文档库 最新最全的文档下载
当前位置:文档库 › 常用控制寄存器详解

常用控制寄存器详解

常用控制寄存器详解
常用控制寄存器详解

P2IFG:D0~D4为P2_0~P2_4的中断标志位

D5为USD D+中断状态标志,当D+线有一个中断请求未决时设置该标志,用于检测USB挂起状态下的USB恢复事件。当USB控制器没有挂起时不设

置该标志。

IEN2:中断使能2,0为中断禁止,1为中断使能

T1STAT:定时器1的状态寄存器,D4~D0为通道4~通道0的中断标志,D5为溢出标志位,当计数到最终技术值是自动置1。

T1CCTL0~T1CCTL4:定时器1通道0~通道4的工作方式设置。D1D0为捕捉模式选择:00为不捕捉,01为上升沿捕获,10为下降沿捕获,11为上升或下降沿都捕获。

D2位为捕获或比较的选择,0为捕获模式,1为比较模式。D5D4D3为比较模式的选择:000为发生比较式输出端置1,001为发生比较时输出端清0,010为比较时输出翻转,其他模式较少使用。

4MHZ,100为2MHZ,101为1MHZ,110为500KHZ,111为250KHZ。当D6为1时,系统主时钟最高可采用频率为16MHZ。

U0GCR:USART0通用控制寄存器;

汇编教程控制寄存器和系统地址寄存器

80386控制寄存器和系统地址寄存器如下表所示。它们用于控制工作方式,控制分段管理机制及分页管理机制的实施。 控制寄存器CRx BIT31 BIT30—BIT12 BIT11—BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 CR0 PG 0000000000000000 ET TS EM MP PE CR1 保留 CR2 页故障线性地址 CR3 页目录表物理页码000000000000 BIT47—BIT16 BIT15—BIT 全局描述符表寄存器GDTR 基地址界限中断描述符表寄存器IDTR 基地址界限 BIT15—BIT0 局部描述符表寄存器LDTR 选择子任务状态段寄存器TR 选择子BIT31—BIT0 BIT31—BIT0 BIT11—BIT0 基地址界限属性 基地址界限属性 <一>控制寄存器 从上表可见,80386有四个32位的控制寄存器,分别命名位CR0、CR1、CR2和CR3。但CR1被保留,供今后开发的处理器使用,在80386中不能使用CR1,否则会引起无效指令操作异常。CR0包括指示处理器工作方式的控制位,包含启用和禁止分页管理机制的控制位,包含控制浮点协处理器操作的控制位。CR2及CR3由分页管理机制使用。CR0中的位5—位3 0及CR3中的位0至位11是保留位,这些位不能是随意值,必须为0。 控制寄存器CR0的低16位等同于80286的机器状态字MSW。 1.保护控制位 控制寄存器CR0中的位0用PE标记,位31用PG标记,这两个位控制分段和分页管理机制的操作,所以把它们称为保护控制位。PE控制分段管理机制。PE=0,处理器运行于实模式;PE=1,处理器运行于保护方式。PG控制分页管理机制。PG=0,禁用分页管理机制,此时分段管理机制产生的线性地址直接作为物理地址使用;PG=1,启用分页管理机制,此时线性地址经分页管理机制转换位物理地址。关于分页管理机制的具体介绍在后面的文章中进行。 下表列出了通过使用PE和PG位选择的处理器工作方式。由于只有在保护方式下才可启用分页机制,所以尽管两个位分别为0和1共可以有四种组合,但只有三种组合方式有效。

51串口控制寄存器

SCON是MCS-51单片机的一个可位寻址的专用寄存器,用于串行数据通信的控制。单元地址为98H,位地址为98H~9FH。寄存器的内容及位地址表示如下: 各位的说明如下: 1) SM0 、SM1——串行口工作方式选择位 其状态组合和对应工作方式为: SM0 SM1工作方式 0 0 方式0 0 1 方式1 1 0 方式2 1 1 方式3 2) SM2——允许方式2、3的多机通信控制位 在方式2和3中,若SM2=1且接收到的第九位数据(RB8)为1,才将接收到的前8 位数据送入接收SBUF中,并置位RI产生中断请求;否则丢弃前8位数据。若SM2 =0,则不论第九位数据(RB8)为1还是为0,都将前8位送入接收SBUF中,并产 生中断请求。 方式0时,SM2必须置0。

3) REN——允许接收位 REN=0 禁止接收数据 REN=1 允许接收数据 4) TB8——发送数据位8 在方式2、3时,TB8的内容是要发送的第9位数据,其值由用户通过软件来设置。5) RB8——接收数据位8 在方式2、3时,RB8是接收的第9位数据。 在方式1时,RB8是接收的停止位 在方式0时,不使用RB8 6) TI——发送中断标志位 在方式0时,发送完第8位数据后,该位由硬件置位 在其它方式下,于发送停止位之后,由硬件置位。 因此,TI=1表示帧发送结束,其状态既可供软件查询使用,也可请求中断。 TI由软件清“0”。 7) RI——接收中断标志位 在方式0时,接收完第8位数据后,该位由硬件置位。 在其它方式下,于接收到停止位之时,该位由硬件置位。 因此,RI=1表示帧接收结束,其状态既可供软件查询使用,也可请求中断。 RI由软件清“0”。

汇编寄存器功能详解

数据寄存器(AX、BX、CX、DX) 1.寄存器AX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、 除、输入/输出等操作,它们的使用频率很高; 2.寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 3.寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位 操作中,当移多位时,要用CL来指明移位的位数; 4.寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算, 也可用于存放I/O的端口地址; 变址寄存器(SI、DI) 寄存器SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便 指针寄存器(BP、SP) 寄存器BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们主要用于访问堆栈内的存储单元,并且规定: BP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据; SP为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶 段寄存器(CS、DS、ES、SS、FS、GS) 段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址 CS 代码段寄存器(Code Segment Register),其值为代码段的段值 DS 数据段寄存器(Data Segment Register),其值为数据段的段值; ES 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 SS 堆栈段寄存器(Stack Segment Register),其值为堆栈段的段值; FS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 GS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 在16位CPU系统中,它只有4个段寄存器,所以,在此环境下开发的程序最多可同时访问4个段; 在32位CPU系统中,它共有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段. 指令指针寄存器 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。 16位标志寄存器 9个标志位,它们主要用来反映CPU的状态和运算结果的特征。 1.进位标志CF(Carry Flag) 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的 最高位产生了一个进位或借位,那么,其值为1,否则其值为0。 2.奇偶标志PF(Parity Flag)奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为 偶数,则PF的值为1,否则其值为0 3.辅助进位标志AF(Auxiliary Carry Flag) 在发生下列情况时,辅助进位标志AF的值被置为1,否 则其值为0:

51系列单片机寄存器详解

AUXR:辅助寄存器 字节地址=8EH,不可位寻址 - - - WDIDLE DISRTO - - DISALE WDIDLE:WTD在空闲模式下的禁止/允许位 当WDIDLE=0时,WDT在空闲模式下继续计数 当WDIDLE=1时,WDT在空闲模式下暂停计数 DISRTO:禁止/允许WDT溢出时的复位输出 当DISRTO=0时,WDT定时器溢出时,在RST引脚输出一个高电平脉冲 当DISRT0=1时,RST引脚为输入脚 DISALE :ALE禁止/允许位 当DISALE=0时,ALE有效,发出恒定频率脉冲 当DISALE=1时,ALE仅在CPU执行MOVC和MOVX类指令时有效,不访问外寄存器时,ALE不输出脉冲信号 AUXR1:辅助寄存器1字节地址A2,不可位寻 - - - -- - - DPS DPS:数据指针寄存器选择位 当DPS=0时,选择数据指针寄存器DPRT0 DPRT1时,选择数据指针寄存器DPS 当= PSW:程序状态字 CY——进位标记 AC——半进位标记 F0——用户设定标记 RS1、RS0——4个工作寄存器区的选择位。 VO——溢出标记 P——奇偶校验标记 PCON:电源控制器及波特率选择寄存器 字节地址=87H,不可位寻址 SMOD - - POF GF1 GF0 PD IDL SMOD——波特率倍增位 GF1、GF0——用户通用标记 PD——掉电方式控制位,PD=1时进入掉电模式 IDL——空闲方式控制位,IDL=1时进入空闲方式 在AT89S51中PCON.4是电源断电标记位POF,上电是为1 IE:中断允许控制寄存器

EA:中断允许总控制位 当EA=0时,中断总禁止。 当EA=1时,中断总允许后中断的禁止与允许由各中断源的中断允许控制位进行设置。 EX0( EX1):外部中断允许控制位 当EX0( EX1)=0 禁止外中断 当EX0( EX1)=1 允许外中断 ET0(EX1):定时/计数中断允许控制位 当ET0(ET1)=0 禁止定时(或计数)中断 当ET0(ET1)=1 允许定时(或计数)中断 ET2:定时器2中断允许控制位,在AT89S52、AT89C52中 ES:串行中断允许控制位 当ES=0 禁止串行中断 当ES=1 允许串行中断 IP:中断优先级控制寄存器 PX0——外部中断0优先级设定位 PT0——定时中断0优先级设定位 PX1——外部中断1优先级设定位 PT1——定时中断1优先级设定位 PS——串口中断优先级设定位 优先级设定位2PT2——定时器SCON:串行口控制寄存器 SM0、SM1:串行口工作方式选择位 SM2:多机通信控制位 REN:允许/禁止串行口接收的控制位 TB8:在方式2和方式3中,是被发送的第9位数据,可根据需要由软件置1或清零,也可以作为奇偶校验位,在方式1中是停止位。

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

单片机各寄存器汇总

符号 地址功能介绍 B F0H B寄存器 ACC E0H 累加器 PSW D0H 程序状态字 IP B8H 中断优先级控制寄存器 P3 B0H P3口锁存器 IE A8H 中断允许控制寄存器 P2 A0H P2口锁存器 SBUF 99H 串行口锁存器 SCON 98H 串行口控制寄存器 P1 90H P1口锁存器 TH1 8DH 定时器/计数器1(高8位)TH0 8CH 定时器/计数器1(低8位)TL1 8BH 定时器/计数器0(高8位)TL0 8AH 定时器/计数器0(低8位) TMOD 89H 定时器/计数器方式控制寄存器 TCON 88H 定时器/计数器控制寄存器 DPTR 82H 83H 83H数据地址指针(高8位) PC SP 81H 堆栈指针 P0 80H P0口锁存器 PCON 87H 电源控制寄存器 、PSW-----程序状态字。 D7D6D5D4D3D2D1D0 CY AC F0 RS1 RS0 OV P 下面我们逐一介绍各位的用途 CY:进位标志。 AC:辅助进、借位(高半字节与低半字节间的进、借位)。 F0:用户标志位,由用户(编程人员)决定什么时候用,什么时候不用。 RS1、RS0:工作寄存器组选择位。这个我们已知了。 0V:溢出标志位。运算结果按补码运算理解。有溢出,OV=1;无溢出,OV=0。什么是溢出我们后面的章节会讲到。

P :奇偶校验位:它用来表示ALU 运算结果中二进制数位“1”的个数的奇偶性。若为奇数,则P=1,否则为0。 运算结果有奇数个1,P =1;运算结果有偶数个1,P =0。 例:某运算结果是78H (01111000),显然1的个数为偶数,所以P=0。 定时/计数器寄存器 1.工作方式寄存器TMOD(P134) TMOD 为T0.T1的工作方式寄存器,其各位的格式如下:TMOD D7 D6 D 5 D4 D3 D2 D1 D0 GATE C/-T M1 M0 GATE C/-T M1 M0 定时器1 定时器0 位7 GATE ——T1的门控位。 当GATE=0时,只要控制TR1置1,即可启动定时器T1开始工作; 当GATE=1时,除需要将TR1置1外,还要使INT1引脚为高电平,才能启动相应的定时器开始工作。 位6 C/—T ——T1的功能选择位。 当C/—T=0时,T1为定时器方式; 当C/—T=0时,T1为计数器方式; 位5和位4 M1和M0——T1的方式选择位。 由这两位的组合可以定义T1的3种工作方式 定时器T1工作方式选择表 如右表: 位3 GATE ——T0的门控位。 当GATE=0时,只要控制TR0置1,即可启动定时器T0开始工作; 当GATE=1时,除需要将TR0置1外,还要使INT0引脚为高电平,才能启动相应的定时器开始工作。 位2 C/T ——T1的功能选择位。 当C/—T=0时,T0为定时器方式; 当C/—T=0时,T0为计数器方式; 位1和位0 M1和M0—T0的方式选择位。 由这两位的组合可以定义T1的3种工作方式 定时器T0工作方式选择表 TMOD 不能进行位寻址,只能用字节传送指令设置定时器工作方式,低半节定义定时器0,高半字节定义定时器1。复位时,TMOD 所有位均为0,定时器处于停止工作状态。 定时/计数器控制寄存器中断请求标志寄存器TCON(P183) TCON 的作用是控制定时器的启/停,标志定时器的溢出和中断情况。定时器控制寄存器TCON 各位格式如下:TCON(88H) 8FH 8EH 8DH 8CH 8BH 8AH 89H 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 当有中断源发出请求时,有硬件将相应的中断标志位置 1.在中断请求被响应前,相应中断标志位被锁存在特殊功能寄存器TCON 或SCON 中。 TCON 为定时器T0和T1的控制寄存器,同时也锁住T0和T1的溢出中断标志及外部中断——INT0和— M1 M0 工作方式 功能描述 0 0 方式0 13位计数器 0 1 方式1 16位计数器 1 0 方式 2 自动再装入8位计数器 1 1 方式3 定时器1:停止计数 M1 M0 工作方式 功能描述 0 0 方式0 13位计数器 0 1 方式1 16位计数器 1 0 方式 2 自动再装入8位计数器 1 1 方式3 定时器0:分成2个8位计数器

控制寄存器和系统地址寄存器

二.控制寄存器和系统地址寄存器 80386控制寄存器和系统地址寄存器如下表所示。它们用于控制工作方式,控制分段管理机制及分页管理机制的实施。 控制寄存器CRx BIT31 BIT30—BIT12 BIT11—BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 CR0 PG 0000000000000000 ET TS EM MP PE CR1 保留 CR2 页故障线性地址 CR3 页目录表物理页码000000000000 BIT47—BIT16 BIT15—BIT0 全局描述符表寄存器GDTR 基地址界限中断描述符表寄存器IDTR 基地址界限 BIT15—BIT0 局部描述符表寄存器LDTR 选择子 任务状态段寄存器TR 选择子BIT31—BIT0 BIT31—BIT0 BIT11—BIT0 基地址界限属性 基地址界限属性 <一>控制寄存器 从上表可见,80386有四个32位的控制寄存器,分别命名位CR0、CR1、CR2和CR3。但CR1被保留,供今后开发的处理器使用,在80386中不能使用CR1,否则会引起无效指令操作异常。CR0包括指示处理器工作方式的控制位,包含启用和禁止分页管理机制的控制位,包含控制浮点协处理器操作的控制位。CR2及CR3由分页管理机制使用。CR0中的位5—位30及CR3中的位0至位11是保留位,这些位不能是随意值,必须为0。 控制寄存器CR0的低16位等同于80286的机器状态字MSW。 1.保护控制位 控制寄存器CR0中的位0用PE标记,位31用PG标记,这两个位控制分段和分页管理机制的操作,所以把它们称为保护控制位。PE控制分段管理机制。PE=0,处理器运行于实模式;PE=1,处理器运行于保护方式。PG控制分页管理机制。PG=0,禁用分页管理机制,此时分段管理机制产生的线性地址直接作为物理地址使用;PG=1,启用分页管理机制,此时线性地址经分页管理机制转换位物理地址。关于分页管理机制的具体介绍在后面的文章中进行。 下表列出了通过使用PE和PG位选择的处理器工作方式。由于只有在保护方式下才可启用分页机制,所以尽管两个位分别为0和1共可以有四种组合,但只有三种组合方式有效。PE=0且PG=1是无效组合,因此,用PG为1且PE为0的值装入CR0寄存器将引起通用保护异常。 需要注意的是,PG位的改变将使系统启用或禁用分页机制,因而只有当所执行的程序的代码和至少有一部分数据在线性地址空间和物理地址空间具有相同的地址的情况下,才能改变PG位。

特殊功能寄存器地址与控制位

/************************************************************ * 特殊功能寄存器地址和控制位 ************************************************************/ /*中断使能1*/ #define IE1_ 0x0000 sfrb IE1 = IE1_; #define WDTIE 0x01 /*看门狗中断使能*/ #define OFIE 0x02 /*外部晶振故障中断使能*/ #define NMIIE 0x10 /*非屏蔽中断使能*/ #define ACCVIE 0x20 /*可屏蔽中断使能/flash写中断错误*/ #define URXIE0 0x40 /*串口0接收中断使能*/ #define UTXIE0 0x80 /*串口0发送中断使能*/ /*中断标志1*/ #define IFG1_ 0x0002 sfrb IFG1 = IFG1_; #define WDTIFG 0x01 /*看门狗中断标志*/ #define OFIFG 0x02 /*外部晶振故障中断标志*/ #define NMIIFG 0x10 /*非屏蔽中断标志*/ #define URXIFG0 0x40 /*串口0接收中断标志*/ #define UTXIFG0 0x80 /*串口0发送中断标志*/ /* 中断模式使能1 */ #define ME1_ 0x0004 sfrb ME1 = ME1_; #define URXE0 0x40 /* 串口0接收中断模式使能 */ #define USPIE0 0x40 /* 同步中断模式使能 */ #define UTXE0 0x80 /* 串口0发送中断模式使能 */ /* 中断使能2 */ #define IE2_ 0x0001 sfrb IE2 = IE2_; #define URXIE1 0x10 /* 串口1接收中断使能 */ #define UTXIE1 0x20 /* 串口1发送中断使能 */ /* 中断标志2 */ #define IFG2_ 0x0003 sfrb IFG2 = IFG2_; #define URXIFG1 0x10 /* 串口1接收中断标志 */ #define UTXIFG1 0x20 /* 串口1发送中断标志 */ /* 中断模式使能2 */ #define ME2_ 0x0005 sfrb ME2 = ME2_; #define URXE1 0x10 /* 串口1接收中断模式使能 */ #define USPIE1 0x10 /* 同步中断模式使能 */ #define UTXE1 0x20 /* 串口1发送中断模式使能 */ /************************************************************

寄存器与7种寻址方式

一、寄存器 总共有14个16位寄存器,8个8位寄存器 通用寄存器: 数据寄存器: AH(8位) AL(8位) AX(16位) (AX和AL又称累加器) BH(8位) BL(8位) BX(16位) (BX又称基址寄存器,唯一作为存储器指针使用寄存器) CH(8位) CL(8位) CX(16位) (CX用于字符串操作,控制循环的次数,CL 用于移位) DH(8位) DL(8位) DX(16位) (DX一般用来做32位的乘除法时存放被除数或者保留余数) 指针寄存器: SP 堆栈指针(存放栈顶地址) BP 基址指针(存放堆栈基址偏移) 变址寄存器:主要用于存放某个存储单元地址的偏移,或某组存储单元开始地址的偏移, 即作为存储器(短)指针使用。作为通用寄存器,它们可以保存16位算术逻辑运算中的操 作数和运算结果,有时运算结果就是需要的存储单元地址的偏移. SI 源地址(源变址寄存器) DI 目的地址(目的变址寄存器) 控制寄存器: IP 指令指针 FLAG 标志寄存器 ①进位标志CF,记录运算时最高有效位产生的进位值。

②符号标志SF,记录运算结果的符号。结果为负时置1,否则置0。 ③零标志ZF,运算结果为0时ZF位置1,否则置0。 ④溢出标志OF,在运算过程中,如操作数超出了机器可表示数的范围称为溢出。溢出时OF位置1,否则置0。 ⑤辅助进位标志AF,记录运算时第3位(半个字节)产生的进位值。 ⑥奇偶标志PF,用来为机器中传送信息时可能产生的代码出错情况提供检验条件。当结果操作数中1的个数为偶数时置1,否则置0。 段寄存器 CS 代码段IP DS 数据段 SS 堆栈段SP BP ES 附加段 二、七种寻址方式: 1、立即寻址方式: 操作数就包含在指令中。作为指令的一部分,跟在操作码后存放在代码段。 这种操作数成为立即数。立即数可以是8位的,也可以是16位的。 例如: 指令: MOV AX,1234H 则: AX = 1234H 2、寄存器寻址方式: 操作数在CPU内部的寄存器中,指令指定寄存器号。 对于16位操作数,寄存器可以是:AX、BX、CX、DX、SI、DI、SP和BP等。对于8位操作数,寄存器可以是AL 、AH、BL、BH、CL、CH、DL、DH。 这种寻址方式由于操作数就在寄存器中,不需要访问存储器来取得操作数 因而可以取得较高的运算数度。

控制寄存器配置脚本

AXD调试时,初始化ARM处理器的脚本 2011-03-24 21:44 老师给的东西,标记一下,省的丢了。以前不知道这是干什么用的,现在知道啦,初始化处理器的。 ARM上电以后没有做过任何的初始化。一般会通过执行一个脚本来对ARM做一个基本的初始化。脚本一 般就是一个txt文件。 使用方法:AXD==>>options==>>configure interface==>>session File==>>Run configure Script==>>Browser 文件如下: Setmem 0x53000000 0x00000000 32 Setmem 0x4A000008 0xFFFFFFFF 32 Setmem 0x4A00001C 0x000007FF 32 Setmem 0x53000000 0x00000000 32 Setmem 0x56000050 0x000055AA 32 Setmem 0x4C000014 0x00000007 32 Setmem 0x4C000000 0x00FFFFFF 32 Setmem 0x4C000004 0x00061012 32 Setmem 0x4C000008 0x00040042 32 Setmem 0x48000000 0x22111120 32 Setmem 0x48000004 0x00002F50 32 Setmem 0x48000008 0x00000700 32 Setmem 0x4800000C 0x00000700 32 Setmem 0x48000010 0x00000700 32 Setmem 0x48000014 0x00000700 32

ASCII码表&部分汇编标志寄存器操作指令

ASCII值控制字 符 ASCII 值 控制字 符 ASCII 值 控制字 符 ASCII 值 控制字 符 0 NUT 32 (space) 64 @ 96 、 1 SOH 33 !65 A 97 a 2 STX 34 ”66 B 98 b 3 ETX 35 # 67 C 99 c 4 EOT 36 $ 68 D 100 d 5 ENQ 37 % 69 E 101 e 6 ACK 38 & 70 F 102 f 7 BEL 39 , 71 G 103 g 8 BS 40 ( 72 H 104 h 9 HT 41 ) 73 I 105 i 10 LF 42 * 74 J 106 j 11 VT 43 + 75 K 107 k 12 FF 44 , 76 L 108 l 13 CR 45 - 77 M 109 m 14 SO 46 . 78 N 110 n 15 SI 47 / 79 O 111 o 16 DLE 48 0 80 P 112 p 17 DCI 49 1 81 Q 113 q 18 DC2 50 2 82 R 114 r 19 DC3 51 3 83 X 115 s 20 DC4 52 4 84 T 116 t 21 NAK 53 5 85 U 117 u 22 SYN 54 6 86 V 118 v 23 TB 55 7 87 W 119 w 24 CAN 56 8 88 X 120 x 25 EM 57 9 89 Y 121 y 26 SUB 58 : 90 Z 122 z 27 ESC 59 ; 91 [ 123 { 28 FS 60 < 92 / 124 | 29 GS 61 = 93 ] 125 } 30 RS 62 > 94 ^ 126 ~ 31 US 63 ? 95 —127 DEL

汇编语言学习笔记之通用寄存器

汇编语言学习笔记之通用寄存器 从昨天开始,正式拉开了学习汇编语言的序幕,对于汇编语言的一些特点以及数据的表示及类型做了一番了解,由于这些东西每一种语言里都要介绍,而且一时半会也真弄不太明白它们的具体使用,也就粗略的看了一下,留待在今后的学习中结合实例加以体会吧。 而通用寄存器应该说是CPU内部重要的数据存储资源,学习汇编语言必须要掌握清它们的功能。因此汇编语言学习的第一篇学习笔记就从通用寄存器开始了。以下内容摘自汇编教程中。 寄存器是CPU内部重要的数据存储资源,是汇编程序员能直接使用的硬件资源之一。由于寄存器的存取速度比内存快,所以,在用汇编语言编写程序时,要尽可能充分利用寄存器的存储功能。 寄存器一般用来保存程序的中间结果,为随后的指令快速提供操作数,从而避免把中间结果存入内存,再读取内存的操作。在高级语言(如:C/C++语言)中,也有定义变量为寄存器类型的,这就是提高寄存器利用率的一种可行的方法。 另外,由于寄存器的个数和容量都有限,不可能把所有中间结果都存储在寄存器中,所以,要对寄存器进行适当的调度。根据指令的要求,如何安排适当的寄存器,避免操作数过多的传送操作是一项细致而又周密的工作。有关“寄存器的分配策略”在后续课程《编译原理》中会有详细的介绍。 由于16位/32位CPU是微机CPU的两个重要代表,所以,在此只介绍它们内部寄存器的名称及其主要功能。 1、16位寄存器组 16位CPU所含有的寄存器有: 4个数据寄存器(AX、BX、CX和DX), 2个变址和指针寄存器(SI和DI), 2个指针寄存器(SP和BP) 4个段寄存器(ES、CS、SS和DS), 1个指令指针寄存器(IP), 1个标志寄存器(Flags) 2、32位寄存器组 32位CPU除了包含了先前CPU的所有寄存器,并把通用寄存器、指令指针和标志寄存器从16位扩充成32位之外,还增加了2个16位的段寄存器:FS 和GS。 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX), 2个变址和指针寄存器(ESI和EDI), 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS),

STMf寄存器说明

C R C寄存器(一种算法,用以确认发送过程中是否出错) 数据寄存器:CRC_DR 可读写,复位值:0xFFFFFFFF; 独立数据寄存器:CRC_IDR 临时存放任何8位数据; 控制寄存器:CRC_CR 只零位可用,用于复位CRC,对其写1复位,由硬件清零; PWR电源控制 (控制和管理电源) 电源控制寄存器:PWR_CR 控制选择系统的电源 电源控制/状态寄存器:PWR_CSR 睡眠或待机模式电源控制 BKP备份寄存器 (用以控制和管理备份数据) 备份数据寄存器x:BKP_DRx(x=1…10) 10个16位数据寄存器用以存储用户数据 RTC时钟校准寄存器:BKP_RTCCR 控制实时时钟的运行 备份控制寄存器:BKP_CR 控制选择清除备份数据的类型 备份控制/状态寄存器:BKP_CSR 对侵入事件的控制 RCC寄存器 (时钟的选择、复位、分频) 时钟控制寄存器(RCC_CR)

各时钟状态显示 时钟配置寄存器(RCC_CFGR) 时钟分频 时钟中断寄存器(RCC_CIR) 控制就绪中断使能与否 APB2外设复位寄存器(RCC_APB2RSTR) APB1外设复位寄存器(RCC_APB1RSTR) 复位APB各功能寄存器 AHB外设时钟使能寄存器(RCC_AHBENR) AHB时钟使能控制 APB2外设时钟使能寄存器(RCC_APB2ENR) APB1外设时钟使能寄存器(RCC_APB1ENR) APB1时钟使能控制 备份域控制寄存器(RCC_BDCR) 备份域时钟控制 控制/状态寄存器(RCC_CSR) 复位标志寄存器 AHB外设时钟复位寄存器(RCC_AHBRSTR) 复位以太网MAC模块 时钟配置寄存器2(RCC_CFGR2) 时钟选择与分频 GPIO寄存器(设置端口的功能) 端口配置低寄存器(GPIOx_CRL)(x=A..E) 端口配置高寄存器(GPIOx_CRH)(x=A..E) 端口输入数据寄存器(GPIOx_IDR)(x=A..E) 只读数据,读出IO口的状态 端口输出数据寄存器(GPIOx_ODR)(x=A..E) 可读可写

【电气控制与PLC】课后习题及答案

【电气控制与PLC】课后习题及答案 第一章课后习题参考答案 2、何谓电磁机构的吸力特性与反力特性?吸力特性与反力特性 之间应满足怎样的配合关系? 答:电磁机构使衔铁吸合的力与气隙长度的关系曲线称作吸力特性;电磁机构使衔铁释放(复位)的力与气隙长度的关系曲线称作反力特性。 电磁机构欲使衔铁吸合,在整个吸合过程中,吸力都必须大于反力。反映在特性图上就是要保持吸力特性在反力特性的上方且彼此靠近。 3、单相交流电磁铁的短路环断裂或脱落后,在工作中会出现什 么现象?为什么? 答:在工作中会出现衔铁产生强烈的振动并发出噪声,甚至使铁芯松散得到现象。 原因是:电磁机构在工作中,衔铁始终受到反力Fr的作用。 由于交流磁通过零时吸力也为零,吸合后的衔铁在反力Fr作用下被拉开。磁通过零后吸力增大,当吸力大于反力时衔铁又被吸合。这样,在交流电每周期内衔铁吸力要两次过零,如此周而复始,使衔铁产生强烈的振动并发出噪声,甚至使铁芯松散。 5、接触器的作用是什么?根据结构特征如何区分交、直流接触 器? 答:接触器的作用是控制电动机的启停、正反转、制动和调速等。 交流接触器的铁芯用硅钢片叠铆而成,而且它的激磁线圈设有骨架,使铁芯与线圈隔离并将线圈制成短而厚的矮胖型,这样有利于铁芯和线圈的散热。 直流接触器的铁芯通常使用整块钢材或工程纯铁制成,而且它的激磁线圈制成高而薄的瘦高型,且不设线圈骨架,使线圈与铁芯直接接触,易于散热。 8、热继电器在电路中的作用是什么?带断相保护和不带断相保

护的三相式热继电器各用在什么场合? 答:热继电器利用电流的热效应原理以及发热元件热膨胀原理设计,可以实现三相电动机的过载保护。 三角形接法的电动机必须用带断相保护的三相式热继电器;Y形接法的电动机可用不带断相保护的三相式热继电器。 9、说明热继电器和熔断器保护功能的不同之处。 答:热继电器在电路中起过载保护的作用,它利用的是双金属片的热膨胀原理,并且它的动作有一定的延迟性;熔断器在电路中起短路保护的作用,它利用的是熔丝的热熔断原理,它的动作具有瞬时性。 11、中间继电器与接触器有何异同? 答:相同点:输入信号都是电压;都是利用电磁机构的工作原理。 不同点:中间继电器用于小电流控制电路中,起信号传递、放大、翻转和分路等作用,主要用于扩展触点数量,实现逻辑控制; 接触器用于频繁远距离接通或分断电动机主电路或其他负载电路,是执行电器,分主、辅助触点,大多有灭弧装置 第二章作业参考答案 1、三相笼型异步电动机在什么条件下可直接启动?试设计带有短路、过载、失压保护的三相笼型异步电动机直接启动的主电路和控制电路,对所设计的电路进行简要说明,并指出哪些元器件在电路中完成了哪些保护功能? 答:小容量的三相笼型异步电动机(<10kW)

汇编语言指令分类详解

3.1 8086/8088寻址方式 计算机中的指令由操作码字段和操作数字段组成。 操作码:指计算机所要执行的操作,或称为指出操作类型,是一种助记符。 操作数:指在指令执行操作的过程中所需要的操作数。该字段除可以是操作数本身外,也可以是操作数地址或是地址的一部分,还可以是指向操作数地址的指针或其它有关操作数的信息。 寻址方式就是指令中用于说明操作数所在地址的方法,或者说是寻找操作数有效地址的方法。8086/8088的基本寻址方式有六种。 1.立即寻址 所提供的操作数直接包含在指令中。它紧跟在 操作码的后面,与操作码一起放在代码段区域中。 如图所示。 例如:MOV AX,3000H 立即数可以是8位的,也可以是16位的。若 是16位的,则存储时低位在前,高位在后。 立即寻址主要用来给寄存器或存储器赋初值。 2.直接寻址 操作数地址的16位偏移量直接包含在指令中。它与操作码—起存放在代码段区域,操作数一般在数据段区域中,它的地址为数据段寄存器DS加上这16位地址偏移量。如图2-2所示。 例如:MOV AX,DS:[2000H];

图2-2 (对DS来讲可以省略成MOV AX,[2000H],系统默认为数据段)这种寻址方法是以数据段的地址为基础,可在多达64KB的范围内寻找操作数。 8086/8088中允许段超越,即还允许操作数在以代码段、堆栈段或附加段为基准的区域中。此时只要在指令中指明是段超越的,则16位地址偏移量可以与CS或SS或ES相加,作为操作数的地址。 MOV AX,[2000H] ;数据段 MOV BX,ES:[3000H] ;段超越,操作数在附加段 即绝对地址=(ES)*16+3000H 3.寄存器寻址 操作数包含在CPU的内部寄存器中,如寄存器AX、BX、CX、DX等。 例如:MOV DS,AX MOV AL,BH 4.寄存器间接寻址 操作数是在存储器中,但是,操作数地址的16位偏移量包含在以下四个寄存器SI、DI、BP、BX之一中。可以 分成两种情况: (1)以SI、DI、BX间接寻址,则 通常操作数在现行数据段区域 中,即数据段寄存器(DS)*16 加上SI、DI、BX中的16位偏移 量,为操作数的地址, 例如:MOV AX,[SI] 操作数地址是:(DS)*16+(SI) (2)以寄存器BP间接寻址,则操作数在堆栈段区域中。即堆栈段寄存器(SS)*16与BP的内容相加作为操作数的地址, 例如:MOV AX,[BP] 操作数地址是:(SS)*16+(BP)若在指令中规定是段超越的,则BP的内容也可以与其它的段寄存器相加,形成操作数地址。 例如:MOV AX,DS:[BP] 操作数地址是:(DS)*16+(BP)5.变址寻址 由指定的寄存器内容,加上指令中给出的8位或16位偏移量(当然要由一个

机械传动性能指导书解析

第一章机械传动性能测试综合实验台说明书 一、概述 “THM CD-1型机械传动性能测试综合实验台”是根据相关课程的教学大纲要求而研制的,它采用模块式结构,可快速组合多种机械传动实训,能测试各种机械传动的速比、转矩、效率等。配套专用的数据采集系统,实现计算机智能数据采集、分析、处理、曲线显示及打印输出等功能。适合各院校机械类专业《机械设计》、《机械原理》、《机械零件》等课程的教学实训需要。 二、主要实训仪器及设备 1.NJ型转矩转速传感器 NJ型转矩转速传感器的基本原理是:通过弹性轴、两组磁电信号发生器,把被测转矩、转速转换成具有相位差的两组交流电信号,这两组交流电信号的频率相同且与轴的转速成正比,而其相位差的变化部分又与被测转矩成正比。 NJ型转矩转速传感器的工作原理如图1。在弹性轴的两端安装有两只信号齿轮,在两齿轮 图1 NJ型转矩转速传感器工作原理图 的上方各装有一组信号线圈,在信号线圈内均装有磁钢,与信号齿轮组成磁电信号发生器。当信号齿轮随弹性轴转动时,由于信号齿轮的齿顶及齿谷交替周期性的扫过磁钢的底部,使气隙磁导产生周期性的变化,线圈内部的磁通量亦产生周期性变化,使线圈中感应出近似正弦波的交流电信号。这两组交流电信号的频率相同且与轴的转速成正比,因此可以用来测量转速。这两组交流电信号之间的相位与其安装的相对位置及弹性轴所传递扭矩的大小及方向有关。当弹性轴不受扭时,两组交流电信号之间的相位差只与信号线圈及齿轮的安装相对位置有关,这一相位差一般称为初始相位差,在设计制造时,使其相差半个齿距左右,即两组交流电信号之间的初始相位差在180度左右。在弹性轴受扭时,将产生扭转变形,使两组交流电信号之间的相位差发生变化,在弹性变形范围内,相位差变化的绝对值与转矩的大小成正比。把这两组交流电信号用专用屏蔽电缆线送入具有其功能的扭矩卡送入计算机,即可得到转矩、转速及功率的精确值。图2是NJ型转矩转速传感器机械结构图。其结构与图1的工作原理图的差别是,为了提高测量精度及信号幅值,两端的信号发生器是由安装在弹性轴上的外齿轮、安装在套筒内的内齿轮、固定在机座内的

51单片机特殊功能寄存器与串行通讯

51单片机特殊功能寄存器与串行通讯 一、IE(中断允许控制寄存器) IE(字节地址A8H)寄存器格式: D7D6D5D4D3D2D1D0 IE EA X ET2ES ET1EX1ET0EX0 位地址AFH ADH ACH ABH AAH A9H A8H IE各位功能说明 EA(IE.7)中断允许总控制位 X(IE.6)保留位 ET2(IE.5)定时器/计数器T2中断响应控制位 ES(IE.4)串口中断响应控制位 ET1(IE.3)定时器/计数器T1中断响应控制位 EX1(IE.2)外部中断INT1中断响应控制位 ET0(IE.1)定时器/计数器T0中断响应控制位 EX0(IE.0)外部中断INT0中断响应控制位 中断优先级控制(1为高级;0位低级) 默认顺序: INT0T0INT1T1Ri Ti 中断号n中断源中断向量8n+3 0外部中断0(INT0)0003H 1定时器0(T0)000BH 2外部中断1(INT1)0013H 3定时器1(T1)001BH 4串行口(Ri,Ti)0023H 二、TMOD(定时器方式控制寄存器) TMOD(字节地址:89H,不可位寻址)寄存器格式: 定时器、计数器1定时器、计数器0 D7D6D5D4D3D2D1D0 TMOD GATE C/T M1M0GATE C/T M1M0 1、GATE---门控制 GATE=1,由外部中断引脚INT1、INT0和控制寄存器的TR0,TR1来启动定时器 当INT0引脚为高电平时TR0置位,启动定时器T0 当INT1引脚为高电平时TR1置位,启动定时器T1 2、C/T---功能选择位 为0:作为定时器 为1:作为计数器 3、M0、M1---方式选择功能4种工作方式 M1M0工作方式计数器模式TMOD(设置定时器0模式)00方式013位计数器TMOD=0x00 01方式116位计数器TMOD=0x01 10方式2自动重装8位计数器TMOD=0x02

相关文档