

48

45=C C 至少摸出一个黑球为事件C 的对立事件

其概率为14

13

1411=-

………………12分 13.2005年江苏省普通类高校招生进行了改革,在各个批次的志愿填报中实行平行志愿, 按照“分数优先,遵循志愿”的原则进行投档录取.例如:在对第一批本科投档时, 计算机投档系统按照考生的5门高考总分从高到低逐个检索、投档.当检索到某个考 生时,再依次..按考生填报的A 、B 、C 三个院校志愿进行检索,只要被检索到3所院校 中一经出现....符合投档条件的院校,即向该院校投档,假设一进档即被该院校录取.张 林今年的高考成绩为600分(超过本一线40分),他希望能上甲、乙、丙三所院校中 的一所.经咨询知道,张林被甲校录取的概率为0.4,被乙校录取的概率为0.7,被丙 校录取的概率为0.9.如果张林把甲、乙、丙三所院校依次填入A 、B 、C 三个志愿,求: (Ⅰ) 张林被B 志愿录取的概率;

(Ⅱ) 张林被A 、B 、C 三个志愿中的一个录取的概率.

解:记“张林被A 志愿录取”为事件1A ,“张林被B 志愿录取”为事件2A ,“张林被C 志

愿录取”为事件3A .……………………………………………………1分 (Ⅰ) 由题意可知,事件2A 发生即甲校不录取张林而乙校录取张林.

∴2()(10.4)0.70.42P A =-?=.………… ………………………6分 (Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件1A 、2A 、

3A 中任何两个事件是互斥事件,…… …………………………7分

且3()(10.4)(10.7)0.90.60.30.90.162P A =-?-?=??=… ……9分

∴123123()()()()()0.40.420.1620.982P A P A A A P A P A P A =++=++=++=. 方法2:

(Ⅱ) 记“张林被A 、B 、C 三个志愿中的一个录取”为事件A .由于事件A 的

对立事件是“张林没有被A 、B 、C 三个志愿中的一个录取”. ……7分 ∴()1(10.4)(10.7)(10.9)P A =--?-?-… ………………10分

10.60.30.10.982=-??=.… …………………11分

答:张林被B 志愿录取的概率为0.42;张林被A 、B 、C 三个志愿中的一个录取

的概率为0.982.…… ……………………………………12分

14.平面直角坐标系中有两个动点A 、B ,它们的起始坐标分别是(0,0),(2,2),动点A 、B 从同一时刻开始每隔1秒钟向上、下、左、右四个方向中的一个方向移动1个单位, 已知动点A 向左、右移动的概率都是

41,向上、下移动的概率分别是3

1

和p ,动点B 向上、下、左、右四个方向中的一个方向移动1个单位的概率都是q . (Ⅰ)求p 和q 的值;

(Ⅱ)试判断最少需要几秒钟,动点A 、B 能同时到达点D (1,2),并求在最短时间内

同时到达点D 的概率 .

解:(Ⅰ)由于质点A 向四个方向移动是一个必然事件,…………………………2分

所以

1111443p +++=,所以1

6

p =. ………………………………4分 同理可得1

4

q =. ……………………………………………………6分

(Ⅱ)至少需要3秒可以同时到达点D . ……………………………………8分 经过3秒钟,点A 到达点D 的概率为3p 右p 上p 上=1

12

. ……………………10分 经过3秒钟,点B 到达点D 的概率为3

19

9()4

64

=

. ……………………12分 所以,经过3秒钟,动点A 、B 同时到达点D 的概率为193

1264256

?=.…14分

15

(1

(2

解:(1

4次中有3次正面1

6

(26次3次正面3

12分

16.一位学生每天骑自行车上学,从他家到学校共有5个交通岗,假设他在每个交通岗遇到红灯是相互独立的,且首末两个交通岗遇红灯的概率均为p,其余3个交通岗遇红灯

的概率均为

1

2

(Ⅰ)若

2

3

p=,求该学生在第三个交通岗第一次遇到红灯的概率;

(Ⅱ)若该学生至多遇到一次红灯的概率不超过

5

18

,求p的取值范围.

解: (Ⅰ)记该学生在第i个交通岗遇红灯为事件i A(1,2,,5

i=???),它们相互独立,则

“这名学生在第三个交通岗第一次遇到红灯”为

123

A A A

??.

123123

2111

()()()()(1)(1)

32212

P A A A P A P A P A

??=??=-?-?=.

答: 该学生在第三个交通岗第一次遇到红灯的概率为

1

12

. -------------------------------------- 6分注:本小问缺少事件命名、概型分析、答,各扣一分.

(Ⅱ)过首末两个路口,过中间三个路口分别看作独立重复试验.该学生至多遇到一次红灯指没有遇红灯(记为A)或恰好遇一次红灯(记为B),则A与B互斥.

02032

23

11()C (1)C (1)(1)28P A p p =-?-=-, ------------------------------------------------------- 7分 02121032

2323

11131()C (1)C (1)C (1)C (1)(1)(1)22284

P B p p p p p p =-?-+-?-=-+-. 9分 该学生至多遇到一次红灯,为A B +,

2221311

()()()(1)(1)(1)(32)8844

P A B P A P B p p p p p p +=+=-+-+-=-+,

故215(32)418p p -+≤,即292780p p -+≤,解得1833

p ≤≤. ------------------------ 11分 又01p ≤≤,所以p 的取值范围为1

[,1]3

. ---------------------------------------------------------12分

注:p 的取值范围写成1

[,1)3

不扣分.

17.高三(1)班、高三(2)每班已选出3名学生组成代表队,进行乒乓球对抗赛,比赛 规则是:① 按“单打、双打、单打”顺序进行三盘比赛; ② 代表队中每名队员至少 参加一盘比赛,不得参加两盘单打比赛; ③ 先胜两盘的队获胜,比赛结束. 已知每盘比赛双方胜出的概率均为.2

1

(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少? (Ⅲ)高三(1)班代表队至少胜一盘的概率为多少? 解:解:(Ⅰ)参加单打的队员有2

3A 种方法. 参加双打的队员有1

2C 种方法. (2分)

所以,高三(1)班出场画容共有)(121

223种=?C A (4分)

(Ⅱ)高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜.所以,连胜两盘的概率为

.8

3

2121212121=??+? (8分) (Ⅲ)高三(1)班至少胜盘,可分为:

(1)胜一盘,此时的概率为

.41

212121212121=??+?? (9分) (2)胜两盘,此时的概率为.2

1

2121212121212121=??+??+? (11分)

所以,高三(1)班至少胜一盘的概率为.4

3

2141=+ (12分)

或:高三(1)班代表队至少胜一盘的对立事件为输掉前两盘 (10分) 所以,所求概率为4

3

21211=?-

(12分) 18.甲、乙两人各进行3次射击,甲每次击中目标的概率为2

1

,乙每次击中目标的概率为

3

2, (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;

(2)求乙至多击中目标2次的概率;

(3)求甲恰好比乙多击中目标2次的概率.(14分)

19.为了支持三峡工程建设,某市某镇决定接受一批三峡移民,其中有3户 互为亲戚关

系,将这3户移民随意安置到5个村民组 ① 求这3户恰好安置到同一村民组的概率 ② 求这3户中恰好有2户安置到同一村民组的概率

解:①3户任意分配到5个村民组,共有53

种不同分法,3户都在同一村民组共有5种方

法,3户都在同一村民组的概率为35

0.045

=,∴3户都在同一村民组的概率为0.04 ②恰有2户分到同一村民组的结果有22

35,C A 种∴22353

0.485

C A =∴恰有2户分到同一 村民组的概率为0.48

20.某制药厂设甲、乙两个研究小组,独立研制治疗禽流感的新药物.

(1)设甲小组研制出新药物的概率为0.75,乙小组研制出新药物的概率为0.80,求甲、 乙两组均研制出新药物的概率;

(2)设甲、乙两组研制出新药物的概率相同。若该制药厂研制出新药物的概率为0.64, 求甲小组研制出新药物的概率.

解:(1)0.80×0.75=0.60……………………………………………5分 (2)设甲研制出的概率为P ,1-(1-P )2

=0.64………………10分 解得P=0.40……………………11分

答(1)甲、乙两组均研制出新药的概率为060;

(2)甲研制出的概率为0.40.……………12分

21.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1,7

现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.

(I )求袋中所有的白球的个数; (II )求甲取到白球的概率.

解:(I)设袋中原有n 个白球,由题意知

227

(1)

1(1)2767762

n n n C n n C --===

??

所以n (n -1)=6,解得3n =(舍去2n =-)即袋中原有3个白球.

(II)由题意,ξ的可能取值为1,2,3,4,5

3

(1);7

P ξ==

()432

2;767P ξ?==

=? 4326

(3);76535P ξ??===??

43233

(4);

765435P ξ???==

=??? 432131

(5);7654335

P ξ????===????

因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件A ,

则 P(A)=P(“ξ=1”,或“ξ=3”,或“ξ=5”). 因为事件“ξ=1”、“ξ=3”、“ξ=5”两两互斥,所以

()()()36122

()1357353535

P A P P P ξξξ==+=+==++=

22.在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜

甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率;

(2)丙连胜三局的概率. 解:(1)当乙连胜四局时,对阵情况如下:

第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜; 第四局:乙对丙,乙胜.

所求概率为1P =2

0.4)(1-×20.5=2

0.3=0.09 ∴ 乙连胜四局的概率为0.09.

(2)丙连胜三局的对阵情况如下:

第一局:甲对乙,甲胜,或乙胜.

当甲胜时,第二局:甲对丙,丙胜.第三局:丙对乙,丙胜;第四局:丙对甲,丙胜. 当乙胜时,第二局:乙对丙,丙胜;第三局:丙对甲,丙胜;第四局:丙对乙,丙胜. 故丙三连胜的概率2P =0.4×2

0.6×0.5+(1-0.4)×2

0.5×0.6=0.162.

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

高考概率大题及答案

高考概率大题及答案 【篇一:2015年高考数学概率与统计试题汇编】4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该 社区5户家庭,得到如下统计数据表: ??a??0.76,a? ,据此估计,??bx? ,其中b???根据上表可得回归 直线方程y 该社区一户收入为15万元家庭年支出为( ) a.11.4万元 b.11.8万元c. 12.0万元 d.12.2万元 【答案】b 考点:线性回归方程. 13.如图,点 a 的坐标为?1,0? ,点c 的坐标为?2,4? ,函数f?x??x2 ,若在矩 形abcd 内随机取一点,则此点取自阴影部分的概率等于. 【答案】5 12 【解析】 试题分析:由已知得阴影部分面积为4??x2dx?4?1275?.所以此 点取自阴影33 5 5部分的概率等于?. 412考点:几何概型. 16.某银行规定,一张银行卡若在一天内出现3次密码尝试错误, 该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的 密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束 尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银 行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为x,求x的分布列和数学 期望. 15【答案】(Ⅰ);(Ⅱ)分布列见解析,期望为. 22 【解析】 试题分析:(Ⅰ)首先记事件“当天小王的该银行卡被锁定”的事件为a.则银行 3卡被锁死相当于三次尝试密码都错,基本事件总数为a6?6?5?4,事件a包含

3的基本事件数为a5?5?4?3,代入古典概型的概率计算公式求解;(Ⅱ)列出随 机变量x的所有可能取值,分别求取相应值的概率,写出分布列求期望即可.试题解析:(Ⅰ)设“当天小王的该银行卡被锁定”的事件为a, 5431= 则p(a)=6542 (Ⅱ)依题意得,x所有可能的取值是1,2,3 151又p(x=1)=,p(x=2)=?6651542,p(x=3)= 1=. 6653 所以x的分布列为 所以e(x)=1?1122?3?6635. 2 考点:1、古典概型;2、离散型随机变量的分布列和期望. 2015江苏理科 5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从 中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5 . 6 考点:古典概型概率 2015年重庆理科 17.(本小题满分13分,(1)小问5分,(2)小问8分) 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。 (1)求三种粽子各取到1个的概率; (2)设x表示取到的豆沙粽个数,求x的分布列与数学期望 【答案】(1)13;(2)分布列见解析,期望为. 45 【解析】 试题分析:(1)本题属于古典概型,从10个棕子中任取3个,基本事件的总数 3111为c10,其中事件“三种棕子各取1个”含基本事件的个数为 c2c3c5,根据古典概型概率计算公式可计算得所求概率;(2)由于10个棕子中有2个豆沙棕,因此x的可能分别为0,1,2,同样根据古典概型概率公式可得相应的概率,从而列 3出其分布列,并根据期望公式求得期望为. 5

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

最新统计概率文科题型总结

精品文档 统计和概率高考题型总结 题型一、频率分布直方图 1.对某校高三年级学生参加社区服务次数进行统计, 随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数. 根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间 [25,30)内的概率. 题型二、古典概型 2.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: (I )若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (Ⅱ)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率. 题型三、回归方程 3.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5

精品文档 (I )从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均小于25”的概率; (II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程???y bx a =+; (III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方 程是可靠的,试问(II )所得的线性回归方程是否可靠? (参考公式:回归直线方程式???y bx a =+,其中1 2 2 1 ???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑) 题型四、独立性检验 4. 为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表: (1(2(参考公式:2 () ()()()() n a d b c K a bc d a cb d -=+ +++,其中na b cd =+++ ) 题型五、茎叶图 5.随机抽取某中学甲、乙两班各10名同学,测量它们的身高(单位:cm ),获得身高数据的茎叶图如图所示。 甲班 乙班 2 18 1 9 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 9 (1) 根据茎叶图判断哪两个班的平均身高较高; (2) 计算甲班的样本方差; (3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。 题型六、分层抽样 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总 一、确定事件:包括必然事件和不可能事件 1、在一定条件下必然要发生的事件,叫做必然事件。必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。 2、在一定条件下不可能发生的事件,叫做不可能事件。不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。这是不可能事件。 3、必然事件的概率为1,不可能事件的概率为0 二、随机事件 在一定条件下可能发生也可能不发生的事件,叫做随机事件。 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。 三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件? ①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破; ②明天太阳从西方升起;③掷一枚硬币,正面朝上; ④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达. 解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①② 三、概率 1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) . (1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。(2)概率指的是事件发生的可能性大小的的一个数值。 2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = m n . (1)一般地,所有情况的总概率之和为1。(2)在一次实验中,可能出现的结果有限多个. (3)在一次实验中,各种结果发生的可能性相等. (4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。 (5)一个事件的概率取值:0≤P(A)≤1 当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1 不可能事件的概率为0,即P(不可能事件)=0 随机事件的概率:如果A为随机事件,则0<P(A)<1 (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.

统计概率知识点归纳总结归纳大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性与随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率、 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5.掌握离散型随机变量的分布列、 6.掌握离散型随机变量的期望与方差、 7.掌握抽样方法与总体分布的估计、 8.掌握正态分布与线性回归、 考点1、求等可能性事件、互斥事件与相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复、 (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1、 (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(、其中P 为事件A 在一次试验中发生的概率,此式为二项式 [(1-P)+P]n 展开的第k+1项、

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤就是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种、 第二步,判断事件的运算???和事件积事件 即就是至少有一个发生,还就是同时发生,分别运用相加或相乘事件、 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复、 考点2离散型随机变量的分布列 1、随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示、 ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量、 ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量、 2、离散型随机变量的分布列 ①离散型随机变量的分布列的概念与性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P(i x =ξ)=i P ,则称下表、

全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版

高考数学一轮复习: 概率与统计 高考大题专项(六) 概率与统计 考情分析 一、考查范围全面 概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法. 二、考查方向分散 从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查. 三、考查难度稳定 高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调. 典例剖析 题型一相关关系的判断及回归分析 【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图. x50100150200300400 t906545302020

概率统计大题总结

概率与统计大题总结 一、 知识点汇编: 1.线性回归分析 (1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为: 回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型. 说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2 2 =R r . 3、独立性检验 (1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类 别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为 y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a + b + c +d (3)构造随机变量()()()()()() 2 2 +++-= ++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为 如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +) ; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或 AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥;

概率统计常见题型及方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这 个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因 i A 的概率问题 全概率公式:()()() 1 B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球,2分 则 b a a B P += )(1,2分 111++++ ++++=b a a b a b b a a b a a b a a +=2分 依次类推2分 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少? 、解记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品 进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解设A 表示“任取一件产品被检验为正品”,B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B =

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+= ++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数:1 1 2 2 2 2 1 1 1 1 ()() ()() ()() n n i i i i i i n n n n i i i i i i i i x x y y x y nx y r x x y y x x y y ======---?∑∑= = ----∑∑∑∑ 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 1x 2x 合计 1y a b a b + 2y c d c d + 合计 a c + b d + n

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件, ?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以 表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞ =1 n n A ∈ξ 。

高考数学概率大题专项题型

高考数学概率大题专项题型 一.解答题 1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上 午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率; (2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E (X). 2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没 猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I)“星队”至少猜对3个成语的概率; (II)“星队”两轮得分之和为X的分布列和数学期望EX. 3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别 为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望. 4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的. (Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率; (Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望. 5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的 概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少 有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率; (Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

概率经典例题及解析、近年高考题50道带答案解析

概率经典例题及解析、近年高考题50道带答 案解析 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过 C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形 OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-2 4 ,扇形OAB 面积S= π 4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8 125,故E(X)=0×27125+1×54125+2×36125+3×8125=6 5,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C

相关文档
相关文档 最新文档