文档库 最新最全的文档下载
当前位置:文档库 › 关系矩阵与关系的复合

关系矩阵与关系的复合

关系矩阵与关系的复合
关系矩阵与关系的复合

实验报告

实验日期:

学号:姓名:

总分:实验名称:

关系矩阵与关系的复合

代码:

#include

#include

using namespace std;

class Relation_matrix

{

private:

string jihe1;//集合

int jihe;//用来保存集合A的大小

char guanxi1[20][2];//关系一

int g1;

char guanxi2[20][2];//关系二

int g2;

public:

Relation_matrix (string a,string b,string c)//构造函数

{

jihe1=setstring(a);

jihe=setint(jihe1);

setstring1(setstring(b));

setstring2(setstring(c));

}

string setstring(string a)//字符串设置函数

{

int k=0;

string save=" ";

for(int i=0;a[i]!=0;i++)

if((a[i]>='a'&&a[i]<='z')||(a[i]>='A')&&(a[i]<='Z'))

{

save[k]=a[i];

k++;

}

save[k]='\0';

return save;

}

int setint(string a)//读取字符串的长度

{

int t=0;

for(int i=0;a[i]!=0;i++)

++t;

return t;

}

void setstring1(string a)//设置关系一

{

int k=0;

for(int i=0;a[i]!=0;i+=2)

{

guanxi1[k][0]=a[i];

guanxi1[k][1]=a[i+1];

k++;

}

g1=k;

}

void setstring2(string a)//设置关系二

{

int k=0;

for(int i=0;a[i]!=0;i+=2)

{

guanxi2[k][0]=a[i];

guanxi2[k][1]=a[i+1];

k++;

}

g2=k;

}

void guanxijuz()//关系一的关系矩阵

{

int num[10][10];

for(int i=0;i<10;i++)

for(int j=0;j<10;j++)

num[i][j]=0;

for(i=0;i

num[set(guanxi1[i][0])][set(guanxi1[i][1])]=1;

for(i=0;i

{

cout<<" ";

for(int j=0;j

cout<

cout<

}

}

void guanxifuhe1()//关系的复合

{

char num[20][2];//保存关系的二元数组

int n,k=0;

for(int i=0;i

for(int j=0;j

if(guanxi1[i][1]==guanxi2[j][0])//把符合条件的放到数组num中

{

num[k][0]=guanxi1[i][0];

num[k][1]=guanxi2[j][1];

k++;

}

n=k;//关系的个数

int y=0;

for(i=0;i

{

if(judge(num,i))//判断一次,去掉相同的

{

if(y!=0)

cout<<",";

cout<<"<"<";

y++;

}

}

cout<

}

int set(char a)//输出a在集合A中的位置

{

for(int i=0;i

if(a==jihe1[i])

return i;

}

int judge(char num[][2],int a)//判断第a个元素是否重复

{

for(int i=0;i

{

if((num[a][0]==num[i][0])&&(num[a][1]==num[i][1]))

return 0;

}

return 1;

}

};

int main()

{

string a,b,c;

cout<<"集合(用逗号隔开)"<

cin>>a;

cout<

cout<<"关系一(用分号隔开)";

cin>>b;

cout<

cout<<"关系二(用分号隔开)";

cin>>c;

cout<

Relation_matrix eygx1(a,b,c);

cout<<"若要求关系一的关系矩阵,输入1"<

cout<<"若要求关系的复合,输入2"<

int t;

cin>>t;

if(t==1)

eygx1.guanxijuz();

else

eygx1.guanxifuhe1();

return 0;

}

测试:

矩阵的合同-等价与相似的联系与区别(新)

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系 摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一 些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的 关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等. 关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵 1伴随矩阵的定义 设() n n ij a A ?=,则它的伴随矩阵()n n ij b A ?=* ,其中ji ij A b = (),,,3,2,1,n j i =ij A 为A 中ij a 的代数余子式. 2伴随矩阵的性质以及矩阵与它伴随矩阵的关系 2.1 I A A A AA ==**. 2.2 若A 非奇异,则* 11A A A =-. 2.3 ()()T T A A ** =. 证 当A 可逆时,1*-=A A A ,且T A 也可逆. 故 ()()1 * -=T T T A A A =() T A A 1- 另一方面, ()()T T A A A 1* -==() T A A 1- 由上两式推出 ()() T T A A ** =. 2.4 ()() 1 ** 1 --=A A . 证 当A 可逆时,1*-=A A A ,且1-A 也可逆. 故 ()()A A A A A 1 1 11* 1= =---- 又由 E A A A A A A =??? ? ??=???? ??* *11 故 *A 也可逆,且()A A A 1 1 *= - 从而 ()() 1 ** 1 --=A A .

2.5 ()*1* A a aA n -= (a 为实数). 证 设()n n ij a A ?=,再设 ()()n n ij b aA ?=* , 那么ij b 为行列式aA 中划去第j 行和第i 列的代数余子式1-n 阶行列式,其中每行提出公因子a 后,可得 ji n ij A a b 1-= ()n j i ,2,1,= 由此即证()*1* A a aA n -=. 2.6 1 *-=n A A ()2≥n . 证当A 可逆时,由于,1*-=A A A 两边取行列式 得 1 1* --==n n A A A A 当A 不可逆时,,0=A 这时秩1*≤A 所以.0*=A 从而也有 1 * -=n A A 所以对任意n 阶方阵,A 都有.1 *-=n A A 2.7 当秩n A =时,则秩n A =*.当秩1-=n A 时则秩1*=A .,当秩2-≤n A 则秩0*=A . 证 当秩,0≠?=A n A 那么由上面的(1)式有0*≠==n A I A AA 所以 ,0*≠A 即秩n A =* 当秩,01=?-=A n A 0*==I A AA 从而秩,1*≤A 又因秩,1-=n A 所以至少有一个代数余子式,0≠ij A 从而秩,1*≥A 于是秩,1*=A 当秩2-=n A ?0*=A 所以秩0*=A 同理秩2-

MATLAB中的矩阵与向量运算

4.1 数组运算和矩阵运算 从外观形状和数据结构来看,二维数组和数学中的矩阵没有区别.但是,矩阵作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则.而数组运算是MATLAB软件所定义的规则,其目的是为了数据管理方面,操作简单,指令形式自然和执行计算有效.所以,在使用MATLAB时,特别要明确搞清数组运算和矩阵运算的区别.表 4.1.1 数组运算和矩阵运算指令形式和实质内涵 数组运算矩阵运算 指令含义指令含义 A.'非共轭转置A'共轭转置 A=s把标量s赋给数组A的每个元素 s+B把标量s分别与数组B的每个元素相加s-B, B-s标量s分别与数组B的元素之差 s.*A标量s分别与数组A的元素之积s*A标量s分别与矩阵A的元素之积 s./B, B.\s标量s分别被数组B的元素除s*inv(B)矩阵B的逆乘标量s A.^n数组A的每个元素的n次方A^n A为方阵时,矩阵A的n次方 A+B数组对应元素的相加A+B矩阵相加 A-B数组对应元素的相减A-B矩阵相减 A.*B数组对应元素的相乘A*B内维相同矩阵的乘积 A./B A的元素被B的对应元素除A/B A右除B B.\A一定与上相同B\A A左除B(一般与右除不同) exp(A)以e为底,分别以A的元素为指数,求幂expm(A) A的矩阵指数函数 log(A) 对A的各元素求对数logm(A) A的矩阵对数函数 sqrt(A) 对A的积各元素求平方根sqrtm(A) A的矩阵平方函数 从上面可以看到,数组运算的运算如:乘,除,乘方,转置,要加"点".所以,我们要特别注意在求"乘,除,乘方,三角和指数函数"时,两种运算有着根本的区别.另外,在执行数组与数组运算时,参与运算的数组必须同维,运算所得的结果数组也是总与原数组同维. 4.2 数组的基本运算 在MATLAB中,数组运算是针对多个数执行同样的计算而运用的.MATLAB以一种非常直观的方式来处理数组. 4.2.1 点转置和共轭转置 . ' ——点转置.非共轭转置,相当于conj(A'). >> a=1:5; >> b=a. ' b = 1 2 3 4 5 >> c=b. ' c = 1 2 3 4 5 这表明对行向量的两次转置运算便得到原来的行向量. ' ——共轭转置.对向量进行转置运算并对每个元素取其共轭.如: >> d=a+i*a

矩阵的等价-合同-相似的联系与区别

矩阵的等价-合同-相似的联系与区别

目录 摘要....................................................................................................................... I 引言. (1) 1矩阵间的三种关系 (1) 1.1 矩阵的等价关系 (1) 1.2 矩阵的合同关系 (1) 1.3. 矩阵的相似关系 (2) 2 矩阵的等价、合同和相似之间的联系 (3) 3矩阵的等价、合同和相似之间的区别 (6) 结束语 (6) 参考文献 (6)

摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化. 关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件

引言: 在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量. 1矩阵间的三种关系 1.1 矩阵的等价关系 定义1 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ = 由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =. 性质1 (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ? (3)传递性:即若A B ?,B C ?,则A C ? 定理1 若A 为m n ?矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),使得000r m n I PAQ B ??? == ???.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ?矩阵,则A B ?当且仅当()()r A r B =. 1.2 矩阵的合同关系 定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件: (1) 矩阵A 与B 不仅为同型矩阵,而且是方阵.

伴随矩阵的性质知识讲解

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (4) 摘要 (5) 关键词 (5) 0引言 (5) 1主要结论 (6) 1.1伴随矩阵的基本性质 (6) 1.2伴随矩阵的特征值与特征向量的性质 (9) 1.3矩阵与其伴随矩阵的关联性质 (10) 1.4两伴随矩阵间的关系性质 (11) 2应用举例 (12) 例1 (12) 例2 (12) 结束语 (13) 参考文献 (13) 致谢 (14)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1)i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A *= 112111222212n n n n nn A A A A A A A A A ????? ???????L L M M O M M 称为矩阵A 的伴随矩阵.

伴随矩阵的性质及应用

一.伴随矩阵的定义及符号 伴随矩阵是在求非奇异矩阵的逆矩阵时提出来的, 1.代数余子式的定义 为了定义伴随矩阵,需要先定义一个矩阵某一元素的代数余子式: 在行列式 11111..................j n i ij in ni nj nn a a a a a a a a a 中划去元素ij a 所在的第i 行与第j 列,剩下的2(1)n -个元素按原来的排法构成一个n-1级的行列式,称为元素ij a 的余子式,记为ij M ,称(1)i j ij ij A M +=-为元素ij a 的代数余子式。 2.伴随矩阵的定义 设ij A 是矩阵 11111..................j n i ij in ni nj nn a a a A a a a a a a ?????? ??=?????????? 中元素ij a 的代数余子式,矩阵 112111222 2*12.........n n n n nn A A A A A A A A A A ???? ??=?????? 称为A 的伴随矩阵。 二.伴随矩阵的性质

1.伴随矩阵的基本公式:**AA A A A E == 由行列式按一行(列)展开的公式立即得出: **000000d d AA A A A E d ??????===?????? 其中d A =。 这是伴随矩阵的一个基本公式,我们可以从该等式出发推导出一些有关方阵的伴随矩阵的性质,使我们对伴随矩阵有一个更加全面的认识和理解。 2.在公式**AA A A A E ==基础上推导出的其他性质 (1)A 可逆当且仅当* A 可逆。 证明:若A 可逆,则A ≠0.由**AA A A A E ==知 * A A E A ?= 故*1A A A -= 两边取行列式得*1A A A -= 即*11n A A A ??= ? ??? 故*A 0≠,从而*A 可逆 (2)1*n A A -=,其中A 是n ?n 矩阵 证明:由**AA A A A E ==,知*n A A A = ①.当时,有及,故

最新矩阵与伴随矩阵的关系

方阵 A 与其伴随矩阵*A 的关系 摘 要 本文给出了n 阶方阵A 的伴随矩阵* A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关 系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明 在高等代数课程中我们学习了矩阵,伴随矩阵。它们之间有很好的联系,对我们以后的学习中有很大的用处。 1.伴随矩阵的定义. 设n 阶方阵 ()?? ??? ? ? ??==?nn n n n n n n ij a a a a a a a a a a A 212221212111.令() ?? ?? ? ? ? ??==?nn n n n n n n ij A A A A A A A A A A A 212221212111 * ,其中ij A 是ij a 的代数余子式.则称*A 为A 的伴随矩阵. 2.矩阵A 与其伴随矩阵*A 的关系及其证明. 2.1 *AA =A A *=AI det .当A 可逆时,有*1det 1A A A =-,即1* det -=AA A [1]. 证明:因为???≠==+++; ,0, ,det 2211j i j i A A a A a A a jn in j i j i 若若 ? ??≠==+++;,0, ,det 2211j i j i A A a A a A a nj ni j i j i 若若 所以*AA =A A * =????? ? ? ??A A A det 000det 000det =AI det . 当 A 是可逆矩阵时, 0det ≠A ,所以由上式得 ??? ??*det 1A A A =A A A ?? ? ??*det 1=I 即

矩阵与向量的运算及操作

%MATLAB支持教学中的矩阵类型P18 A=[123;456]%变量名=[第一行元素;第二行元素;……;第m行元素] A=ones(2,3)%ones(m,n)创建m*n阶全1矩阵 A=ones(3)%ones(n)创建n*n阶全1(方)矩阵 A=zeros(3,4)%zeros(m,n)创建m*n阶全0矩阵 A=zeros(4)%zeros(m,n)创建m*n阶全0方阵 A=eye(1)%eye(n)创建n阶单位矩阵 B=eye(2)%eye(n)创建n阶单位矩阵 C=eye(4)%eye(n)创建n阶单位矩阵 A=rand(2,3)%rand(m,n)创建m*n阶随机矩阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(1,1)%rand(m,n)创建m*n阶随机矩阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(1,3)%rand(m,n)创建m*n阶随机矩阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(1)%rand(m,n)创建n*n阶随机方阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(2)%rand(m,n)创建n*n阶随机方阵元素是(0,1)区间上均匀分布的伪随机实数 A=rand(3)%rand(m,n)创建n*n阶随机方阵元素是(0,1)区间上均匀分布的伪随机实数 %MATLAB矩阵的运算及操作P16 clc A=[123;456]; B=[222;333]; C=[1423;2501;3612]; A1=1:49 y=reshape(A1,7,7)' %取矩阵A中的行下标=i,列下标=j的元素A(行下标i,列下标j) A(1,1) A(2,3) %取矩阵A中的第i行元素返回值为行向量A(行下标i;:) A(1,:) A(2,:) %取矩阵A中的第j列元素返回值为列向量A(:;列下标j)

向量与矩阵运算

向量与矩阵运算 (摘自:华东师范大学数学系) §2.1向量及矩阵的生成 §2.1.1 通过语句和函数产生 §2.1.2 通过后缀为.m的命令文件产生 §2.2 矩阵操作 Matlab能处理数、向量和矩阵.但一个数事实上是一个1×1的矩阵,1个n 维向量也不过是一个1×n或n×1的矩阵.从这个角度上来讲,Matlab处理的所有的数据都是矩阵.Matlab的矩阵处理能力是非常灵活、强大的.以下我们将从矩阵的产生、基本运算、矩阵函数等几个方面来说明. §2.1向量及矩阵的生成 除了我们在上节介绍的直接列出矩阵元素的输入方法,矩阵还可以通过几种不同的方式输入到Matlab中. §2.1.1 通过语句和函数产生 1. 向量的产生 除了直接列出向量元素(即所谓的“穷举法”)外,最常用的用来产生相同增量的向量的方法是利用“:”算符(即所谓的“描述法”).在Matlab中,它是一个很重要的字符.如: z=1:5 z = 1 2 3 4 5

即产生一个1~5的单位增量是1的行向量,此为默认情况. 用“:”号也可以产生单位增量不等于1的行向量,语法是把增量放在起始量和结尾量的中间.如: x=0:pi/4:pi 即产生一个由0~pi的行向量,单位增量是pi/4=3.1416/4=0.7854. x = 0 0.7854 1.5708 2.3562 3 .1416 也可以产生单位增量为负数的行向量.如: y=6:-1:1 y = 6 5 4 3 2 1 2. 矩阵的产生 Matlab提供了一批产生矩阵的函数: 例如: ones(3) ans = 1 1 1 1 1 1 1 1 1

曲面的三个基本形式的系数矩阵之间关系的证明

曲面的三个基本形式的系数矩阵之间关系的证明 邢家省,王拥军 (北京航空航天大学数学与系统科学学院, 数学、信息与行为教育部重点实验室,北京100191) 摘 要: 给出3 R 中曲面的3 个基本形式的系数矩阵之间关系的一个直接 证明, 并由此得到曲面的3 个基本形式之间的关系表示及其一些 应用. 关键词: 第三基本形式; 法曲率的最值; 测地挠率 中图分类号: O186. 11 文献标识码: A 曲面的第三基本形式可以用第一和第二基本形式来表示是一个重要结论[19]-,对其证明引起了人们的极大兴趣.我们在已有方法的基础上,经过综合分析和领会,发现了一套自然合理的推导转换的过程,给出了直接简单自然的证明过程. 1曲面的第三基本形式用第一和第二基本形式表示的证明 设曲面 :(,)r r u v ∑= 是2C 类的正则曲面.曲面∑上一点(,)P u v 处的单位法向量为n .我们采用文献[1-3]中的记号. 收稿日期: 基金项目:国家自然科学基金资助项目(11171013), 北京航空航天大学教改项目基金资助 作者简介:邢家省(1964--)男,河南泌阳人,博士,副教授,从事数学教学和科研工作. Email:xjsh@https://www.wendangku.net/doc/0013967585.html, .

令,,u u u v v v e n n f n n g n n =?=?=? , ,,e f g 称为曲面 ∑的第三类基本量.用III 表示曲面∑的第三基本形 式[13]-: 22()2()e du fdudv g dv III =++ . 曲面的第三基本形式可以用第一和第二基本形式来表示,在文献[1-3]中是在曲面上选取了曲率线网作为坐标曲线网后,给予证明的.我们在曲面上选取正交曲线族为坐标曲线网下,给出证明. 选取曲面∑上的正交曲线族为坐标曲线网. 设曲面 :(,)r r u v ∑= 上的坐标曲线网是正交网. 则有0u v F r r =?= , 曲面的第一基本形式2 2 ()()E du G dv I =+, 曲面的第二基本形式22()2()L du Mdudv N dv II =++, 高斯曲率2LN M K EG -=,平均曲率2LG NE H EG +=. 因为1,n n ?= 所以0,0u v n n n n ?=?= , 从而,,u u v n r r 共面,,,v u v n r r 共面, 设12u u v n a r a r =+ ,则有12,L M a a E G =- =-; 设12v u v n b r b r =+ ,则有12,M N b b E G =-=- . 于是 2212u u u u v v e n n a r r a r r =?=?+? 22222L G M E L G LNE LNE M E HL KE EG EG ++-+===-, 1122u v u u v v f n n a b r r a b r r =?=?+? 2LGM NEM HM EG += =, 2212v v u u v v g n n b r r b r r =?=?+?

二元关系的矩阵和图表示

二元关系的矩阵和图表示 两个事物之间的关系称之为二元关系。在数学上,二元关系指的是这样的一个集合S,它的所有元素都为二元有序对。它反映的是有序对中第一个元素组成的集合与第二个元素组成的集合之间的关系。举个例子,集合S={<天秤座,libra>,<狮子座,leo>}就表示了中文集合{天秤座,狮子座}与英文集合{libra,leo}之间的对应关系。 二元关系可以用集合表示,就像我们上面提到的。而除此之外,还可以用其他数学工具来描述它——矩阵和图。 矩阵的基本元素是数字及其所处的位置。直觉上,我们很自然的想到用它的下标来体现两个集合中的元素,用数字体现它们是否具有关系。这便得出了以下定义:【定义】设集合A={x1,x2,…,x m},B={y1,y2,…,y n},R为A,B之间的二元关系。称矩阵M(R)=(r ij)m×n为R的关系矩阵,其中 这样我们定义了一个映射,把集合R映射为一个矩阵M。如此定义,首先保证了R的集合表达式和R的关系矩阵是一一对应的。其次,这样的定义会带来很多好的性质。我们可以应用矩阵的语言把整个二元关系的理论重新叙述一遍:(1)关系R的逆,记作R-1,表示的是集合{|εR},我们有 M(R-1)=(M(R))T 这样,我们求关系的逆就转化为了求一个矩阵的转置矩阵。 (2)两个关系的合成(复合),记作R2?R1,表示的是集合 为了用矩阵表示关系的合成,我们可以定义{0,1}中元素的加法为逻辑加法 (0+0=0,0+1=1,1+0=1,1+1=1),于是便有 M(R2?R1)=M(R1)?M(R2) 这样,关系的合成这一运算就转化为了矩阵的相乘。 (3)同理,R在D上的限制就等价于找M(R)中相应行中为1的元素;D在R下的

矩阵与伴随矩阵的关系

方阵A 与其伴随矩阵* A 的关系 摘 要 本文给出了n 阶方阵A 的伴随矩阵* A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明 在高等代数课程中我们学习了矩阵,伴随矩阵。它们之间有很好的联系, 对我们以后的学习中有很大的用处。 1.伴随矩阵的定义. 设n 阶方阵 ()?? ?? ? ? ? ??==?nn n n n n n n ij a a a a a a a a a a A 2122212 12111 .令 () ?? ?? ? ?? ??==?nn n n n n n n ij A A A A A A A A A A A 2122212 12111 *,其中ij A 是ij a 的代数余子式.则称* A 为A 的伴随矩阵. 2.矩阵A 与其伴随矩阵*A 的关系及其证明. 2.1 *AA =A A *= AI det .当A 可逆时,有*1 det 1 A A A = -,即1*det -=AA A [1]. 证明: 因为? ??≠==+++;,0,,det 2211j i j i A A a A a A a jn in j i j i 若若 ???≠==+++;,0, ,det 2211j i j i A A a A a A a nj ni j i j i 若若 所以*AA =A A * =????? ? ? ??A A A det 000det 000det = AI det .

当 A 是可逆矩阵时, 0det ≠A ,所以由上式得 ??? ??*det 1A A A =A A A ?? ? ??*det 1=I 即 *1det 1 A A A = -. 证毕. 2.2 ()* T A =()T A *.(显然) 2.3 若A 可逆,则()*1-A =() 1 *-A .(显然) 2.4 设A 为n 阶方阵()2≥n ,则 () ()()()?? ???=-=-<=n A r n n A r n A r A r 1110* [2]. 引理1.若()2≥?n n n 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+. 证明: 因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r =,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而 ()0=B r ; 若()n r A r <=,则方程组的基础解系中含r n -个向量,于是()r n B r -≤, 因此有()()n B r A r ≤+. 证毕. 下面证明2.4. ⑴当()1-

伴随矩阵的若干性质及应用

伴随矩阵的若干性质及应用 摘要 矩阵是学习高等代数中的一个非常重要的知识点,而在矩阵的运算和应用中伴随矩阵起着十分重要的作用.本篇文章运用矩阵计算中的一些技巧和方法,证明了一般n 阶方阵和某些特殊矩阵的伴随矩阵的一些性质.这些性质的探讨是基于矩阵的伴随矩阵与原矩阵之间的关系,利用研究矩阵的方法来着手.通过这些性质,对矩阵、伴随矩阵有了更深一步地认识.而且,在以后的学习中遇到关于伴随矩阵的问题我们可以直接应用这些性质,使问题变得简单. 关键词 矩阵 伴随矩阵 特征值 引言 因为伴随矩阵是学习矩阵的一个重要知识点,在计算中经常出现,把矩阵的 伴随矩阵看作一般的一个矩阵来研究.给出了伴随矩阵的秩、伴随矩阵的转置、伴随矩阵的特征值、几个特殊矩阵的伴随矩阵的性质,以及伴随矩阵的其他性质.这些性质能帮我们方便解决在计算矩阵时遇到的问题. 本文出现的矩阵A 和B 均为n 阶方阵. 1.一般n 阶方阵其伴随矩阵的一些性质及应用 1.1 E A A A AA ==**,在求解A 与*A 的乘积,*A 和1-A 的有关的问题时可以从这个性质着手.常用的关系式如下: ()1当A 为可逆矩阵时,*A 也为可逆矩阵,由E A A A AA = =**可得()A A A = -1 *; ()2当A 为可逆矩阵时,由E A A A AA = =**可得1*-=A A A ; 例1、已知A 为一三阶矩阵,且??? ? ? ??=100310241A ,求() 1 * -A . 解 经计算可得1=A ,所以() ? ??? ? ??===-1003102411 *A A A A .

例2、已知A 为一三阶可逆矩阵,它的伴随矩阵为*A ,且4 1= A ,求()*1 32A A --. 解 ()1 111* 14 32132132------=-= -A A A A A A A 1611 4141413 131-=? ?? ??-=??? ??-=-=--A A A . 例3、已知A 和 B 均为n 阶矩阵,相应的伴随矩阵分别为*A 和*B ,分块矩阵 ? ?? ? ??=B O O A C ,求C 的伴随矩阵* C . 解 由E C C C CC ==**得, ???? ??=???? ? ?=??? ? ??==------11 11 1 1 * B B A O O A B A B O O A B A B O O A B O O A C C C . 1.2 当A 为可逆矩阵时,有() () * 11 * --=A A 证明 因为 () E A A A E A AA 1 * 11 * ,---==故有,A A A * 1 =-;又因为A A 11=- 从而 () () E A E A A A A A A 1 1* 1 ** 11 = ==----,因0≠A ,故() E A A =-* 1*, 所以 () () * 11 * --=A A . 例4、已知A 为一三阶可逆矩阵,且???? ? ??=-2311123211 A , 求*A 的逆矩阵. ㈠解 因为E A AA A A ==**,且A 为可逆矩阵,可得 () A A A A A 11 * --== , 而2 311123 211=-A =8,() ???? ? ??------==--315513151811 1A A ,所以() ???? ? ??------=-3155131511 *A .

矩阵图基本知识

矩阵图基本知识 (一)矩阵图的概念 所谓矩阵图是一种利用多维思考去逐步明确问题的方法。其工具是矩阵图。就是从问题的各种关系中找出成对要素L1,L2,…,L i,…,L n和R1,R2,…,R j,…,R n,用数学上矩阵的形式排成行和列,在其交点上标示出L和R各因素之间的相互关系,从中确定关键点的方法。 在分析质量问题的原因、整理顾客需求、分解质量目标时,将问题、顾客需求、质量目标(设为L)放在矩阵图的左边,将问题的原因、顾客需求转化来的质量目标或针对质量目标提出的质量措施(设为R)列在矩阵图的上方,用不同的符号表示它们之间关系的强弱,通常用◎表示关系密切,○表示有关系,△表示可能有关系,如图6.4-16所示。通过在交点处给出行与列对应要素的关系及关系程度,可以从二元关系中探讨问题所在和问题的形态,并得到解决问题的设想。 在寻求问题的解决手段时,若目的(或结果)能够展开为一元性手段(或原因),则可用树图法。然而,若有两种以上的目的(或结果),则其展开用矩阵图法较为合适。 (二)矩阵图的种类 在矩阵图法中,按矩阵图的型式可将矩阵图分为L型、T型、X型和Y 型四种。如图6.4-17所示。 (1)L型矩阵图是一种最基本的矩阵图,如图6.4-17(a)所示,它是由A类因素和B类因素二元配置组成的矩阵图。这种矩阵图适用于把若干个目的和为了实现这些目的的手段,或若干个结果及其原因之间的关联。 (2)T型矩阵图是由C类因素和B类因素组成的L型矩阵图和由C类因素和A类因素组成的L型矩阵图组合在一起的矩阵图,如图6.4-17(b)所示。即表示C类因素分别与B类因素和A类因素相对应的矩阵图。 (3)Y型矩阵图是由A类因素和B类因素、B类因素和C类因素、C类因

伴随矩阵的性质和应用

伴随矩阵的性质及其应用 摘要: 伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。伴随矩阵作为矩阵中较为特殊的一类,其理论和应用有自身的特点.而在大学的学习中,伴随矩阵只是作为求解逆矩阵的工具出现的,并没有深入的研究.本文分类研究伴随矩阵的性质,并讨论其证明过程,得到一系列有意义的结论。 (1)介绍伴随矩阵在其行列式、秩等方面的基本性质; (2)研究数乘矩阵、乘积矩阵、分块矩阵的伴随矩阵的运算性质及伴随矩阵在逆等方面的运算性质; (3)研究矩阵与其伴随矩阵的关联性质,主要介绍由矩阵的对称性、正定性、奇异性、正交性推出伴随矩阵的对称性、正定性、奇异性、正交性; (4)研究伴随矩阵间的关系性质,主要研究由两矩阵的相似、合同等关系推出对应的两伴随矩阵之间的关系; (5)研究伴随矩阵在特征值与特征向量等方面的性质; (6)给出m 重伴随矩阵的定义及其一般形式,研究m 重伴随矩阵的相应的性质。 本文的主要创新点在于研究了一类分块矩阵的伴随矩阵的性质。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 然而伴随矩阵在矩阵中占据着比较特殊的位置,通过它可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。在矩阵计算及讨论中, 常常会遇到伴随矩阵,但对伴随矩阵的一些性质进行系统讨论的却很少, 以下将主要针对伴随矩阵的各种性质及应用讨论。 关键词:伴随矩阵 可逆矩阵 方阵性质 1、 伴随矩阵的定义 定义 1.设ij A 是矩阵A =????? ?? ???? ?????nn n n n n a a a a a a a a a Λ Λ M O M M M O M M ΛΛΛΛ21222 2111211中元素ij a 的代数余子式,则矩阵A *=????? ?? ? ??? ?????nn n n n n A A A A A A A A A Λ Λ M O M M M O M M ΛΛΛΛ 2 122221112 11称为A 的伴随矩阵。 定义2.设A 为n 阶方阵,如果有矩阵B 满足AB=BA=E,则B 就称为A 的逆矩阵,记为B=1-A 。 *注意:只有方阵才有伴随矩阵和逆矩阵。 2、伴随矩阵的性质 性质1.设A 为n 阶方阵,AA * =A *A=A E .

矩阵图研究

矩阵图研究 矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素,将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式如下图所示,A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系,按照交点上行和列因素是否相关联及其关联程度的大小,可以探索问题的所在和问题的形态,也可以从中得到解决问题的启示等。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图的最大优点在于,寻找对应元素的交点很方便,而且不会遗漏,显示对应元素的关系也很清楚。矩阵图法还具有以下几个特点: ①可用于分析成对的影响因素;

②因素之间的关系清晰朋了,便于确定重点; ③便于与系统图结合使用。 二,矩阵图法的用途 矩阵图法的用途十分广泛,在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,并要从中找出研制新产品 或改进老产品的切入点; ②明确应保证的产品质量特性及其与管理机构或保证部门的关系,使质 量保证体制更可靠; ③明确产品的质量特性与试验测定项目、试验测定仪器之间的关系,力 求强化质量评价体制或使之提高效率; ④当生产工序中存在多种不良现象,且它们具有若干个共同的原因时, 希望搞清这些不良现象及其产生原因的相互关系,进而把这些不良现 象一举消除; ⑤在进行多变量分析、研究从何处入手以及以什么方式收集数据。 三、矩阵图的类型 矩阵图法在应用上的一个重要特征,就是把应该分析的对象表示在适当的矩阵图上。因此,可以把若干种矩阵图进行分类,表示出他们的形状,按对象选择并灵活运用适当的矩阵图形。常见的矩阵图有以下几种: (1) L型矩阵图。是把一对现象用以矩阵的行和列排列的二元表的形式来 表达的一种矩阵图,它适用于若干目的与手段的对应关系,或若干结 果和原因之间的关系。

矩阵的三种等价关系

矩阵的三种等价关系 摘要 本文主要介绍矩阵的三种等价关系的定义及性质、各关系之间的不变量即等价不变量、合同不变量、相似不变量以及它们之间的联系。同时,也将λ-矩阵的等价关系与矩阵的相似关系加以联系,这样增加了矩阵相似方法的判断也加强了知识的衔接。 关键字 矩阵;矩阵的等价关系;矩阵的合同关系;矩阵的相似关系 A matrix of three equivalence relations Abstract This paper mainly introduces three kinds of equivalent relation matrix and the three equivalence relations with the nature of the property, the connection between them and the three kinds of relations that equivalent invariants, contract invariant, similar invariants. At the same time, will also be equivalent relation of matrix and matrix similarity relation to contact, which increases the matrix similarity method judgment also strengthened the convergence of knowledge. Key words matrix; the equivalence relation of matrix ;the contract relation of matrix ;the similar relation of matrix.

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (3) 摘要 (4) 关键词 (4) 0引言 (4) 1主要结论 (4) 1.1伴随矩阵的基本性质 (4) 1.2伴随矩阵的特征值与特征向量的性质 (8) 1.3矩阵与其伴随矩阵的关联性质 (9) 1.4两伴随矩阵间的关系性质 (10) 2应用举例 (11) 例1 (11) 例2 (11) 结束语 (12) 参考文献 (12) 致谢 (13)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的 2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1) i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A * = 11 2111222212n n n n nn A A A A A A A A A ????? ??? ?? ?? 称为矩阵A 的伴随矩阵. 1主要结论 1.1伴随矩阵的基本性质 性质1 若A 是n 阶方阵(2)n ≥,那么

相关文档