文档库 最新最全的文档下载
当前位置:文档库 › 四川省自贡市2018年中考数学试题(含答案)

四川省自贡市2018年中考数学试题(含答案)

四川省自贡市2018年中考数学试题(含答案)
四川省自贡市2018年中考数学试题(含答案)

四川省自贡市初2018届毕业生学业考试 数学试题考点分析及解答

一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的)

1.计算31-+的结果是

( )

A.2-

B.4-

C.4

D.2 考点:有理数的加减运算.

分析:根有理数的加减运算法则计算312-+=-. 故选A . 2.下列计算正确的是

( )

A.()2

2

2

a b a b -=- B.x 2y 3xy +=

0-= D.()

2

36a

a -=-

考点:整式的运算、二次根式的加减运算.

分析

0==. 故选C.

3.2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为

( )

A..7

445810? B..8

445810? C..9

445810? D..10

0445810?

考点:科学记数法.

分析:..8

4458000004458100000000445810=?=?. 故选B .

4.在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若155∠=,则2∠ 的度数是 ( )

A.50°

B.45°

C.40°

D.35°

考点:平行线的性质、互余角.

分析: 根据平行线的性质可得:,1324∠=∠∠=∠

∵+=,3490155∠∠∠= ∴4905535∠=-

= ∴235∠= 故选D .

4

3

5.下面几何体的主视图是 ( )

\

考点:几何体的三视图.

分析:几何体的三视图是从正面、左面和从上面看几何体得到的平面图形,主视图是从正面几何体得到的平面图形,本题从正面看几何体得到的是

. 故选B .

6.如图,在⊿ABC 中,点D E 、 分别是AB AC 、的中点,若⊿ADE

为4,则是⊿ABC 的面积为 (

A. 8

B. 12

C. 14

D. 16

考点:三角形的中位线定理、相似三角形的性质等.

分析:本题关键是抓住点D E 、 分别是AB AC 、的中点,根据三角形的中位线定理可以推出

()::2DE BC 14= ;又∵⊿ADE 的面积为4 ∴⊿ABC 的面积为16. 故选D .

7.在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是

( )

A.众数是98

B.平均数是90

C.中位数是91

D.方差是56 考点:平均数、中位数、众数以及方差.

分析:本可以先确定平均数、中位数、众数分别为909198、、 .所以用“排除法”就可以得出答(++-9190故选D .

8.回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是

( )

A.数形结合

B.类比

C.演绎

D.公理化

B

考点:函数的表示法、函数的图象及其性质.

分析:函数的解析式和函数的图象都是函数的不同表示方法,从“函数解析式到函数图象”是数形结合起来研究函数的性质,所以体现的是“数形结合”的数学思想. 故选A . 9.如图,若⊿ABC 内接于半径为R 的⊙O ,且A 60∠=,连接OB OC 、,则

边BC 的长为 ( ) B.R 2 C.R 2

考点:圆周角定理、垂径定理、等腰三角形性质以及勾股定理等.

分析:本题可以可以根据垂径定理把问题转化在直角三角形,然后再利用勾股定理能使问题可以获得解决.

略解:过⊙O 的圆心O 作OE BC ⊥于点D .由垂径定理可得BC 2CD = . ∵弧BC BC = ∴BOC 2A 260120∠=∠=?= 60 ∴OCD 906030∠=-= 故选D . 10.从1236--、、、这四个数中任取两数,分别记为m n 、,那么点()m,n 在函数6

y x

=图象的概率是 ( )

A.

12 B.13 C.14

D.1

8

考点:概率、函数的图象及其性质. 分析:要使点()m,n 在函数6

y x

=

的图象上,则需满足mn 6=.利用列举法(列表法或画树状图)列举所有等可能的总数,再找出满足mn 6=的情况数,根据“概率”的计算公式可使问题得以解决. 略解: 1-2

3

6-2

1-36-3

1-26-6

-1-23

画出树状图为:

所有等可能的总数为12种,要关注的故选B . 11.已知圆锥的侧面积是2

8cm π,若圆锥底面半径为()R cm ,母线长为()l cm ,则R 关于l 的函数图象大致是 ( )

考点:圆锥的侧面展开图、扇形的面积、反比例函数的图象及其性质.

分析:圆锥的侧面展开图是一个扇形,扇形的弧长为底圆的周长

π2R ,扇形的半径为圆锥的母线长()l cm .

其性质,选择支A 符合;故选A .

12.如图,在边长为a 正方形ABCD 中,把边BC 绕点

B 逆时针旋转60°,得到线段BM ,连接

AM 并延长交CD 于N ,连接MC ,则⊿MNC 的面积为

( )

A.

2

1a 2

B.2

1a 2 C.

2

1a 4

D.2

1a 4

考点:正方形的性质、等腰、等边三角形的性质、勾股定理以及三角形的面积等. 分析:

本题用正方的面积来减去其它三个三角形的面积来得到⊿MNC 的面积比较麻烦.若我们抓住要正方形的性质、等腰、等边三角形的性质计算出在⊿MNC 的∠∠34、是特殊角,再通过添加边

MC 的高线,把问题先转化到直角三角形中后可以逐一解决.

略解:过N 作⊥NE MC 于点E .

如图根据正方形的性质、等腰、等边三角形的性质可以得到:

====MC BC MB AB a ,,∠=-=∠=-=19060304906030.

l

l

l

l

B

)-=1803075

∴*∠=-∠-∠=--=3180BMC 2180607545 ∴∠=-=MNE 904545 ∴=NE ME

若设=NE x ,则=ME x .∵在Rt ⊿NEC 中,∠=430 ∴==NC 2NE 2x

∴S ⊿MNC 故选C. 点评:

本题求⊿MNC 的面积抓住图形是由特殊四边形和特殊三角形搭建起来的所以,比较容易通过找出求⊿MNC 内角中的特殊角作为突破口,然后通过作高线转化在直角三角形中解决问题,是一道高质量的中考题!

二.填空题(共6个小题,每题4分,共24分)

13. 分解因式:22

ax 2axy ay ++= .

考点:因式分解.

分析:本题先提取公因式,再根据完全平方公式分解因式

略解:(

)()

++=++=+2

2

2

22

ax 2axy ay a x 2xy y a x y . 14.化简

2

12

x 1x 1

++-的结果是 . 考点:分式的运算.

分析:先通分,再加减,最后化简.

()()()()

-+=+==

+-+---22x 121

x 1x 1x 1x 1x 1

x 1. 15.若函数2

y x 2x m =+-的图象与x 轴有且只有一个交点,则m 的值为 .

考点:二次函数的图象及其性质、二次综合问题.

分析:二次函数2

y x 2x m =+-的图象与x 轴有且只有一个交点,这个交点就是二次函数图象的顶点;当令y 0=时,对于方程2

x 2x m 0+-=有两个相等的实数根,即△ = 0,可保证图象与x

轴有且只有一个交点.所以()2

241m 0-??-= ,解得:m 1=-.

16.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为 、 个. 考点:列方程(组)解应用题.

分析:本题可以总费用和总个数建立方程则解决问题.

略解:设该幼儿园购买了甲、乙两种玩具分别为x 个和y 个,根据题意列:x y 30

2x 4y 100

+=??

+=?

解得:x 10y 20=??=?

;经检验,符合题意.

17.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 个○.

考点:寻找规律、求代数式的值. 分析:

观察图形的排列:第一个图(+31个○开始,第二个图(?+321)个○ …… 后面每个图在前面一个图形的基础上增加3个○,故第n 个图形是+3n 1 ; 故当n 2018=时。3n 132********+=?

+= .

18.如图,在⊿ABC 中,AC BC 2,AB 1===,将它沿AB 翻折得到⊿ABD ,则 四边形ADBC 的形状是 形,点P E F 、、分别为线段AB AD DB 、、的 任意点,则PE PF +的最小值是 .

考点:菱形、轴对称、等腰三角形的性质,两点之间线段最短,垂线段最短,勾股定理,菱形面积等 分析:

翻折前后两个部分就是成轴对称的.再加上AC BC =,可以推出AC BC DA DB ===,所以四边形ADBC 的形状是菱形. 第1个

第2个

第3个

第4个

A B

关于求PE PF +的最小值:

方法一.本题关键是E F 、不是定点,而是动点;仍然可以先作E 关于线段BC 的对称点E' , 连接E'F ,再将E'F 、移动使E'F BD ⊥,因为“垂线段最短”.再根据轴对称的性质可得到

PE PF +=PE'PF E'F +=;实际上此时的点P 恰好是AB 的中点. E'F 就是菱形一边上的高,

可把E'F 平移成等腰⊿ABC 腰上的高来解决.见下面的分析流程图组图I.

见下面组图1最后一个图,过B 作BM AC ⊥于M ,连接AP ;∵AC BC =,P 是AB 的中点 ;

=

=根据面积公式可知S ⊿ABC =11BC

CP AC BM 22??=??

12BM 2?

=?, 解得

BM 4= ;易证E'F BM = ∴PE PF E'F +==故应填方法二.大家都知道从等腰三角形底边上的任何一点向该三角形两腰作垂线段,两垂线段的和是个恒值,且等于等腰三角形一腰上的高.所以直接过点P 向菱形的两邻边边垂线段,因为“垂线段最短”,所以PE 与PF 之和便最小,然后也把PE PF 、转化成等腰三角形一腰的高的高来解决,见下面流程组图2,同样可以PE PF BM +=(计算略).两种方法的计算量是一样的.

点评:

A

A

组图2

组图1E

A

A A

本题三个点都是动点,可以把其中一个点作为定点切入思考,有两条思路;一是除了要注意利用轴对称知识、“两点之间,线段最短.”,其次还结合“垂线段最短”来求出最小值,就是在变化中寻找“不变”的部分.本题是一道高质量的中考题.

三. 解答题(共8个题,共78分)

19.(本题满分8分)

计算:1

12cos 452-??

+- ???

.

考点:实数的混合运算.

分析:先计算乘方、绝对值、特殊角的三角函数值,再乘除,最后加减. 略解:原式

= -22 ····························· 5分

2

=2 ······································ 8分

20.(本题满分8分)解不等式组:3x 5113x 4x 3

?

-≤??

?

-?

?,并在数轴上表示其解集.

考点:解不等式组、在数轴上表示不等式的解集.

分析:先解每个不等式,然后求出它们的公共部分,表示在数轴上要注意弧(折线)的方向和起始位置的标记是实心点还是空心圆圈.

略解:解不等式①得:x 2≤ ;解不等式②得:x 1> ················ 4分 所以不等式组的解集为:1x 2<≤ ······················ 6分

········· 8分

21.(本题满分8分) 某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

⑴.在这次调查中,一共调查了 名学生; ⑵.补全条形统计图;

⑶.若该校共有1500名,估计爱好运动的学生有 人;

⑷.在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .

考点:统计图、样本估计总体、用频率估计概率.

分析:⑴.结合统计图能读出运动或娱乐的人数和所占总数的百分比,可以计算出总人数;⑵.根据总人数和扇形图反映出的阅读和上网的百分比可以计算出相应的人数,以此可以补全条形图;⑶.样本爱好运动的40%可以估计总体爱好运动也占40%,以此可计算出该校爱好运动的人数;⑷.根据扇形图可以计算出样本中阅读所占的百分比,从而估计出在总体中的频率,以此得出概率的近似值. 略解:

⑴.4040%100÷= .故因填写 100 ; ········· 2分 ⑵.上网的人数为:10010%10?= (人) 阅读的人数为:10040201030---=(人)

补全条形图(见右面) ·················· 5分 ⑶.150040%600?= .故因填写 600 ; ········ 7分 ⑷.样本中阅读频率为301000.3÷= ,故概率为

3

10

.

分 22.(本题满分8分)如图,在⊿ABC 中,3

BC 12,tan A ,B 304==∠=;求AC 和AB 的长. 考点:三角函数、直角三角形的性质、勾股定理等.

分析:本题关键爱是把问题转化在直角三角形中,当我们过点C 作出边AB 的高后,可以问题转化在两个直角三角形中,利用高作为桥梁使问题获得解决. 略解:

过点C 作CD AB ⊥于点D ,则ADC CDB 90∠=∠= .·············· 1分

30 ,BC

分 A

根据勾股定理可求BD == . 在Rt ⊿DBC 中, CD 3tan A AD 4=

=,即63

AD 4

=,解得:AD 8=

根据勾股定理可求AC 10cm === . ················ 8分

23.(本题满分10分)如图,在⊿ABC 中,ACB 90∠=.

⑴.作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O

(要求:用尺规作图,保留作图痕迹,不写作法和证明)

⑵.设⑴中所作的⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O 的直径为5,BC 4=;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成⑵问)

考点:尺规作图、圆的相关性质、垂径定理、圆周角定理及其推论、勾股定理以及圆的切线的性质和判定等. 分析:

本题的⑴问可以先画出草图逆推;关键是抓住既要过点B

,又要切点点落在边AC 上,换句话说要达到OE OB =,同时要求OE AC ⊥于E ,通过作角的平分线以及作平行线找交点确定圆心

的办法来解决. 本题的⑵问“求DE 的长”可以化归在Rt ⊿DEB 的长度,

而这个可以通过⊿EBC ∽⊿EDB 来获得解决. 略解:

⑴.尺规作图:.如图所示. ··················· 4分

⑵. 如图所示.

∵DB 为⊙O 的直径

∴DEB 90∠= ····································· 5分 又 ∵ACB 90∠=. ∴DEB ACB ∠=∠

∵BE 平分ABC ∠ ∴12∠=∠ ∴⊿EDB ∽⊿EBC 分 分 ∵DEB 90∠=

A

点评:

本题主要⑴问作图要进行逆向思考,才能找出作图的突破口,最好先画出草图进行逆推.

24.(本题满分10分)阅读以下材料:

对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550 – 1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707 – 1783年)才发现指数与对数之间的联系.

对数的定义:一般地,若()x

a N a 0,a 1=>≠,那么x 叫做以a 为底N 的对数,记作:

a x log N = .比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2

525=. 我们根据对数的定义可得到对数的一个性质:

()()a a a log M N log M log N a 0,a 1,M 0,N 0?=+>≠>>;理由如下:

设a a log M m,log N n == ,则m

n

M a ,N a == ∴m

n

m n

M N a a a

+?=?= ,由对数的定义得()a m n log M N +=?

又∵a a m n log M log N +=+ ∴()log M N log M log N ?=+ 解决以下问题:

⑴.将指数3

464= 转化为对数式 ; ⑵.证明()a

a a M

log log M log N a 0,a 1,M 0,N 0N

=->≠>> ⑶.拓展运用:计算333log 2log 6log 4+- = .

考点:阅读运用、对数的定义、对数式与指数式的相互转化、对数性质的证明与运用. 分析:本题的⑴问直接根据对数的定义以及对数式与指数式的相互转化可以解决问题;本题的⑵问可以参照材料中的“积的对数”的证明来“商的对数”;本题的⑶问是对对数性质的逆运用. 略解:

⑴. 根据对数的定义3

464= 转化为对数式43log 64=. 分

⑵. ()a

a a M

log log M log N a 0,a 1,M 0,N 0N

=->≠>>.理由如下:

设a a log M m,log N n == ,则m n

M a ,N a ==

又∵a a m n log M log N -=- ∴=-a

a a M

log log M log N N

······························ 7分

⑶.根据对数的性质有:

+-=?-===333333

312

log 2

log 6log 4log 26log 4log log 314

. 分 25.(本题满分12分)如图,已知AOB 60∠=,在AOB ∠的平分线OM 上有一点C ,将一个120°角的顶点与点

D E 、 .

⑴.当DCE ∠绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE OD +与OC 的数量关系,并说明理由;

⑵.当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,⑴中的结论是否成立?并说明理由;

⑶.当DCE ∠绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD OE 、与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.

考点:旋转的特征、直角三角形的性质、勾股定理、角平分线的性质、全等三角形等、线段的和差. 分析:

本题的⑾问根据直角三角形的性质和勾股定理可以计算出、OE OD 与OC 的关系,从而得出

OE OD +与OC 的关系;本题的⑵问可以过点C 向∠AOB 的两边作垂线段,从而可以把问题转化

为问题⑴的方式,然后利用线段的和差关系进行转换. 本题的⑶问也可以过点C 向∠AOB 的两边

O

O 图3

O

B

作垂线段,从而可以把问题转化为问题⑴的方式,然后利用线段的和差关系进行转换,使问题得以解决,本题是一道高质量的中考题. 略解:

. +=OD OE .理由如下: ····························· 1分 ∵AOB 60∠=,且OM 平分AOB ∠. =6030 ∵DCE ∠绕点C 旋转到CD 与OA 垂直

∴∠=∠

=ODC OEC 90 在Rt ⊿ODC 中根据勾股定理有:+=222

OD CD OC ,??+= ???

2

221

OD OC OC 2.

解得:=

OD 2 ;同理可得:=OE

2

∴+=

=OD OE

. 即+=OD OE . ········ 4分 ⑵. ⑴中的结论仍然成立.理由如下: ···························· 5分 过点C 向∠AOB 的两边作⊥⊥CG OA,CH OB ,垂足分别为、G H

. ∴∠=∠=

OGC OHC 90

参照⑴的方法同理可证:+=OG OH .

根据旋转的特征可以得到:∠=∠DCE GCH ,即∠+∠=∠+∠4DCH 3DCH ∴∠=∠34

∵OM 平分AOB ∠,⊥⊥CG OA,CH OB ∴=CG CH

∴⊿CGD ≌⊿CHE ∴=DG EH

∴+=++-=+OG OH OD DG OE

EH OD OE

∵+=OG OH

图2

∴+=OD OE ······································ 8分 ⑶. ⑴中的结论不成立.

猜想:线段OD OE 、与OC

之间的数量关系是-=OE OD . ·········· 9分 理由如下:

过点C 向∠AOB 的两边作⊥⊥CP OA,CQ OB ,垂足分别为、G H .射线CD 交OA 反向延长射线于D .

∴∠=∠=OGC OHC

90

参照⑴的方法同理可证:+=OP OQ .

根据旋转的特征可以得到:∠=∠DCE GCH ,即∠+∠=

PCD 5 ∴∠=∠PCD QCE

∵OM 平分AOB ∠,⊥⊥CP OA,CQ OB ∴=CP CQ

∴⊿CPD ≌⊿CQE ∴=PD QB

∴+=-+-=-OP OQ PD OD OE QE OE OD (>OE OD ) ∵+=OP OQ

∴-=OE OD ······································ 12分 故线段OD OE 、与OC 之间的数量关系是-=OE OD . 点评:

本题的三个图形首先要旋转过程中旋转角度不变,其次注意两点:其一.过点C 向两边作垂线段后,都存在一对全等的直角三角形;其二.要注意利用线段和差进行式子的转换.

26.(本题满分14分)

如图,抛物线2

y ax bx 3=+-过()(),,A 10B 30-、,直线AD 交抛物线于点D ,点D 的横

坐标为2- ,点()P m,n 是线段AD 上的动点. ⑴.求直线AD 及抛物线的解析式;

⑵.过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?

⑶.在平面内是否存在整点(横、纵坐标都为整数)R ,使得P Q D R 、、、为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.

考点:待定系数法求函数解析式、函数的图象及其性质、二次函数求最值得问题、平行四边的判定、整点问题、分类讨论思想等. 分析:

本题的⑾问先由抛物线2y ax bx 3=+-过()(),,A 10B 30-、利用待定系数法可以求出抛物线的解析式,利用抛物线可以求出点D 的的纵坐标,再求出直线AD 的解析式.本题的⑵问是一个二次函数最值应用问题,关键是用纵坐标之差的绝对值表示出线段的长度,同时要注意分类讨论思想的应用. .本题的⑶问要先假设存在,由于点D 是个定点,同时是个整点,根据两个函数解析式的特征,所以点、P Q 也应为整点才能确保点R 才可能为整点,所以本题应确定P 的坐标变化范围,从中找出、P Q 整点坐标,然后进行分类讨论其存在的可能性. 略解:

⑴.∵抛物线2

y ax bx 3=+-过()(),,A 10B 30-、

∴+-=??--=?a b 309a 3b 30 解得:=??=?a 1b 2

所以=+-2y x 2x 3 ············· 2分

∵点D 的横坐标为2-

∴当=-x 2 时,()()=-+?--=--=-2

y 22234433 ∴()--D 2,3 设直线AD 的解析式为=+y kx b ∵()()--、A 1,0D 2,3 ∴+=??

-+=-?k b 02k b 3 解得=??=-?k 1

b 1

所以=-y x 1 ·················· 4分

⑵. ∵点()P m,n ,过点P 的直线垂直于x 轴,交抛物线于点Q .

∴点P 和点Q 的横坐标相等. ······························ 5分 当=x m 时代入=-y x 1得:=-y m 1;则点()-P m,m 1.

当=x m 时代入=+-2y x 2x 3得:=+-2

y m 2m 3.则点(

)

+-2

Q m,m 2m 3.

①.当-≥+-2

m 1m 2m 3时,()(

)

=--+-2

l m 1m 2m 3;整理=--+2

l m m 2

②.当-<+-2

m 1m 2m 3时,()

()=+---2

l m 2m 3m 1;整理=+-2

l m m 2

=>a 10 ∴l 此时有最小值;不合本问题意,舍去. 分 ⑶.在平面内存在整点(横、纵坐标都为整数)R ,使得P Q D R 、、、为顶点的四边形是平行四边形. 整点R 坐标分别为: ()()()()------、、、2,12,50,32,1 . ··········· 14分 因为()P m,n 是线段AD 上的动点,计算出()()--、A 1,0D 2,3,从而确定点P 横纵坐标的变化范围进行整点坐标的分类讨论(根据解析式和点D 的坐标,点、P Q 也应为整点).

①.当()--1P 1,2时,()--1Q 1,4;以、、11P D Q 作为定点,能使点R 与它们构成平行四边(分别以PQ 为边和对角线讨论)的R 整点坐标情况有:()()()-----、、123R 2,1R 2,5R 0,3 (见分析示意图①).

②.当()-2P 0,1时,()-1Q 0,3;以、、22P

D Q 作为定点,能使点R 与它们构成平行四边(分别以PQ 为边和对角线讨论)的R 整点坐标情况有:()()()-----、、456R 2,1R 2,5R 2,1 (见分析

示意图②).

注:当P 点与、A D 重合时,点Q 点也同时会相应的与、A D 重合时,该四边形不存在. 综上所述,满足条件的整点R 的坐标有()()()()------、、、2,12,50,32,1.

点评: 原图

图①

图②

本题主要⑴问求出点的坐标后,用待定系数法可以求出两个函数的解析式,比较简单!在函数

P Q 的相关题型中,求“最值”问题,常通过建立二次函数的模型来解;本题⑵问就是抓住长度等于、

、、、为顶点的四边形顶点纵坐标之差的绝对值建立二次函数来解决,注意讨论.本题以P Q D R

P Q 有3个动点,是本问的难点所在,结合解析式和其中一个顶点是定点且为整点,把动点中的、也视为“定点”,在此基础上讨论就比较容易破题了.

以上考点分析答案,仅供参考!2018.6.27

2020年湖南省中考数学模拟试题(含答案)

2020年湖南省中考数学模拟试题含答案 温馨提示: 1.本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题. 2.考试结束后,将本试题卷和答题卡一并交回. 3.本试卷满分150分,考试时间120分钟.本试卷共三道大题,26个小题.如有缺页,考生须声明. 一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡 上.每小题4分,共40分) 1.如果a 与2017互为倒数,那么a 是( ) A . -2017 B . 2017 C . 20171- D . 2017 1 2.下列图形中,是中心对称图形的是( ) A. B. C. D. 3.下列计算正确的是( ) A . 6 33a a a =+ B . 33=-a a C . 5 23)(a a = D . 3 2a a a =?

4.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体与长达30000000个核苷酸,30000000用科学记数法表示为( ) A.3×107 B.30×104 C.0.3×107 D .0.3×10 8 5.如图,过反比例函数)0(>= x x k y 的图像上一点A 作 AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( ) A .2 B .3 C .4 D .5 6.下列命题:①若a<1,则(a﹣1) a a --=-111 ;②平行四边形既是中心对称图形又是轴对称图形;③9的算术平方根是3;④如果方程ax 2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是( ) A.1个 B.2个 C.3个 D.4个 7.如图,AB ∥ CD,DE⊥ CE,∠ 1=34°,则 ∠ DCE的度数为( ) A.34° B.54° C.66° D.56° (第7题图) (第9题图) 8.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组( ) A. B. C. D . 9.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°,则?AB 的长为( )

陕西省2018年中考数学试题及解析(word精编版)

2018年陕西省初中毕业学业考试 数学试卷 (满分120分,考试时间120分钟) 一、选择题(共10小题,每小题3分,计30分。每小题只有一个选项是符合题意的) 1.(3分)﹣的倒数是() A. B. C. D. 2.(3分)如图,是一个几何体的表面展开图,则该几何体是() A.正方体B.长方体C.三棱柱D.四棱锥 3.(3分)如图,若l 1∥l 2 ,l 3 ∥l 4 ,则图中与∠1互补的角有() A.1个 B.2个 C.3个 D.4个 4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为() A.B. C.﹣2 D.2 5.(3分)下列计算正确的是() A.a2?a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣4

6.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为() A. B.2 C. D.3 7.(3分)若直线l 1经过点(0,4),l 2 经过点(3,2),且l 1 与l 2 关于x轴对称, 则l 1与l 2 的交点坐标为() A.(﹣2,0)B.(2,0)C.(﹣6,0) D.(6,0) 8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是() A.AB=EF B.AB=2EF C.AB=EF D.AB=EF 9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为() A.15°B.35°C.25°D.45° 10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在() A.第一象限B.第二象限C.第三象限D.第四象限 二、填空题(共4小题,每小题3分,计12分) 11.(3分)比较大小:3 (填“>”、“<”或“=”). 12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数

(完整版)2018年中考数学统计与概率专题复习

2018年中考数学统计与概率专题复习 2018年九年级数学中考统计与概率专题复习 一、选择题: 1.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是() A.0.1B.0.15.0.25D.0.3 2.自水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A,B,,D,E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( ) A.18户B.20户.22户D.24户 3.已知a,b,,d,e的平均分是,则a+5,b+12,+22,d+9,e+2的平均分是( ) A.-1B.+3.+1 0D.+12 4.如图是交警在一个路口统计的某个时段往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()

A.8,6B.8,5.52,53D.52,52 5.已知5名学生的体重分别是41、50、53、49、67(单位:kg),则这组数据的极差是() A.8B.9.26D.41 6.下列说法正确的是() A.“打开电视机,正在播《民生面对面》”是必然事件 B.“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是随机事件 .“概率为0.0001的事件”是不可能事件 D.“在操场上向上抛出的篮球一定会下落”是确定事件 7.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是() A.平均数和众数B.众数和极差.众数和方差D.中位数和极差 8.在2016年我县中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这10个参赛单位的成绩,下列说法中错误的是() A.众数是90B.平均数是90.中位数是90D.极差是15

2014中考数学模拟试题(新考点必考题型) (58)

中考数学全真模拟试卷 (考试用时:120分钟 满分: 120分) 注意事项: 1.试卷分为试题卷和答题卡两部分,在本试题卷上作答无效.......... 。 2.答题前,请认真阅读答题卡... 上的注意事项。 3.考试结束后,将本试卷和答题卡....... 一并交回。 一、选择题(共12小题,每小题3分,共36分.). 1.2011的倒数是( ). A .12011 B .2011 C .2011- D .12011 - 2.在实数2、0、1-、2-中,最小的实数是( ). A .2 B .0 C .1- D .2- 3.下面四个图形中,∠1=∠2一定成立的是( ). 4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ). 5.下列运算正确的是( ). A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=-- 6.如图,已知Rt △ABC 中,∠C =90°,BC=3, AC=4, 则sinA 的值为( ).

A.3 4 B. 4 3 C. 3 5 D. 4 5 7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是(). 8.直线1 y kx =-一定经过点(). A.(1,0) B.(1,k) C.(0,k) D.(0,-1) 9.下面调查中,适合采用全面调查的事件是(). A.对全国中学生心理健康现状的调查. B.对我市食品合格情况的调查. C.对桂林电视台《桂林板路》收视率的调查. D.对你所在的班级同学的身高情况的调查. 10.若点 P(a,a-2)在第四象限,则a的取值范围是(). A.-2<a<0 B.0<a<2 C.a>2 D.a<0 11.在平面直角坐标系中,将抛物线223 y x x =++绕着它与y轴的交点旋转180°,所得抛物线的解析式是(). A.2 (1)2 y x =-++ B.2 (1)4 y x =--+ C.2 (1)2 y x =--+ D.2 (1)4 y x =-++ 12.如图,将边长为a的正六边形A1 A2 A3 A4 A5 A6在直线l上由图1的位置按顺时针方 向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1 所经过的路径的 长为(). A.423 3 a π + B. 843 3 a π + C. 43 3 a π + D. 423 6 a π +

南通市2018年中考数学试题含答案word版

南通市2018年初中毕业、升学考试试卷 数 学 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.4的值是 A .4 B .2 C .±2 D .﹣2 2.下列计算中,正确的是 A .235a a a ?= B .238()a a = C .325a a a += D .842 a a a ÷= 3.若3x -在实数范围内有意义,则x 的取值范围是 A .x ≥3 B .x <3 C .x ≤3 D .x >3 4.函数y =﹣x 的图象与函数y =x +1的图象的交点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列说法中,正确的是 A .—个游戏中奖的概率是 1 10 ,则做10次这样的游戏一定会中奖 B .为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C .一组数据8,8,7,10,6,8,9的众数是8 D .若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小 6.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队共进行了6场比赛,得了12分,该队获胜的场数是 A .2 B .3 C .4 D .5 7.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于 1 2 EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠CMA 的度数为 A .30° B .35° C .70° D .45°

2018中考数学模拟试题

东营市2017年三轮复习模拟试题演练(第一套) 一、选择题(本大题共20小题,每小题3分,满分60分) 1.﹣的相反数是() A.﹣B.C.﹣5 D.5 2.下列运算正确的是() A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3 3.下列图形中,是中心对称图形但不是轴对称图形的是() A.B.C.D. 4.第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,此数用科学记数法表示正确的是() A.556.82×104B.5.5682×102C.5.5682×106D.5.5682×105 5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是() A.①②B.②③C.②④D.③④ 6.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是() A.45°B.54°C.40°D.50° 7.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)

为()

A.4km B.2km C.2km D.(+1)km 8.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为() A.4,30°B.2,60°C.1,30°D.3,60° 9.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表: 年龄14 15 16 17 18 人数 5 6 6 7 2 则这些学生年龄的众数和中位数分别是() A.17,15.5 B.17,16 C.15,15.5 D.16,16 10.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是() A.B.C.1 D. 11.函数y=mx+n与y=,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是()

2018年中考数学计算题专项训练

2018年中考数学计算题专项训练 一、集训一(代数计算) 1. 计算: (1)30821 45+-Sin (2)错误!未找到引用源。 (3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 22161-+-- (9)( 3 )0 - ( 12 )-2 + tan45° (10)()()0332011422 ---+÷- 2.计算:345tan 32312110-?-??? ? ??+??? ??-- 3.计算:()() ()??-+-+-+??? ??-30tan 331212012201031100102 4.计算:() ()0112230sin 4260cos 18-+?-÷?--- 5.计算:120100(60)(1) |28|(301) cos tan -÷-+-- 二、集训二(分式化简) 1. . 2。 2 1422---x x x 、 3. (a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -??+÷ ??? 6、化简求值 (1)??? ?1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5. (2)(a ﹣1+错误!未找到引用源。)÷(a 2+1),其中a=错误!未找到引用源。﹣1. (3)2121(1)1a a a a ++-?+,其中a -1. (4))2 52(423--+÷--a a a a , 1-=a (5))12(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -??+÷ ?+--??然后选取一个使原式有意义的x 的值代入求值

2014年中考数学模拟试题

2014年中考数学模拟试题 (满分120分 时间120分钟) 一.选择题(每小题3分,共30分) 1.-8的相反数是 A .8 B . -8 C . 81 D .8 1 2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨.这个数据用科学记数法表示为 A .6.75×104 B .67.5×103 C . 0.675×105 D .6.75×10-4 3.下列运算正确的是( ) A .2a +3b = 5ab B .a 2·a 3=a 5 C .(2a) 3 = 6a 3 D .a 6+a 3= a 9 4.如图,AB ∥CD ,CE 平分∠BCD ,∠DCE=18°,则∠B 等于 A .18° B .36° C .45° D .54° 5.上图是一个几何体的三视图,这个几何体的名称是 A .圆柱体 B .三棱锥 C .球体 D .圆锥体 6.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示. 对于这10名学生的参赛成绩,下列说法中错误的是 A .众数是90 B .中位数是90 C .平均数是90 D .极差是15 7.已知两圆的圆心距为4,两圆的半径分别是3和5,则这两圆的位置关系是 A. 内含 B. 内切 C. 外切 D. 相交 8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴 于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于2 1MN 的长为半径 画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与 b 的数量关系为 A. a=b B. 2a+b=﹣1 C .2a ﹣b=1 D .2a+b=1 9.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比 例函数的值小于一次函数的值的x 的取值范围是 A .x <-1 B .-1<x <0或x >2 C .x >2 D .x <-1或0<x <2 第4题图 第5题图 第6题图

2018年河南省中考数学试卷解析

2018年河南省中考数学试卷 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分) 1.(3分)﹣的相反数是() A.﹣B.C.﹣D. 2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3?x4=x7D.2x3﹣x3=1 5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是() A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为() A.B. C.D. 7.(3分)下列一元二次方程中,有两个不相等实数根的是() A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0

8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案 是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是() A.B.C.D. 9.(3分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为() A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2) 10.(2018.河南.10)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为() A.B.2 C.D.2 二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上) 11.(3分)计算:|﹣5|﹣=. 12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.

2018年中考数学模拟试题

2018年中考数学模拟试题 一、选择题 1. -2的绝对值是 ( ) A .±2 B .2 C .一2 D . 12 2.如图所示的立体图形的主视图是( ) A . B . C . D . 3.下列运算正确的是 ( ) A .222()x y x y +=+ B .235()x x = C x = D .623x x x ÷= 4.如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元) ( ) A ,101.10710? B .111.10710? C .120.110710? D .12 1.10710? 5.如图,BE 平分∠DBC ,点A 是BD 上一点,过点A 作AE ∥BC 交BE 于点E ,∠DAE=56°, 则∠E 的度数为( ) A .56° B .36° C .26° D .28° 6.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是( ) A .5,5,6 B .9,5,5 C .5,5,5 D .2,6,5 7.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为 ( ) A . 1312π B .34π C .43π D .2512 π 8.若一次函数y=mx+n (m ≠0)中的m ,n 是使等式12m n =+成立的整数,则一次函数y=mx+n (m ≠0)的图象一定经过的象限是 ( ) A .一、三 B .三、四 C .一、二 D .二、四 9.如图,在矩形ABCD 中,AB=2,AD=E 是CD 的中点,连接AE , 将△ADE 沿直线AE 折叠,使点D 落在点F 处,则线段CF 的长度是 ( ) A .1 B C .23 D

2018年中考数学统计题

2018年中考数学统计 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年中考数学复习--统计题真题专练 1.(2013.十堰)(3分)某次能力测试中,10人的成绩统计如下表,则这10人成绩的平均数为 . 2.(201 3.十堰)(9调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如下的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题: 40% 乒乓球n % 足球m %排球30% 篮球 图① 图② (1)九(1)班的学生人数为 ,并把条形统计图补充完整; (2)扇形统计图中m = , n = ,表示“足球”的扇形的圆心角是 度; (3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的 排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率. 3.(201 4.十堰.第5题)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:

则关于这若干户家庭的月用水量,下列说法错误..的是( ) A .众数是4 B .平均数是4.6 C .调查了10户家庭的月用水量 D .中位数是4.5 4.(2014.十堰.第20题)(9分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运 会比赛项目,某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计 图.请你根据统计图中所提供的信息解答下列问题: 扇形统计图 条形统计图 了解 了解很少不了解 50% 基本了解 (1)接受问卷调查的学生共有 名,扇形统计图中“基本了解”部分所对应扇形的圆心 角为___________;请补全条形统计图; (2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作 为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数; (3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规 则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率. 了解 很少 程度 解

(完整版)广州市2018年中考数学试题及答案

2018年广州市初中毕业生学业考试 数学试题 第一部分选择题(共30分) 一、选择题(本大题共10一个小题,每小题3分) 1. 四个数1 0,1,2, 2中,无理数的是( ) A. 2 B. 1 C.1 2 D.0 2.图1所示的五角星是轴对称图形,它的对称轴共有( ) A. 1条 B. 3条 C. 5条 D. 无数条 3.图2所示的几何体是由4个相同的小正方体搭成的,它的主视图是( ) 4.下列计算正确的是( ) A. ()2 22 a b a b +=+ B. 2 2 4 23a a a += C. ()2 21 0x y x y y ÷ =≠ D. ()32628x x -=- 5.如图3,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( ) A. ∠4,∠2 B. ∠2,∠6 C. ∠5,∠4 D. ∠2,∠4 6.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1

和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A. 12 B. 13 C. 14 D. 16 7.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( ) A. 40° B. 50° C. 70° D. 80° 8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y 辆,根据题意的:( ) A. ()()11910813x y y x x y =???+-+=?? B. 10891311y x x y x y +=+??+=? C. ()()91181013x y x y y x =??? +-+=?? D. ()()91110813 x y y x x y =???+-+=?? 9.一次函数y ax b =+和反比例函数a b y x -= 在同一直角坐标系中大致图像是( ) 10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图所示,第1次移动到1A ,第2次移动到2A ……,第n 次移动到n A ,则△220180A A 的面积是( )

2018年河北中考数学模拟试卷

A C D B 图2 2018年河北中考模拟 数 学 试 卷 本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟. 卷Ⅰ(选择题,共42分) 注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在3,-1,0,-2这四个数中,最大的数是( ) A .0 B .-1 C .-2 D .3 2.如图1所示的几何体的俯视图是( ) A . B . C . D . 3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C . D . 4.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°, 那么∠ACD 的度数为( ) A .40° B .35° C .50° D .45° 5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从 中随机摸出一个小球,恰好是黄球的概率为( ) A . 3 1 B . 2 1 -1 0 -1 0 1 正面 图1 0 1

C . 3 2 D . 6 1 6.下列计算正确的是( ) A .|-a |=a B .a 2·a 3=a 6 C .()2 1 21 - =-- D .(3)0=0 7.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的: 分别以A 和B 为圆心,大于 AB 2 1 的长为半径画弧,两弧相交 于C 、D 两点,直线CD 即为所求.根据他的作图方法可知四边 形ADBC 一定是( ) A .矩形 B .菱形 C .正方形 D .无法确定 8.已知n 20是整数,则满足条件的最小正整数n 为( ) A .2 B .3 C .4 D .5 9.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°, 则∠BCD 的度数是( ) A .88° B .92° C .106° D .136° 10.下列因式分解正确的是( ) A .m 2+n 2=(m +n )(m -n ) B .x 2+2x -1=(x -1)2 C .a 2-a =a (a -1) D .a 2+2a +1=a (a +2)+1 11.下列命题中逆命题是真命题的是( ) A .对顶角相等 B .若两个角都是45°,那么这两个角相等 C .全等三角形的对应角相等 D .两直线平行,同位角相等 12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( ) A .m <﹣4 B .m >﹣4 C .m <4 D .m >4 13.如图5所示,正方形ABCD 的面积为12,△ABE 是等边 三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点, 若PD +PE 的和最小,则这个最小值为( ) A .32 B .62 C .3 D .6 14.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛 图3 C B A D 图4 A B 图

2018年济南市中考数学试题及答案

山东省济南市2018年学业水平考试数学试题 一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是() A.2 B.-2 C.±2 D. 2 2.(2018济南,2,4分)如图所示的几何体,它的俯视图是() A.B.C.D. 3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为() A.0.76×104B.7.6×103C.7.6×104D.76×102 4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是() A B C D 5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF 的度数为() A.17.5°B.35°C.55°D.70° 6.(2018济南,6,4分)下列运算正确的是() A.a2+2a=3a3B.(-2a3)2=4a5 C.(a+2)(a-1)=a2+a-2 D.(a+b)2=a2+b2 7.(2018济南,7,4分)关于x的方程3x-2m=1的解为正数,则m的取值范围是()A.m<- 1 2B.m>- 1 2C.m> 1 2D.m< 1 2 8.(2018济南,8,4分)在反比例函数y=- 2 x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是() A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 1 A B C D F

2014中考数学模拟试题(新考点必考题型) (80)

A B C E D F A B C C 1 B 1 A O B C D E 中考数学全真模拟试卷 考生注意:1、考试时间 120分钟 2、全卷共三大题,总分 120 分 一、选择题(每小题3分,共30分) 1.下列运算中,正确的个数是( ) () 32352 6023215x x x x x +==?-=①,②,③,④538--+=,⑤11212 ÷=·. A .1个 B .2个 C .3个 D .4个 2.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是( ) A .34 B .13 C .12 D .2 3 3.某年,某地区春季共植树0.024亿棵,0.024亿用科学记数法表示为( ) A .24×105 B .2.4×105 C .2.4×106 D .0.24×109 4.在Rt △ABC 中,∠C =90o,BC =4cm ,AC =3cm .把△ABC 绕点A 顺时针旋转90o后,得到△AB 1C 1,如图所示,则点B 所走过的路径长为( ) A .52cm B . 5 4πcm C . 5 2πcm D .5πcm 5.若关于x 的一元二次方程mx 2―2x ―1=0无实数根,则一次函数y =(m +1)x -m 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A .24π B .32π C .36π D .48π 7.在44?的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小 正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( ) A .1个 B .2个 C .3个 D .4个 8.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上一点, AE 与CD 交于点F ,则图中相似三角形共有( ) A .2对 B .3对 C .4对 D .5对 9.某班体育委员调查了本班46名同学一周的平均 每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数 依次是( ) A .40分,40分 B .50分,40分 C .50分,50分 D .40分,50分 10.如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 二、填空题(每小题3分,共24分) 11.计算0 3 11 (1)3tan 30(2)()4π---+-?= . 12. 如图,点A 、B 是双曲线3 y x =上的点,分别经过A 、 B 两点向x 轴、y 轴作垂线段,若1S =阴影, 则12S S += . 6 4 主视图 左视图 俯视图 6 4 4 (6题图) (7题图) 频数(人) 时间(分) 20 10 30 40 50 60 70 2 0 6 9 14 某班46名同学一周平均每天体育 活动时间频数分布直方图 (第9题) x y A B O 12题图

2018年中考数学试卷及答案

2018四川高级中等学校招生考试 数 学 试 卷 学校: 姓名: 准考证号: 一、选择题(本题共30分,每小题3分) 第1-10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,点P 到直线l 的距离是 A.线段P A 的长度 B. A 线段PB 的长度 C.线段PC 的长度 D.线段PD 的长度 2.若代数式 4 x x -有意义,则实数x 的取值范围是 A. x =0 B. x =4 C. 0x ≠ D. 4x ≠ 3.右图是某几何体的展开图,该几何体是 A.三棱柱 B.圆锥 C.四棱柱 D.圆柱 4.实数a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是 A.4a >- B. 0ab > C. a d > D. 0 a c +> 5.下列图形中,是轴对称图形不是中心.. 对称图形的是 6.若正多边形的一个内角是150°,则该正方形的边数是 A.6 B. 12 C. 16 D.18

7.如果2210 a a +-=,那么代数式 2 4 2 a a a a ?? -? ?- ?? 的值是 A.-3 B. -1 C. 1 D.3 8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 根据统计图提供的信息,下列推断不合理 ...的是 A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2016—2016年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的 对应关系如下图所示。下列叙述正确的是 A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次

2018年中考数学模拟试卷及答案解析

2018年中考数学模拟试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的相反数是() A.7 B.﹣7 C.D.﹣ 2.数据3,2,4,2,5,3,2的中位数和众数分别是() A.2,3 B.4,2 C.3,2 D.2,2 3.如图是一个空心圆柱体,它的左视图是() A.B.C.D. 4.下列二次根式中,最简二次根式是() A.B.C.D. 5.下列运算正确的是() A.3a2+a=3a3B.2a3?(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 7.下列命题中假命题是() A.正六边形的外角和等于360° B.位似图形必定相似 C.样本方差越大,数据波动越小 D.方程x2+x+1=0无实数根 8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是() A.B.C.D.1 9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是() A.45°B.60°C.75°D.85°

10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是() A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是() A.4 B.3 C.2 D.1 12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2; 的最小值是,其中正确结论的个数是() ⑤若AB=2,则S △OMN A.2 B.3 C.4 D.5 二、填空题(每题3分,满分18分,将答案填在答题纸上) 13.计算:﹣3﹣5= . 14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为. 16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C 顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为. 17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)

2018年广东省中考数学试题及答案

2018年广东省中考数学试题 一、选择题 1.四个实数0、 31 、-3.14、2中,最小的是( ) A .0 B. 3 1 C. -3.14 D. 2 2. 据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000 用科学记数法表示为( ) A .7 10442.1? B 。7 101442.0? C 。8 10442.1? D 。8 101442.0? 3. 如图,由5个相同正方体组合而成的几何体,它的主视图是( ) 4.数据1、5、7、4、8的中位数是( ) A .4 B .5 C .6 D .7 5. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A .圆 B .菱形 C .平行四边形 D .等腰三角形 6.不等式313+≥-x x 的解集是( ) A .4≤x B .4≥x C .2≤x D .2≥x 7. 在ABC ?中,点D 、E 的别为边AB 、AC 的中点,则ADE ?与ABC ?的面积之比为 A . 21 B .31 C .41 D .6 1 8. 如图,AB ∥CD ,且?=∠100DEC ,?=∠40C ,则B ∠的大小是( ) A .?30 B .?40 C .?50 D .?60 9. 关于x 的一元二次方程032 =+-m x x 有两个不相等的实数根,则实数m 的取值范围为 A .49< m B .49≤m C .49>m D .4 9 ≥m 10.如同,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设PAD ?的面积为y ,P 点运动时间为x ,则y 关于x 的函数图象大致为 A B C D

2014中考数学模拟试题(新考点必考题型)

最新中考数学全真模拟试题 (本试卷满分120分,考试时间120分钟) 第Ⅰ卷 (选择题 共36分) 一、选择题:(本大题共12小题,每小题3分,共36分) 1.(—6)0的相反数等于( ) A .1 B .—1 C .6 D .—6 2.已知点M (a ,3)和点N (4,b )关于y 轴对称,则(b a +)2012的值为( ). A .1 B .一l C .72012 D .一72012 3.下列运算正确的是( ). A .a a a =-23 B .6 32a a a =? C .326 ()a a = D .()3 3 93a a = 4. 下列图形中既是轴对称图形又是中心对称图形的是( ). A. B . C . D . 5. 下列数中:6、 2 π 、23.1、722、36-,0.333…、1.212112 、1.232232223… (两个3之间依次多一个2);无理数的个数是( ) A .2个 B .3个 C .4个 D .5个 6.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是 ( ) A .5个 B .6个 C .7个 D .8个 7.不等式211 841x x x x -≥+?? +≤-? 的解集是( ). A .3x ≥ B .2x ≥ C .23x ≤≤ D .空集 8.某次有奖竞答比赛中,10名学生的成绩统计如下:

则下列说明正确的是( ). A .学生成绩的极差是2 B .学生成绩的中位数是2 C .学生成绩的众数是80分 D .学生成绩的平均分是70分 9.如图,AB CD ∥,下列结论中正确的是( ) A .123180++= ∠∠∠ B .123360++= ∠∠∠ C .1322+=∠∠∠ D .132+=∠∠∠ 10.已知反比例函数5 m y x -=的图象在第二、四象限,则m 取值范围是( ) A . m >5 B .m<5 C .m ≥5 D .m >6 _ 11. 下列从左到右的变形是因式分解的是( ) A .(x+1)(x-1)=x 2-1 B .(a-b )(m-n )=(b-a )(n-m ) C .ab-a-b+1=(a-1)(b-1) D .m 2-2m-3=m (m-2- m 3 ) 12.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( ).

相关文档
相关文档 最新文档