文档库 最新最全的文档下载
当前位置:文档库 › 18数学分析-1复习题试题及参考答案

18数学分析-1复习题试题及参考答案

18数学分析-1复习题试题及参考答案
18数学分析-1复习题试题及参考答案

18数学分析-1复习题参考答案

一、选择题 1.函数1

()ln(2)

f x x =

-的连续区间是 ( B )

A. (2,)+∞ ;

B. (2,3)(3,)?+∞;

C. (,2)-∞ ;

D. (3,)+∞.

2.若函数x

x x f =

)(,则=→)(lim 0

x f x ( D ).

A.0 ;

B.1- ;

C.1 ;

D.不存在. 3.下列变量中,是无穷小量的为( C ). A.1ln

(0)x x +→; B.cos (0)x x →;C.ln (1)x x → ;D.22(2)4

x x x -→-. 4. 1lim(1)1

n

n n →∞

+

=+( B ). 1

2.1

...-A B e

C e

D e

5.1lim(1)1

→∞

+

=-n

n n ( B ). 12.1...-A B e

C e

D e

6.下列两个函数是同一函数的是 ( C )

A. ()3,()f x x x ?=+=41

()ln ,()ln 4

f x x x x ?== ;

C. 2

2

()sin cos ,()1f x x x x ?=+= ; D. 2

(1)(),()11

x f x x x x ?-=

=-- . 7.22

39

lim 712

x x x x →-=-+ ( C ) A.0 ; B.25- ; C.6- ; D. 7

6

.

8.0sin 2lim →=x x

x

( D )

A. 0 ;

B. 1 ;

C. 3 ; D . 2 .

9.=→x

x x 1

sin lim 2

( C ). 1

1A B C D ∞-

10. 函数341

2

++-=

x x

y 的定义域是( B ) A. 2±≠x ; B. 2±≠x 且3-≥x ; C.3-≥x ; D. 以上均不正确.

)

,1.();,.();1,.();1,1.()

(|2|||.11+∞+∞-∞-∞-->D C B A D x x x 的集合是所有用区间表示满足不等式

12.当0→x 时,下列( B )为无穷小量

A .x e ;

B .x sin ;

C .sin x x ;

D .x

x 1

sin )1(2+

13.=→x

x

x 3sin 5sin lim 0 ( D )

A .0 ; B. 1 ; C. 不存在; D. 35

.

14.设函数x x x f -+=33)(,则)(x f 在),(+∞-∞内为( A ) A. 偶函数; B.奇函数; C. 非奇非偶函数 ; D.以上均不对. 15. 函数(

)1

ln f x x

=

+

的定义域是( D ) ().2,2A - ; [)(].0,11,2B ? ; ()().2,11,2C -? ; ()().0,11,2D ?.

16.函数1

sin y x

=是定义域内的( C )

.A 周期函数 ; .B 单调函数 ; .C 有界函数; .D 无界函数. 17.已知;()sin 2cos f x x x =+,则(0)f =( A ) A.2 ; B. 0 ; C. 1; D.-1 .

.210.;

210.;110.;

110.)

()2lg(1.181122-=+=-=+=++=----x x x x y D y C y B y A D x y 的反函数是函数

.

.;;

.;..

)(}.80|{},55|{.19B B A D B A C B A B B B A A A x x B x x A ????≤≤=≤≤-= 则有设

二、填空题

1.已知函数(1)(1)f x x x -=-,则函数f ()x = x 2+x 。

2. 当k= 1 时,2

,

0(),

x e x f x x k x ?≤?=?+>??在0=x 处连续.

._,.3基本初等函数三角函数统称为数函数,三角函数和反幂函数,指数函数,对常数函数

4. =→x x

x 3sin 5sin lim

极限 3

5 . x

x x ??

? ??

+∞

→321lim .5极限= 32

e .

的间断点是函数3

21

)(.62

--+=

x x x x f x=-1,x=3 . 的定义域为则函数的定义域为若函数)ln 1(],2,1[)(.7x f x f y -= ]1,[1

-e .

8.22

lim 51x x x →+∞=+ 5

1

. 9. 若lim 1n n x →+∞

=,则2lim

2

n n

n x x +→+∞+= 1 .

10. 极限+∞

→x

x x

x 2)1(

lim 2e . 2 0

11. ()0 _____ 0x e x f x x a a x x ??+<===?+≥??,设在处连续,则,

a=3

12. =→x

x

x tan lim 0___1____.

13. 设函数22

1

,32

x y x x -=-+则1x =是 可去 间断点. 14.

??? ??

+∞→2

11lim x

x x 三.解答题

1.)(lim 6

3

3)(3223x f x x x x x x f x -→-+--+=

的连续区间,并求极限求函数. 除分母为0的区间是连续区间,……

2.已知函数22,0

(),0

x x f x x a x ?+≥=?+

解:)2(lim )(lim 20

+=++→→x x f x x =2,a a x x f x x =+=--→→)(lim )(lim 0

处连续,则在点要使函数0)(=x x f

)(lim 0x f x +

→=2)0()(lim -0

==→f x f x ,2=∴a

3??

?

??---→4421

lim :.22x x x 求极限.

.4

121lim 42lim 442lim :22222

=+=--=???

??--+=→→→x x x x x x x x 原式解 4.求极限x

x x 1

1lim

-+→. 解:2

1

111lim )11()11)11(lim 11lim

000

=++=++++-+=-+→→→x x x x x x x x x x ).()(),1

(,23)(.52x f x x f x

f x x x f -+?+-=求若

.

32)23(]2)(3)[()()(;

233121311:22222

x x x x x x x x x x x f x x f x x x x f ?-?+?=+--++?-+?=-+?+-=+??

?

??-??? ??=??? ??解 ??}{,}{,}{.6为什么的极限是否存在问的极限存在的极限不存在设n n n n y x y x +

.,}{,)(,}{,}{.:这与题设是矛盾的存在的极限即的存在以推出根据极限的四则运算可的极限存在则由的极限存在因为若一定不存在答n n n n n n n x y y x y y x -++ )1(lim .72n n n -++∞

→用迫敛定理求极限

.0)1(lim :,01

lim 0lim )

,(,111

10:22

2

=-+∴==<++=-+<+∞

→+∞→+∞→n n n n

n n n n n n n 由迫敛定理得且放大分子有理化后解

8.下面函数能否复合为函数)]([x g f y =. 若能,写出其解析式﹑定义域和值域.

解:.)(,

)(2x x x g u u u f y -====

9.求极限 x x x 2sin 2

4lim 0-+→.

解:x x x 2sin 24lim

-+

→0x →=

011

28

x →==),1sin lim

,(0最后用代入法利用分子有理化后=→x

x

x

10.下列函数是否相等,为什么

? 222(1)()();(2)sin (31),sin (31);

1

(3)(),() 1.

1f x g x y x u t x x f x g x x x ===+=+-==+- 解: (1)相等.

因为两函数的定义域相同,都是实数集R;

x =知两函数的对应法则也相同;所以两函数相等.

(2)相等.

因为两函数的定义域相同,都是实数集R,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等.

(3)不相等.

因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R,两函数的定义域不同,所以两函数不相等.

11.求函数1

sin ,0

0,

0x y x x ?≠?=??=?的定义域与值域.

解: 由已知显然有函数的定义域为(-∞,+∞),又当0x ≠时,1

x

可以是不为零的任意实数,此时,1

sin

x

可以取遍[-1,1]上所有的值,所以函数的值域为[-1,1]. 12.设1,

10()1,02x f x x x -≤

,求(1)f x -.

解: 1,

1101,01(1).(1)1,012,13

x x f x x x x x -≤-<≤

].41,()(-∞值域为x g ).,0[)(+∞的定义域为u f .]41,0[故能复合它们的交集,Φ≠2)]([x

x x g f y -==},10|{≤≤=∈x x D x ]2

1

,0[)(=D f

13.设()2,()ln x f x g x x x ==,求(()),(()),(())f g x g f x f f x 和(())g g x . 解:()ln (())22,g x x x f g x ==

(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==?=?

()2(())22,

(())()ln ()ln ln(ln ).

x

f x f f x

g g x g x g x x x x x ====

14.已知水渠的横断面为等腰梯形,斜角?=40°,如图所示.当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.

图1-1

解:

011

()(2cot )(cot )22

S h AD BC h h BC BC h BC h ??=+=++=+

从而 0cot S

BC h h

?=-.

000()

22cot sin sin 2cos 2cos 40sin sin 40

L AB BC CD AB CD S h h

BC h h

S S h h h h ?

????=++=

=+=+---=

+=+ 由0

0,cot 0S h BC h h

?>=

->得定义域为 15.当0x →时,22x x -与23x x -相比,哪个是高阶无穷小量?

解:232200lim lim 022x x x x x x x x x

→→--==--, ∴当0

x →时,23x x -是比2

2x x -高阶的无穷小量. 16.求下列函数在指定点处的左、右极限,并说明在该点处函数的极限是否存在?

,0,

(1)()10,x

x f x x

x ?≠?=??=? 在0x =处; 2,2(2)()1

02

x x f x x x +≤??

=?>?-? 在2x =处.

解:0

0(1)lim ()lim lim 1,x x x x x f x x x

++

+→→→=== 000lim ()lim lim 1x x x x x f x x x ---→→→-===-

因为 0

lim ()lim ()x x f x f x +-→→≠ 所以0

lim ()x f x →不存在.

(2)2

2

221

lim ()lim ,lim ()lim(2)42

x x x x f x f x x x ++

--→→→→==+∞=+=-

因为2

lim ()x f x +

→不存在,所以2

lim ()x f x →不存在. 17. 研究下列函数的连续性,并画出图形:

2,

1,

,01,(1)()(2)()1,1;2,12;

x x x x f x f x x x x

≤?≤≤?==??

>-<

21

1

1

1

lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--

→→→→=-=== 1

lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,

又,由2

lim ()lim 0(0)x x f x x f ++

→→===,知()f x 在0x =处右连续, 综上所述,函数()f x 在[0,2)内连续. 函数图形如下:

(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由

11

1

1

lim ()lim 11,lim ()lim 1,x x x x f x f x x -

-++→-→-→-→-====-

知1

lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.

又由1

1

1

1

lim ()lim 1,lim ()lim11,x x x x f x x f x --++

→→→→==== 及(1)1f =知1

lim ()(1)x f x f →=,从而()f x 在x =1处连续,

综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:

18.已知一个无盖的圆柱形容器的体积为V ,试将其高表为底半径的函数,并将其表面积表为底半径的函数。

.

22.2),0(,:222222r r V

r r V r S r rh S r r

V

h h r V ππππππππ+=+?=∴+=>=

∴=又圆柱体表面积解

四.证明题

1..21135之间。

和至少有一个根介于证明方程=-x x 证:,13)(5--=x x x f 令 ,

]2,1[)(上连续在则x f

,03)1(<-=f 又 ,025)2(>=f

由零点定理9.4, 使),2,1(∈?x 0)(=x f ,

11

lim :.20=-→x

e x x 证明 .1ln 1

)

1ln(lim 1)1ln(1lim )1ln(lim 1lim .

0,0),1ln(,1:10000==+=+=+=-→→+==-→→→→e e t t t t x e t x t x t e t

t t t x x x 于是时当则令证 3.利用《δε-》定义证明:.1)12(lim 1

=-→x x

.,|1)12(|,|1|0,2

,0,2

|1|,|1|2,|1)12(||,1|2|1)12(|:故得证有

时当就是只要证只要证要证证εδε

δεε

εε<--<-<=

?>?∴<

-<-<---=--x x x x x x x

0135=--x x 即.)2,1(0135内至少有一根在方程=--∴x x

4.证明:.),(,)(2是连续的∞+∞-∈=x x x f

.0,0,

0,

0,1sin )(.5处连续在点试证函数=?????=≠=x x x x

x x f 6. 设()f x 定义在(-∞,+∞)上,证明:()()f x f x +-为偶函数. 证: 设()()()F x f x f x =+-,则(,)x ?∈-∞+∞,

有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数. 7. 根据数列极限的定义证明

:

21313(1)lim

0;(2)lim ;212

(3)lim

1;(4)lim 0.99

9 1.

n n n n n n n n →∞→∞→∞

→∞-==+== 个

证: (1)0ε?>,要使22110n n ε=<-,

只要n >

取N =,则当n>N 时,恒有21

0n ε<-.故2

1

lim

0n n →∞=. (2) 0ε?>,要使

555313,2(21)4212n n n n n ε-=

<<<-++只要5n ε>,取5N ε??

=????

,则当n>N 时,恒有

313

212n n ε-<-+.故313lim

212n n n →∞-=+. (3) 0ε?>,

2221a n ε=<<,

只要n >

取n =,则当n>N 时,

1ε<,

从而lim 1n n →∞=. .0)(:0)0()(lim ,01

sin lim 3.7,1

sin ,,11sin ,0lim :000处连续在点根据函数连续性定义有又得

于是根据定理有界为无穷小量即解=∴===≤=→→→x x f f x f x

x x x x x x x x

(4)因为对于所有的正整数n ,有

10.99991

n <-个

,故0ε?>,不防设1ε<,要使

1,0.9991

10n n ε=

<-个

只要ln ,ln10n ε->取ln ,ln10N ε-??

=????

则当n>N 时,恒有,0.9991n ε<-个 故lim0.99

91n n →∞

=个

.

.0)(,0,),0()(),()(.8连续在点证明内的有界函数是定义在设=>=x x f a a U x g x xg x f (方法同第

5题)

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析大二第一学期试卷(A)

一、填 空 题 1.将函数展开为麦克劳林级数,则=-+x x 11ln ______________________ 。 2.x x x f sin )(= 在( - π,π )上展开的傅里叶级数为________ ______ 。 3.已知方程 z e z y x =++可以确定隐函数,那么 =???y x z 2________________________ __。 二、单项选择题 1、幂级数∑∞ =-112n n x n 的收敛域与和函数分别是___________ 。 A 、 [ - 1 , 1 ] ,2)1(1x x -+; B 、( - 1, 1 ) ,3 )1(1x x -+; C 、(- 1 , 1 ) ,)1(1x x -+; D 、[ - 1 , 1 ] ,4) 1(1x x -+。 2、 22)(y x x f +=在( 0 , 0 )满足 ________ 。 A 、连续且偏导数存在; B 、不连续但偏导数存在; C 、连续但偏导数不存在; D 、不连续且偏导数不存在。 4、函数222z y x u -+=在点A(b,0,0)及B(0,b,0)两点的梯度方向夹 角 。 A 、2π; B 、3 π; C 、4 π; D 、6π。 三、计算题 1、设),(y x z z =是由隐函数0),(=++ x z y y z x F 确定,求表达式y z y x z x ??+??,并要求简化之

3、设函数),(v u x x =满足方程组???==0 )),(,(0)),(,(v x g y G u y f x F ,其中g f G F ,,,均为连续可微函 数,且x y g f G F G F 2211≠,记1F 为F 对第一个变量的偏导数,其他类推,求v x u x ????,。

数学分析期末考试第一学期

一、填空题(每空1分,共9分) 1. 函数()f x =的定义域为________________ 2.已知函数sin ,1()0,1 x x f x x ??=?-??==??-

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

运城学院数学分析期末试题2-14

运城学院应用数学系 2011—2012学年第二学期期末考试 数学分析2试题(A ) 适用范围:数学与应用数学专业1101\1102班 命题人:常敏慧、王文娟 审核人: 一、判断题(每题2分,共20分) 1、实轴上的任一有界点集至少有一个聚点. ( ) 2、开区间集合1,11,2,1n n ????=?? ?+???? 构成了开区间()0,1的一个无限开覆盖. ( ) 3、初等函数的原函数仍是初等函数. ( ) 4、积分和与达布和都与分割有关. ( ) 5、黎曼函数在[]0,1上可积. ( ) 6、若f 在[],a b 上可积,则f 在[],a b 上可积. ( ) 7、瑕积分 ()b a f x dx ?收敛,则()2b a f x dx ?也收敛. ( ) 8、设n u ∑为收敛的正项级数,则lim 0n n u →∞=. ( ) 9、若函数项级数()n u x ∑在[],a b 上内闭一致收敛,且每一项()n u x 都连续,则()()b b n n a a u x dx u x dx =∑∑?? . ( ) 10、幂级数101n n n a x n ∞+=+∑与幂级数11 n n n na x ∞-=∑有相同的收敛半径. ( ) 二、填空题(每题2分,共20分) 1、设闭区间列[]{},n n a b 满足(i) ,(ii)()lim 0n n n b a →∞-=, 则称[]{} ,n n a b 为闭区间套.

2、()()21f x dx f x '=??+??? . 3、()20ln 1x d t dt dx +=? . 4、光滑曲线:C ()()[],,,x x t y y t t αβ==∈的弧长为 . 5、直线上任一点的曲率为 . 6、无穷积分 1sin p x dx x +∞?当 时条件收敛. 7、级数11p n n ∞=∑当 收敛. 8、幂级数()()1321n n n n x n ∞=+-+∑的收敛半径R = . 9、设函数项级数()n u x ∑定义在数集D 上,n M ∑为收敛的正项级数,若对一切x D ∈,有 ,则称函数项级数()n u x ∑在D 上一致收敛. 10、设幂级数n n x a ∑在0=x 某邻域上的和函数为()x f ,则n a 与()()0n f 之间的关系 是 . 三、求解下列各题(每题5分,共30分) 1、243dx x x ++? . 2、4tan xdx ?. 3 、1 2dx x . 4、112lim p p p p n n n +→∞++ (p 为正整数). 5、讨论无穷积分111x dx x α-+∞ +?的收敛性.

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析(1)期末模拟考试题(单项选择部分)

; 二、数列极限 1. 已知2lim >=∞ →A a n n ,则正确的选项是( B ). (A) 对+N ∈?n ,有2>n x ; (B) + N ∈?N ,当N n >时,有2>n a ; (C) N N N >?N ∈?+0,,使20=N x ; (D) 对2,≠N ∈?+n a n . 2. 设+ N ∈?N ,当N n >时,恒有n n b a >,已知A a n n =∞ →lim ,B b n n =∞ →lim .则正确的选项 是: ( A ). (A) B A ≥; (B) B A ≠; (C) B A >; (D) A 和B 的大小关系不定. 3. 若() 0tan 1 lim 1cos 1≠=---∞→a n e k n n π ,则 ( A ) (A) 2=k 且π21=a ; (B) 2-=k 且π21 =a ; (C) 2=k 且π21-=a ; (D) 2-=k 且π 21 -=a ; 4. 设32lim 1kn n e n -→∞ ?? += ??? ,则k =( C ) (A) 3/2; (B) 2/3; (C) -3/2; (D) -2/3. 5. 设数列{}n x 与{}n y 满足lim 0n n n x y →∞ =,则下列命题正确的是( D ) (A) 若{}n x 发散,则{}n y 必然发散; (B) 若{}n x 无界,则{}n y 必然有界; (C) 若{}n x 有界,则{}n y 必为无穷小量; (D) 若1n x ?? ???? 为无穷小量,则{}n y 必为无穷小 量. ( 数. 三、函数极限 1. 极限=+-∞→3 3 21 213lim x x x ( D ). (A) 3 2 3 ; (B) 3 2 3 - ; (C) 3 2 3 ± ; (D) 不存在.

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

数学分析(1)期末试题A

山东师范大学2007-2008学年第一学期期末考试试题 (时间:120分钟 共100分) 课程编号: 4081101 课程名称:数学分析 适用年级: 2007 学制: 四 适用专业:数学与信息试题类别: A (A/B/C) 2分,共20分) 1. 数列{}n a 收敛的充要条件是数列{}n a 有界. ( ) 2. 若0N ?>, 当n N >时有n n n a b c ≤≤, 且lim lim n n n n a c →∞ →∞ ≠, 则lim n n b →∞ 不存在. ( ) 3. 若0 lim ()lim ()x x x x f x g x →→>, 则存在 00(;)U x δ使当00(;)x U x δ∈时,有()()f x g x >. ( ) 4. ()f x 为0x x →时的无穷大量的充分必要条件是当00(;)x U x δ∈时,()f x 为无界函数. ( ) 5. 0x =为函数 sin x x 的第一类间断点. ( ) 6. 函数()f x 在[,]a b 上的最值点必为极值点. ( ) 7. 函数21,0,()0, 0x e x f x x -?? ≠=??=?在0x =处可导. ( ) 8. 若|()|f x 在[,]a b 上连续, 则()f x 在[,]a b 上连续. ( ) 9. 设f 为区间I 上严格凸函数. 若0x I ∈为f 的极小值点,则0x 为f 在I 上唯一的极小值点. ( ) 10. 任一实系数奇次方程至少有两个实根. ( )

二、 填空题(本题共8小题,每空2分,共20分) 1. 0 lim x x x + →=_________________. 2. 设2 ,sin 2x u e v x ==,则v d u ?? = ??? __________________. 3. 设f 为可导函数,(())x y f f e =, 则 y '=_______________. 4. 已知3(1)f x x +=, 则 ()f x ''=_______________. 5. 设 ()sin ln f x x x =, 则()f π'=_______________ . 6. 设21,0, (),0; x x f x ax b x ?+≥=?+

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

(完整word版)华南农业大学2009数学分析1(A卷)期末考试试卷

华南农业大学期末考试试卷( A 卷 ) 2009学年第1学期 考试科目:数学分析I 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 填空题 (每题4分,共24分) 1. 用N ε-语言叙述数列极限的柯西准则: . 2. 用εδ-语言叙述()0lim x x f x A →=: . 3. (归结原则)设()f x 在00(U x ;)δ内有定义,()0lim x x f x →存在的充要条件是: . 4. 设0x →时,函数1(1)1x x --+与x α是同阶无穷小量,则α= . 5. 曲线221x t y t t ?=-??=-??在1t =处的切线方程为: . 6. 设函数,0sin ()3,02(1),0x ax be x x f x x a b x x ?+?? 在0x =处连续,则a =_____,b =____.

二、 计算题. (共52分) 1. 求下列极限(每题6分,共24分) (1) 7020 90(36)(85)lim (51) x x x x →+∞+--. (2) 01lim []x x x →. (3) 30tan sin lim ln(1)x x x x →-+. (4) 2132lim ()31x x x x -→+∞+- .

2. 求下列导数(每小题6分,共18分) (1)32(arctan )y x =. (2)设cos x y e x =, 求(4)y . (3)求由参数方程()()()x f t y tf t f t '=??'=-? (设()f t ''存在且不为零)所确定的函数()y f x =的二阶导数22d y dx .

数学分析(1)期末模拟考试题(证明部分新).

数列极限类 1.证明: . 证因为 又,由迫敛原理得 . 2.设,证明有极限,并求此极限的值. 证由均值不等式得 ,即有下界. 又,即单调减,于是存在,且由极限的保号性可得.对已知递推公式,令和极限的唯一性得 , 解得(负根舍去,即有. 单调性的证明也可如下完成: ,或.

3.设,试证数列存在极限,并求此极限. 证由知, .假设,则 ,由归纳法知为单调下降数列.又显然有,所以有下界.由单调有界原理知,数列收敛.所以可令,对 两边取极限得,解得或(舍去,故 . 4.设,当时,有且.求证极限与 存在且等于. 证由得,由迫敛原理得,再由 及可得存在且等于. 5. 设.求证: (1 与均有极限; (2 . 证因为,所以,即 单调减少有下界,而,即单调增加有上界.所以与都收敛. 在两边取极限得. 6. 设,且,求证收敛且. 证因为,对给定的,当时,有

, 所以,当时,有,由迫敛原理得. 闭区间上连续函数的性质 7.证明方程在内至少有一个根. 证令,则在上连续,且, ,即.由根的存在性定理得至少存在一点 ,使得,即方程在内至少有一个根. 8.证明方程至少有一个小于的正根.(10分 证令,则在上连续且,由闭区间上连 续函数的零点存在定理,,使得. 9. 设函数在上连续,且满足.若在上能取到负值,试证明: (1 ,使得; (2 在上有负的最小值. 证由条件可设且,由,存在使得,由根的存在性定理,得,使得.(1得证. (2 由,存在使得当时,有.又在 上连续,故,使得.而当 时,,故对有.所以结论成立.

10. 设为正整数,为个实常数,且.求证多项式函数 在内至少有两个零点. 证因为,又,所以存在,使得 ,又在和上都连续,由根的存在性定 理,和,使得,所以,结论成立. 11. 设,求的表达式,并指明的间断点及其类型. 解: ,所以 为第一类可去间断点;为第二类无穷间断点. 12. 设在上连续,且满足,求证:,使得. 证明:令,则在上连续, . 由连续函数的零点定理,必存在,使得,故使得. 13. 设是上的连续函数,且满足条件.证明存在,使得 . 证明: 令,则在上连续,且, .若,则存在或 使得.若与都不为零,则 由连续函数的零点定理,必存在,使得,故使得 .

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析期末考试题1、2(第二份有答案)

一、 判断题(每小题2分,共20分) 1.开域是非空连通开集,闭域是非空连通闭集. ( ) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( ) 3.连续函数的全增量等于偏增量之和. ( ) 4. xy y x f =),(在原点不可微. ( ) 5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6. dy y x xy y ) 1(sin 2 1 +? +∞ 在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度 T 不能用}{max 1i n i σ?≤≤来代替. ( ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz . 2.设 3 2),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度= )(0P grad . 3.设L 为沿抛物线 22x y =,从)0,0(O 到)2,1(B 的一段,则?=+L ydx xdy . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 . 5.曲面2732 22=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限 xy y x y x )(lim 22) 0,0(),(+→. 2. 设),(y x z z =是由方程z e z y x =++所确定的隐函数,求xy z . 3.设 ]1,0[]1,0[?=A ,求??++=A y x ydxdy I 2 322)1( . 4.计算抛物线) 0()(2 >=+a ax y x 与x 轴所围的面积.

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

数学分析1-期末考试试卷(B卷)

数学分析1 期末考试试卷(B 卷) 一、填空题(本题共5个小题,每小题4分,满分20分) 1、设011 1,1n n x x x +== +, 则 lim n n x →∞ = 。 2、(归结原则)设0()(;)o f x U x δ在内有定义,0 lim ()x x f x →存在的充要条件是: 3、设)1ln(2x x y ++=,则=dy 。 4、当x = 时,函数()2x f x x =取得极小值。 5、已知)(x f 的一个原函数是 cos x x ,则()xf x dx '=? 。 二、单项选择题(本题共5个小题,每小题4分,满分20分) 1、设()232x x f x =+-,则当0x →时( )。 (A )()f x x 与是等价无穷小。 (B )()f x x 与是同阶但非等价无穷小。 (C )()f x x 为的高阶无穷小量。 (D )()f x x 为的低阶无穷小量。 2、设函数()f x x a =在点处可导,则函数()f x 在x a =处不可导的充分条件是( )。 (A )()0()0.f a f a '==且 (B )()0()0.f a f a '>>且

(C )()0()0.f a f a '=≠且 (D )()0()0.f a f a '<<且 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f , 则)(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 的导数在x a =处连续,又() lim 1x a f x x a →'=--,则( ) 。 (A )x a =是)(x f 的极小值。 (B )x a =是)(x f 的极大值。 (C )(,())a f a 是曲线()y f x =的拐点。 (D )x a =不是)(x f 的极 值点, (,())a f a 也不是曲线()y f x =的拐点。 5、下述命题正确的是( ) (A )设)(x f 和()g x 在0x 处不连续,则()()f x g x 在0x 处也不连续; (B )设()g x 在0x 处连续,0()0f x =,则0 lim ()()0x x f x g x →=; (C )设存在0δ>,使当00(,)x x x δ∈-时, ()() f x g x <,并设 lim (),x x f x a - →= lim (),x x g x b - →=,则必有a b <; (D )设 lim (),lim ()x x x x f x a g x b - - →→==,a b <,则存在0δ>,使当 00(,)x x x δ∈-时,()()f x g x <。

相关文档
相关文档 最新文档