文档库 最新最全的文档下载
当前位置:文档库 › VOLFA拉杆式位移传感器

VOLFA拉杆式位移传感器

VOLFA拉杆式位移传感器
VOLFA拉杆式位移传感器

德国VOLFA拉杆式位移传感器

信息参考来源:广州兰瑟电子科技

德国VOLFA传感器电子尺(位移传感器),内藏耐用的导电塑料电阻轨,适合位置测量及自动化控制等应用。德国VOLFA直线位移传感器(电子尺)的测量长度为50-1000mm,利用导电塑料轨与稀土金属多指接触片,提供稳定的讯号,低噪音及高寿命的运作。特佳重复度是±0.013mm,而线性准确度是±0.05%,无断解像度,固定支架可在铝槽内任何位置作快捷及牢固的安装。德国VOLFA 电子尺利用坚固的不锈钢轴承承托,提供顺滑紧密的操作及极高的寿命>100x106次,使用长度>25x106米。

德国VOLFA拉杆式位移传感器尺订制选项(电压输出):

1.LWF-V2输出(0-5V DC)或者(0-10V DC)

2.三线制(端子1:电源+,端子2:输出+,端子3:公用端)

3.四线制(端子1:电源+,端子2:输出+,端子3:输出-,端子4:电源-)(电流输出4-20mA):

1.二线制(端子1:输出+,端子2:输入+)

2.三线制(端子1:电源+,端子2:输出+,端子3:公用端)

3.四线制(端子1:电源+,端子2:输出+,端子3:输出-,端子4:电源-)

电感式位移传感器(中文)

恒流源向线圈双向充电的电感式位移传感器 引言 没有正弦信号激励,只采用开关方式测量电容值,可以测量的电容值在pF 以下[1-3]。并用这种方法设计 的电容式传感器也很多[4-6] 。其中有恒压信号向小电容充电的用法[6],这种用法最初出现在开关电容滤波电路中。而电感值的测量及其电感式传感器,包括差动变压器仍在采用正弦信号激励的方式[7-12]。有的电感式传感器在正弦激励的基础上引入开关方式,但在电路中仍然加电容与电感谐振[13-16]。电感与电容在电磁场中关系紧密,在电路中是对偶关系[17]。本文介绍采用开关电路以恒流源向电感线圈充电,只经过二极管放电来测量电感值的方法,采用双向充电来减少变差,实现了电感式位移量的测量。 1 测量原理 采用开关电路以恒流源电路向电感充电,只经过 二极管放电的测量电感值的原理如图1所示,图中S 和D 构成互补开关,S 闭合时电流源I s 向被测电感充电,时间足够长使电感中的电流达到稳定值s i I =,而且有磁通链x s L I ψ=,L s u D C R I =?。由于被测电感的性质,充电初期I s 是变的,I s 是恒流源电路,充电后期达到的平稳状态是恒流源性质,这样u L 是自由可变的。S 断开时,电感中储存的磁通链对应的电动势经二极管D 放电,这时的电感电压是二极管D 的正向压降L D P u U =-,如果不考虑电压的符号,对应的电感电流从I 1下降到I 2所释放的磁通链为12()x D P D L I I U t ψ?=-=?,所以有如下关系式 12 DP D U Lx t I I = - (1) 其中t D 是二极管稳定正向导通的时间,当I s 一定时,I 1是确定的;当D 一定时,I 2也是确定的,并且要求放电电流线性下降,这用示波器可以看到。D P U 、I 1和I 2为常数,则测量出t D 就可用电桥标定出电感值L x 。过了这段时间,磁场能量不足以击穿D 的PN 结,而与结电容构成LC 阻尼振荡,直至磁场能量释放完毕。 适当的设置S 的开关周期和占空比保证充电时间足够长,以致充电达到稳定状态,只要放电时间大于t D 就可以用检测电路及单片机测量出t D ,再用式(1)计算出电感值L x 。 式(1)与电容充放电的电路存在对偶性质。式(2) 图1 测量电感值的原理图 是电容值的计算公式[1] ,其中t ?是电容电压从U 1下降到U r 的时间。式(2)的恒流源电路I o 越小,可以测量的电容值就越小,对偶地对应式(1)是U D 越小,可以测量的电感值越小。 1o r I C t U U = ?- (2) 2 恒流源双向充电 测量电感器的电感值,只在几秒钟便完成,但要做成电感式传感器,其电感长期工作在一个方向的励磁,将会出现剩磁并影响传感器的性能,而且正行程与反行程的变差大。如图2所示。因而要采用双向充电的方式。 电路如图3所示,其中S1—S4构成对电感L x 的双向充放电的开关,开关逻辑如表1所示,其中E1和E2分别是输出信号u 1和u 2的输出使能,也就是在放 u L I s D S

位移传感器(中英对照)

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 简介 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。 信号处理 辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之

位移传感器的主要分类

位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫

用于多电机同步控制的角位移传感器设计

用于多电机同步控制的角位移传感器设计 Design of rotate displacement sensor used to multi-drive synchronization system 奚小网1,陆 荣1,高 波2 XI Xiao-wang1, LU Rong1, GAO Bo2 (1. 无锡职业技术学院 机电技术学院,无锡 214121;2. 中国船舶科学研究中心,无锡 214082) 摘 要:本文介绍了一种可用于多电动机同步控制系统的角位移传感器。它采用导电塑料电位器为敏感元件,电位器滑动转轴与质量块固定,将传感器转角的变化转换成电阻的变化并通过测量转 换电路改变输出电压,输入变频器控制多电机同步运行。详细分析了传感器的结构、特点和 测量转换电路。实验表明输出电压与角位移变化呈线性关系。 关键词:角位移传感器;多电机同步,变频,运算放大器 中图分类号:TP274 文献标识码:A 文章编号:1009-0134(2011)8(上)-0045-04 Doi: 10.3969/j.issn.1009-0134.2011.8(上).13 0 引言 角度和角位移的测量在现代工业生产中广泛应用,主要采用电阻式、电感式、电容式、光栅式、磁阻式等角度和角位移传感器[1]。在多电机同步控制系统中角位移传感器也有应用,但传统的角位移测量仪,因结构等方面的缺陷,影响了其使用寿命和可靠性。利用导电塑料薄膜电位器作为敏感元件,设计了一种新型角位移传感器,用于多电机同步运行控制,具有无接触式、结构简单、小巧轻便、线性好、控制精度高等特点,既提高了控制的可靠性和分辨率,又简化了装配工艺,降低了成本。 1 多电机同步控制原理 在造纸、纺织印染、轧钢等生产设备中,由于具有多点传动的要求,电动机的数量通常较多,对系统的调速控制也提出了更高的要求。在调速方式上,由于变频调速具有可靠性高、使用维护方便等特点,因此这些设备一般采用变频器传动交流异步电动机的调速方式[2]。在工艺上,通常要求这些传动电动机之间能够实现同步运行(例如造纸、纺织印染设备)或按照一定的牵伸比(线速度比)运行(例如轧钢机、化纤后处理设备)。如常用的印染后整理设备有显色皂洗机、退煮漂联合机、热风烘燥机、丝光联合机等,这些设备的传动电机较多。工作时,布卷从设备进口进入,经过多电动机传动后,在出口处再次形成布卷。显然,为防止布匹在加工过程中跑偏、起皱并保证一定的张力,要求多个电动机保持同步运行,即实现多单元同步传动。 图1为三单元同步控制系统框图。图中VF1为主令电动机变频器,VF2、VF3为轧车2以及轧车3的传动电机变频器。VF1的运行速度信号来自主控单元的主令给定,当主令信号确定后,整机的运 行速度就确定了。 图1 三单元同步控制系统示意图 本系统中,为保证轧车2、轧车3与轧车1的同步运行,变频器VF2、VF3 的速度由主令信号和同步检测装置共同给定。由图1可见,同步检测装置中的电位器接±5V直流电源,当电位器处于中间位置时,给定信号为0V。同步检测信号输入变频器辅助模拟量输入端后,可通过设定变频器内部参数得到如下速度控制信号: 收稿日期:2011-03-10 基金项目:江苏省高等教育人才培养模式创新实验基地项目资助(2008-47) 作者简介:奚小网(1967 -),男,江苏无锡人,副教授,工学硕士,研究方向为电工技术、功能材料及应用等。

电容式位移传感器的设计

课程设计 设计名称: 电容式位移传感器的设计_ 专业班级: __ 姓名: ____________ 学号: _________ 指导教师: ______ xxxx年 xx 月

目录 一、设计要求……………………………………………………………… 3 二、电容传感器工作特性 (3) 三、电容传感器的优缺点 (3) 四、基本原理……………………………………………………………… 3 五、设计分析……………………………………………………………… 4 六、消除和减少寄生电容的影响 (5) 七、转换电路的设计 (6) 八、差动放大电路………………………………………………………… 8 九、相敏检波器系统工作及原理 (9) 十、心得体会 (11) 十一、参考文献 (12) 十二、附录 (13)

1、设计要求: 设计差动变面积式电容位移传感器,要求规定的设计参数。 1、测量范围(mm):0~±1mm; 2、线性度(%Fs):0.5; 3、分辨率(μm):0.01; 4、灵敏度(PF/mm): 5、通过理论设计、结构设计、理论分析等过程设计传感器结构和测量电路,画出结构示意图和测量电路图,并进行参数计算。利用参数和结构来选择合理的方法消除或减少寄生电容的干扰影响。结合传感器实验平台,确定传感器的静态灵敏度和线性范围,并设计电容传感器的电子秤应用实验。 2、电容传感器工作特性 电容式传感器具有灵敏度高、精度高等优点。相对与其他传感器来说,电容式传感器的温度稳定性好,其结构简单,易于制造,易于保证高的精度,能在高温、低温、强辐射及强磁场等各种恶劣环境条件下工作,适应性强;它的静电引力小,动态响应好,可用于测量高速变化的参数,如测量振动、瞬时压力等;它能够实现非接触测量,在被测件不能受力,或高速运动,或表面不连接,或表面不允许划伤等不允许采用接触测量的情况下,电容传感器可以完成测量任务;当采用非接触测量时,电容传感器具有平均效应,可以减少工件表面粗糙度等对测量的影响。因其所需的输入力和输入能量极小,因而可测极低的压力、很小的加速度、位移等,由于在空气等介质中损耗小,采用差动结构并连接成桥式电路时产生的零点残余电压极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度,分辨力高,能敏感0.01μm至更小的位移。本课题采用差动变面积式电容位移传感器,线性的反映电容和位移的变化关系。 3、电容传感器的优缺点

拉绳位移传感器_米兰特

一、米兰特拉绳位移传感器MPS-L-R详细介绍: 1、输出模式:电阻型 2、有效行程:300~20000mm 3、线性精度:0.3%~0.2%FS) 4、重复精度:(R、V、A型:0.03%~0.02%FS) 5、供电电压:R型:~24VDC;V、A型:24VDC; 6、输出特征:R型:0~10KΩ;V型:0~10VDC;A型:4~20Ma; 7、迟滞:R、V、A型:无; 8、最大允许拉伸速度:1000mm/s; 9、牵引力:Max.1500g 10、震动:10g 11、重量:<3500g 二、米兰特拉绳位移传感器MPS-L-V系列详细介绍: 1、输出模式(后缀):R电阻型、V电压型、A电流型、P1增量

脉冲型、P2绝对脉冲型 2、有效行程:3000~20000mm 3、线性精度:(R、V、A型:0.3%~0.2%FS) 4、重复精度:(R、V、A型:0.03%~0.02%FS) 5、供电电压:R型:~24VDC;V、A型:24VDC;P1、P2型:5~24VDC; 6、输出特征:R型:0~10KΩ;V型:0~10VDC;A型:4~20Ma; 7、迟滞:R、V、A型:无;P1、P2型:10KHz~50KHz; 8、最大允许拉伸速度:1000mm/s; 9、牵引力:Max.1500g 10、震动:10g 11、重量:<3500g 12、防护等级: IP 65 三、米兰特拉绳位移传感器MPS-L-MA系列详细介绍: 1、输出模式(后缀):电流型 2、有效行程:3000~20000mm 3、线性精度:(R、V、A型:0.3%~0.2%FS) 4、重复精度:(R、V、A型:0.03%~0.02%FS) 5、供电电压:R型:~24VDC;V、A型:24VDC; 6、输出特征:R型:0~10KΩ;V型:0~10VDC;A型:4~20Ma; 7、迟滞:R、V、A型:无; 8、最大允许拉伸速度:1000mm/s;

传感器课程设计 电感式位移传感器

东北石油大学 课程设计 2015年7 月 8日

任务书 课程传感器课程设计 题目电感式位移传感器应用电路设计 专业测控技术与仪器姓名祖景瑞学号 主要内容: 本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。 基本要求: 1、能够检测 0~20cm 的位移; 2、电压输出为 1~5V; 3、电流输出为 4~20mA; 主要参考资料: [1] 贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006:68-69. [2]王煜东. 传感器及应用[M].北京:机械工业出版社,2005:5-9. [3] 唐文彦.传感器[M].北京:机械工业出版社,2007: 48-50. [4] 谢志萍.传感器与检测技术[M].北京:高等教育出版社,2002:80-90.完成期限—

指导教师 专业负责人 2015年 7 月 1 日

摘要 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。 关键词:电感式传感器;自感式传感器;测量位移;位移传感器

位移传感器的工作原理都有哪些

电位器式位移传感器,位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。 下面笔者来跟大家讲一下位移传感器的工作原理都有哪些 由于作为确定位置的活动磁环和敏感元件并无直接接触,位移传感器因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响,IP防护等级在IP67以上。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩位移传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作

用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下,也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中。 杭州奥仕通自动化系统有限公司成立于2011年,是一家专业提供塑料机械行业自动化系统解决方案的高科技技术企业。公司为意大利杰佛伦(GEFRAN)和法国赛德(CELDUC)在中国大陆地区的核心代理商,主要产品有塑料机械控制器(PLC)、伺服驱动器、位移传感器、压力传感器、注射力和合模力传感器、高温熔体压力传感器、固态继电器(SSR)、温控表等。

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

直流激励时接触式霍尔位移传感器特性实验

实验三直流激励时接触式霍尔位移传感器特性实验一、实验目的 了解霍尔位移传感器原理与应用。 二、基本原理 根据霍尔效应,霍尔电势U H=K H IB,保持K H、I不变,若霍尔元件在梯度磁场B中运动,且B是线性均匀变化的,则霍尔电势U H也将线性均匀变化,这样就可以进行位移测量。 三、需用器件与单元 霍尔传感器实验模板、线性霍尔位移传感器、直流电源±4V、电源±15V、测微头、数显单元。 四、实验步骤 1、将霍尔传感器按图8-1 安装。霍尔传感器与实验模板的连接按图8-2进行。①、 ③为电源±4V(或单元5V),②、④为输出,R1与④之间可暂时不接。 图8-1 霍尔传感器安装示意图 2、开启电源,接入±15V电源,将微测头旋至10mm处,左右移动微测头使霍尔片处在磁钢中间位置,即数显表电压指示最小,拧紧测量架顶部的固定螺钉,接入R1与④之间的连线,调节Rw2使数显表指示为零(数显表置2V档)。

图8-2 霍尔传感器与实验模板连线图 3、旋转微测头,每转动0.5mm记下数字电压表读数,并将读数填入表8-1中,将测 微头回到10mm处,反向旋转测微头,重复实验过程,填入表8-1中。 五、实验结果分析与处理 1、记录数显表数值如下: 表3-1:霍尔传感器位移量与输出电压的关系: X(mm)7.07.58.079.09.510.010.511.011.512.012.513.0 V(mV)1721361067953270-28-59-92-124-151-165 2、由数据绘出霍尔传感器位移量与输出电压特性曲线如下

图8-3 霍尔传感器位移量与输出电压特性曲线 3、(1)计算系统灵敏度: 在)10,0.7[∈X 区间, ΔV=(172-136)+(136-106)+???+(27-0)/6=172/6=28.67mV ΔX=0.5mm 灵敏度S=ΔV/ΔX=57.34mV/mm 在]0.13,0.10(∈X 区间, ΔV=(28-0)+(59-28)+。。。+(165-151)/6=/6=27.5mV ΔX=0.5mm 灵敏度S=ΔV/ΔX=55.0mV/mm (2)计算非线性误差: 在)10,0.7[∈X 区间,

美国CELESCO拉绳位移传感器

美国CELESCO拉绳位移传感器 广州南创钟工 美国CELESCO拉绳位移传感器目前是世界最大的专业拉绳位移传感器生产商。美国Celesco传感器其技术很容易实现:拉绳传感器通过一根高柔性的不锈钢芯同被测物体相连,将直线运动转换成旋转运动。目前,美国CELESCO拉绳位移传感器的产品在50多个国家设立了国外办事处及售后服务中心,并在中国设立了广州南创传感事业部,为美国CELESCO拉绳位移传感器提供最佳的服务与解决方案。 美国CELESCO拉绳位移传感器特点: 1、美国CELESCO拉绳位移传感器量程范围大(0~70,000mm),品种全,体积小,安装使用方便,可以适合危险场合应用。 2、美国CELESCO拉绳位移传感器输出信号全:电流4…20mA,0...20mA, 电压0…5Vdc, 0…10Vdc, 电桥 2.0mV/V, 0…30mV/V可调, 电位器, 增量编码器,绝对值编码器,RS232,RS485 ,RS422,SSI,Profibus。 3、美国CELESCO拉绳位移传感器测量精度高(最高精度可达到±0.01%),可靠性好,防护等级高(可达IP68),寿命长,维护少称重传感器(load cells)。 4、美国CELESCO拉绳位移传感器应用范围广广泛应用在各种位置测量控制领域。CELESCO传感器美国CELESCO拉绳式传感器系列:PT1 系列是一种紧凑型的拉绳式位移传感器, 适用于慢速及中等加速度位移的测量,比如结构测试(室内),汽车机械结构测试或液压缸检测。 美国CELESCO拉绳位移传感器测量范围达50英寸,适应的环境: NEMA 4 ,IP65 PT100系列是我们工具级别的拉绳式位移传感器,适用于慢速及中等加速度的实验室位移的测量,无不良的外界环境。 美国CELESCO拉绳位移传感器测量范围达100英寸,适应的环境:NEMA 1,IP50 PT5系列是我们工业级别的拉绳式位移传感器,适用于高加速度和高循环的应用场合,如铸造,

霍尔传感器介绍

霍尔传感元器件及A44E介绍 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔器件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1)(2)(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,

位移传感器

位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型和结构型两种。 位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地

板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;

拉线位移传感器的特点

拉绳位移传感器目前主要的应用系统领域包括直线导轨系统和液压气缸系统,具体适用的机械产品有试验机、伸缩系统、仓储位置定位、纺织机械、金属板材机械、印刷机械、水平控制仪、建筑机械等相关尺寸测量和位置控制,且取得的数据也是精确数值。 熟悉拉绳位移传感器的人都知道,该传感器可以分为数字输出型和模拟输出型两个产品类。数字输出型可以选择增量旋转编码器、绝对值编码器等,输出信号为方波ABZ信号或格雷码信号,行程最大可以做到80m,线性精度最大0.05%,分辨力根据配置不同最大可以达到0.003mm/脉冲。模拟输出型可以选择精密电位器、霍尔编码器、绝对值编码器等,输出信号可以为4-20mA、0-5V、1-5V、0-10V、串行SSI和电阻信号等,最大行程可以达到60米,使用环境最大可以达到IP65的防护等级,-45℃~+105℃的宽温度环境下使用。 CFWY-II型号的传感器也是属于这一类的传感器,下面就具体以它为例进行详细介绍。它的主要特点有:安装方便,设有备用安装基准面,根据需要多种选择;安装空间小,安装难度低;无需导向且机械公差不影响测量精度。 这款型号的位移传感器属于微型拉线(绳)位移传感器,可以用来记录测量长度0~1000mm的线性距离、模拟量型和数字量型输出,标准化接口,可以坚固耐用适合短距离,高分辨率的场合。

一、CFWY-II型号传感器实体图 一、CFWY-II型号传感器外形尺寸图

二、CFWY-II型号传感器技术指标表 蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。公司除

对位移传感器的认识

对位移传感器的认识 桥梁试验是指应用测试手段,对桥梁结构的整体或主要部件进行检测,了解桥梁结构及其部件的工作状态和承载能力,以验证桥梁结构的设计计算理论,检验施工质量和发现运用中存在的问题等。 桥梁试验用的设备可分为机械式测试仪器,电测仪器和光测仪器三大类。桥梁常使用的机械式测试仪器,主要有应变计、位移计和振动仪等三大类。电测仪器一般由传感器、电子测量仪器(主机)和指示记录装置组成。 一,概述 传感器。根据其测试内容的不同,可分为应变传感器、反力传感器、位移传感器、振动传感器等。根据其转换的原理不同,可分为电阻式传感器、电感式传感器、电容式传感器、磁电式传感器、压电式传感器等。其中电阻应变片是在桥梁电测中应用最广泛的一种传感器,它是利用一些金属丝的电阻随其在长度方向的应变,在一定范围内保持线性关系的原理制成的。为了增大电阻的变化量和减少应变片的长度,通常采用高电阻率的电阻丝绕制成栅状,做成应变片。测试时,把它牢固地粘贴在测点上,当测点处的基材发生应变时,电阻应变片随之发生应变,其电阻值也作相应的改变,这就达到了非电量向电量的转换。电阻应变片不但可以测量应变,而且在加上一些附件之后,可以对位移和振动等进行测量。 位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 二,各种传感器的特点 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 光电式位移传感器利用激光三角反射法进行测量,对被测物体材质没有任何要求,主要影响为环境光强和被测面是否平整。比如公路测量用到真尚有的激光位移传感器,就对传感器进行了特殊配置,与普通情况不一样。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 三,辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方

霍尔位移传感器的设计

霍尔位移传感器的设计 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

霍尔位移传感器的设计 学院(系):电气信息工程学院 年级专业:电自09102 学号: 学生姓名:黄晶晶 摘要:霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔期间以霍尔效应为其工作原理。 本文主要研究霍尔位移传感器的设计。如图所示,被测物体分别与恒定电流I和恒定磁场B垂直。当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。 关键字:霍尔传感器位移霍尔电压 霍尔效应原理图 正文: 一.霍尔传感器的工作原理 1、霍尔效应 如霍尔效应原理图所示,在半导体薄片两端通以恒定电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于

电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为UH=KHIBCOSA,式中KH称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。I为所加的电流(一般为恒流源),B为均匀磁场,A为磁场与法线的夹角。EH为电场(图中所示) 2、霍尔元件 霍尔元件是半导体四端薄片,一般做成正方形,在薄片的相对两侧对称的焊上两对电极引出线(一对称激励电流端,另一对称霍尔电势输出端),如下图所示。 霍尔元件结构 3、霍尔元件的主要特性及材料 1)霍尔元件的主要特性参数 灵敏度KH:表示元件在单位的磁感应强度和单位控制电流所得到的开路霍尔电动势 霍尔输入电阻:霍尔控制及间的电阻值 霍尔最大允许激励电流:以霍尔元件允许的最大温度为限所对应的激励电流 不等位电势:当霍尔元件的控制电流为额定值时,若元件所处位置的磁感应强度为零,测得的空载霍尔电势。(不等位电势是由霍尔电极2和之间的电阻决定的, r 0称不等位电阻)寄生直流电势(霍尔元件零位误差的一部分):

传感器课程设计 电感式位移传感器

东北石油大学 课程设计 课程传感器课程设计 题目电感式位移传感器应用电路设计院系电气信息工程学院 专业班级测控12-2 学生姓名祖景瑞 学生学号120601240222 指导教师邹彦艳刘继承 2015年7 月8日

任务书 课程传感器课程设计 题目电感式位移传感器应用电路设计 专业测控技术与仪器姓名祖景瑞学号120601240222 主要内容: 本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。 基本要求: 1、能够检测0~20cm 的位移; 2、电压输出为1~5V; 3、电流输出为4~20mA; 主要参考资料: [1]贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006:68-69. [2]王煜东. 传感器及应用[M].北京:机械工业出版社,2005:5-9. [3] 唐文彦.传感器[M].北京:机械工业出版社,2007: 48-50. [4] 谢志萍.传感器与检测技术[M].北京:高等教育出版社,2002:80-90. 完成期限2015.7.4—2015.7.8 指导教师 专业负责人 2015年7 月1 日

摘要 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。 关键词:电感式传感器;自感式传感器;测量位移;位移传感器

角位移传感器(详细介绍)

角位移传感器 角位移传感器的概念 角位移传感器是把对角度测量转换成其他物理量的测量,它采用非接触式专利设计,与同步分析器和电位计等其它传统的角位移测量仪相比,有效地提高了长期可靠性。下图所示为是角位移传感器的一种型号: 角位移传感器的原理 有以下三种情况: (1)将角度变化量的测量变为电阻变化测量的变阻器式角位移传感器, (2)将角度变化量的测量变为电容变化的测量的面积变化型电容角位移传感器, (3)将角度变化量的测量变为感应电动势变化量的测量的磁阻式角位移传感器等等. 它的设计独特,在不使用诸如滑环、叶片、接触式游标、电刷等易磨损的活动部件的前提下仍可保证测量精度。如下图所示: 角位移传感器简化原理图 角位移传感器特点: 该传感器采用特殊形状的转子和线绕线圈,模拟线性可变差动传感器(LVDT)的线性位移,有较高的可靠性和性能,转子轴的旋转运动产生线性输出信号,围绕出厂预置的零位移动±60(总共120)度。此输出信号的相位指示离开零位的位移方向。转子的非接触式电磁耦合使产品具有无限的分辨率,即绝对测量精度可达到零点几度。

角位移传感器的应用 从力学分类来看,有一种在静态下工作的角位移传感器,例如吊车和塔吊的吊臂上就用重锤方式角位移传感器,只能用于没有加速度运动的环境,通俗的理解就是不能在运动剧烈的环境上应用,只能用在静态的场合,是地球重力场直接作用下的倾斜仪器,类似的有气泡水准仪器,例如在经纬仪,全站仪,装修行业上使用,水平联通管也是类似的原理。 角位移传感器标准的测量方法是在旋转编码器上加重锤,重锤是产生重力作用的元件,在车辆运动环境下,就要用空气阻尼、油池阻尼、电磁阻尼来抑制重锤的晃动以至振荡,就必然使角位移传感器的灵敏度下降,响应速度下降。 角位移传感器也有非绝对编码,是增量输出的,如果没有起始脉冲专门信道,就要用自己外加初始定位传感器,一般是用红外的标准产品,缺点是精度低。 使用地磁角位移传感器基本上不受环境振动影响,又受电磁干扰影响,比赛车辆自身的电动机就要磁屏蔽。 航海、航空和航天器使用一种红外角位移传感器,对环境的可见光或红外辐射进行立体的比较,最简单的是求出运载工具相对太阳的姿态,是广角和立体摄影和图像处理技术的综合,最简单地要分辨地平线;在比赛的空间,要受到小环境的光线干扰。 角位移传感器的主要技术参数: 1.旋转位移,工作温度范围大,自带信号调节 2.免接触型传感器,适应不良环境(振动、冲击、潮湿、盐雾等,出色的温度稳定性) 3.线性(100%行程):0.25~0.5 4.多种范围、直流输出 5.CE认证 电容式角位移传感器原理分析 电容式角位移传感器用于测量固定部件(定子)与转动部件(转子)之间的旋转角度,因其具有结构简单,测量精度高,灵敏度高,适合动态测量等特点,而被广泛应用于工业自动控制、汽车、航天及军事等角度定位监测领域。 一般来说,电容式角位移传感器由一组或若干组扇形固定极板和转动极板组成,为保证传感器的精度和灵敏度,同时避免因环境温度等因素的改变导致介电常数、极板形状等的间

相关文档
相关文档 最新文档