文档库 最新最全的文档下载
当前位置:文档库 › 电场强度经典习题难题 改过

电场强度经典习题难题 改过

电场强度经典习题难题 改过
电场强度经典习题难题 改过

a b

c 电场强度习题综合题

1、下列说法正确的是:( )

A 、 根据E =F/q 可知,电场中某点的场强与电场力成正比

B 、 根据E =kQ/r 2 ,可知电场中某点的场强与形成电场的点电荷的电荷量成正比

C 、 根据场强的叠加原理,可知合电场的场强一定大于分电场的场强

D 、电场线就是点电荷在电场中的运动轨迹

2、一带电量为q 的检验电荷在电场中某点受到的电场力大小为F ,该点场强大小为E ,则下面能正确反映这三者关系的是 ( )

3.电场中有一点P ,下列哪种说法是正确的( )

A .若放在P 点电荷的电荷量减半,则P 点的电场强度减半

B .若P 点没有试探电荷,则P 点电场强度为零

C .P 点电场强度越大,则同一电荷在P 点所受电场力越大

D .P 点的电场强度方向为试探电荷在该点的受力方向

4、在x 轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷Q2,且Q1 =2Q2,用E1、E2分别表示这两个点电荷所产生的场强的大小,则在x 轴上,E1=E2点共有 处,这几处的合场强分别为 。

5、如图所示,在x 轴坐标为+1的点上固定一电量为4Q 的点电荷,在坐标原点0处固定一个电量为-Q 的点电荷.那么在x 轴上,电场强度方向为x 轴负方向的点所在区域是__________.

6.如图所示,A 、B 、C 三点为一直角三角形的三个顶点,∠B =30°,现在A 、B 两点放置

两点电荷qA 、qB ,测得C 点场强的方向与AB 平行向左,则qA 带_____电,qA ∶qB =____.

7、如图所示为在一个电场中的a 、b 、c 、d 四点分别引入试探电荷,测得试探电荷的电量跟它

所受电场力的函数关系图象,这个电场 (填“是”或“不是”)匀强电场,若不是,

则场强的大小关系为 。

8、如图所示,一电子沿等量异种电荷的中垂线由A →O →B 匀速运动,电子重力不计,则

电子除受电场力外,所受的另一个力的大小和方向变化情况是( )

A .先变大后变小,方向水平向左

B .先变大后变小,方向水平向右

C .先变小后变大,方向水平向左

D .先变小后变大,方向水平向右

9、如图所示,在a 、b 两点固定着两个带等量异种性质电的点电荷,c 、d 两点将a 、b

两点的连线三等分,则:( )

A 、c 、d 两点处的场强大小相等

B 、c 、d 两点处的场强大小不相等

C 、从c 点到d 点场强先变大后变小

D 、从c 点到d 点场强先变小后变大

10、两个固定的等量异种电荷,在他们连线的垂直平分线上有a 、b 、c 三点,如图所示,下列说法正确的是

( )

A .a 点电势比b 点电势高

B .a 、b 两点场强方向相同,a 点场强比b 点大

C .a 、b 、c 三点与无穷远电势相等

D .一带电粒子(不计重力),在a 点无初速释放,则它将在a 、b 线上运动 11、如图所示,P 、Q 是两个电荷量相等的异种电荷,在其电场中有a 、b 、c 三点在一条直线上,平行于P 、Q 的连线,b 在P 、Q 连线的中垂线上,ab=bc,下列说法正确的( )

A.?a>?b>?c

B. ?a>?c>?b

C.Ea>Eb>Ec

D.Eb>Ea>Ec

12、如图所示,在等量异种电荷连线的中垂线上取A 、B 、C 、D 四点,

B 、D 两点关于O 点对称,则关于各点场强的关系,下列说法中正确的

是:( )

A 、E A >E

B ,E B =E D B 、E A

C 、E A

D D 、可能

E A =E C < E B ,E B =E D

13、如图所示,电场中的一条电场线,则下列说法正确的是:( )

A 、这个电场一定是匀强电场

B 、A 、B 两点的场强有可能相等

C 、A 点的场强一定大于B 点的场强

D 、A 点的场强可能小于B 点的场强

14、如图所示,AB 是某电场中一条电场线,在电场线上P 处自由释放一个负的试探电荷时,它沿直线向B 点处运动.对此现象,下列判断正确的是(不计电荷重力)( )

A .电荷向

B 做匀加速运动B .电荷向B 做加速度越来越小的运动

C .电荷向B 做加速度越来越大的运动

D .电荷向B 做加速运动,加速度的变化情况不能确定

15、如图25所示,实线为不知方向的三条电场线,从电场中M 点以相同速度垂直于电场线方向飞出a 、b 两个带电粒子,运动轨迹如图25中虚线所示.则( )

A .a 一定带正电,b 一定带负电

B .a 的速度将减小,b 的速度将增加

C .a 的加速度将减小,b 的加速度将增加

D .两个粒子的动能,一个增加一个减小

16、一负电荷从电场中A 点由静止释放,只受电场力作用,沿电场线运动到B 点,它运动的速

度—时间图象如右图所示.则A 、B 两点所在区域的电场线分布情况可能是下图中的

17、一带电粒子从电场中的A 点运动到B 点,轨迹如图中虚线所示,不计粒子所受的重力不正确( )

A 、粒子带正电

B 、粒子的加速度逐渐减小

C 、A 点的场强大于B 点的场强

D 、粒子的速度不断减小

18、如图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过

该电场区域时的运动轨迹,a 、b 是轨迹上的两点,若带电粒子在运动中只受电场力作

用,根据此图不正确判断的是 ( )

A.带电粒子所带电荷的符号

B.带电粒子在a 、b 两点的受力方向

C.带电粒子在a 、b 两点的速度何处较大

D.带电粒子在a 、b 两点的电势能何处较大

19、如图27所示,在匀强电场中,将质量为m 、带电荷量为q 的一带电小球由静止释放,如

果带电小球的运动轨迹为一直线,该直线与竖直方向的夹角为θ,那么匀强电场的场强大小是( )

A .惟一值是mg tan θq

B .最大值是mg tan θq

C .最小值是mg sin θq

D .以上都不正确 22、如图所示,水平放置的金属板的上方有一固定的正点电荷Q ,一表面绝缘的带正电的小球(可

视为质点,且不影响Q 的电场),从左端以初速度v o 滑到金属板上,沿光滑的上表面向右运动到右

端,在此过程中:( )

A 、 小球作匀速直线运动

B 、小球作先减速后加速的运动

C 、小球受到的电场力的逐渐增大

D 、电场力对小球做功为零

27、如图所示,绝缘细线一端固定于O 点,另一端连接一带量为q 、质量为m 的带正电小球,要使带电小球静

止时细线与竖直方向夹 角,可在空间加一匀强电场,则当所加的匀强电场沿着什么方向时可使场

强最小?最小的场强多大?这时细线中的张力多大?

30、如图所示,在场强为E=104

N/C 的水平匀强电场中,有一根长L=15cm 的细线,一端固定在O 点,另一端系一个质量m =3g ,带电量q =2×10-6C 的小球,当细线处于水平位置时,

小球从静止开始释放,则

(1)小球到达最低点B 时的速度多大?

(2)细线对小球的拉力多大?

35、如图所示,倾角为30°的粗糙绝缘斜面固定在水平地面上,整个装置处

在垂直斜面向上的匀强电场之中,一质量为m 、电量为-q 的小滑块恰能沿斜面匀速下滑,已知滑块与斜面之间的动摩擦因数为

,求该匀强电场场强E

的大小.

1.4 电势能和电势(基础训练)

※ 电场强弱看疏密,电势高低看方向,电势能看做功。

1.如图1-20所示,A 、B 是电场中两点,一个带负电的点电荷Q 在A 点所受的电场力要比它在B 点所受的电场力______,该负电荷在A 点的电势能要比它在B 点的电势能______,A 点的电场强度要_____于B 点的电场强度,A 点电势要______于B 点电势.

2.如图1-21所示,在点电荷电场中的一条电场线上依次有A 、B 、C 三点,分别把+q 和-q 的试验电荷依次放在三点上,关于它所具有的电势能的正确说法是 ( )

A .放上+q 时,它们的电势能E PA >E P

B >E PC

B .放上+q 时,它们的电势能E PA <E PB <E PC

C .放上-q 时,它们的电势能E PA >E PB >E PC

D .放上-q 时,它们的电势能

E PA <E PB <E PC

3.关于电场中的电场线,下列说法正确的是 ( ) A. B.沿电场线方向电场强度逐渐减小 C. D.电荷沿电场线方向运动,电势能减少

4. ( ) A. B.

C.一个正电荷与一个负点电荷互相靠近时,它

D.

7.如图1-23所示,将带正电的粒子从电场中的A 点无初速地释放,不计重力的作用,

则下列说法中正确的是 ( )

A.带电粒子一定做加速直线运动

B.带电粒子的电势能一定逐渐增大

C.带电粒子的加速度一定越来越小

D.带电粒子的加速度一定越来越大

8.如图1-30所示,匀强电场方向水平向右,一带电微粒沿直虚线在电场中斜向上运

动,则该微粒在从A 运动到B 的过程中,其能量变化为 ( )

A.动能增大,电势能减小

B.动能减小,电势能减小

C.动能减小,电势能增大

D.动能增大,电势能增大 9.如图1-25所示,两个等量异号的点电荷在真空中相隔一定的距离,竖直线代

表两点电荷连线的中垂面,在此中垂面上各点的电场线处处与该平面垂直,在两点电荷所存在的某平面取如图所示的1、2、3三点,则这三点的电势大小关系是 ( ) A .φ1>φ2>φ 3 B .φ2>φ3>φ1 C .φ2>φ1>φ 3 D .φ3>φ2>φ1

11.在下面关于电势和电势能的说法正确的是 ( )

A .电荷在电场中电势高的地方,具有的电势能较大

B .电荷在电场中电势高的地方,它的电量越大,所具有的电势能也越大

C .在正的点电荷的电场中的任一点,正电荷所具有的电势能一定大于负电荷所具有的电势能

D .在负的点电荷的电场中的任一点,正电荷所具有的电势能一定小于负电荷所具有的电势能。

12.下列说法正确的是 ( )

A .在确定的电场中移动电荷时,电势能的改变量同零电势点的选择无关

B .在确定的电场中,电荷所具有的电势能同零电势点的选择无关

C .电势能是电场和场中电荷共有的能

D .电势能只是电场中的电荷所具有的能

13.下列说法正确的是 ( )

1-23 -

+ 1 2

3

图1-25

图1-21 图1-30

A .电场线相互平行的电场一定是匀强电场

B .在电场中将电荷由a 点移到b 点,如果电场力做功为零,则ab 两点场强大小必相等

C .电势降低的方向不一定就是场强方向

D .在电场中,只在电场力作用下,使电荷沿电场线,这样的电场只能是匀强电场

14.在静电场中,一个负电荷q 在外力作用下,沿电场线方向移动一段距离,以下说法正确的是( )

A .外力做的功等于电荷动能的增量

B .外力和电场力做的功等于电荷电势能的增量和动能的增量

C .电荷克服电场力做功等于电荷电势能的增量

D .外力和电场力做的功等于电荷动能的增量 15.一带电粒子在如图1-26所示的点电荷的电场中,在电场力作用下沿虚线所示轨迹从A 点运动到B 点,电荷的加速度、动能、电势能的变化情况是 ( )

A .加速度的大小增大,动能、电势能都增加

B .加速度的大小减小,动能、电势能都减少

C .加速度增大,动能增加,电势能减少

D .加速度增大,动能减少,电势能增加

16. 如图1-27所示,图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是

某一带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹上的两点.若带电粒子在

运动中只受电场力作用,根据此图可作出正确判断的是 ( )

A .带电粒子所带电荷的符号

B .带电粒子在a 、b 两点的受力方向

C .带电粒于在a 、b 两点的速度何处较大

D .带电粒子在a 、b 两点的电势能何处较大

17. 如图所示,图中a 、b 为竖直向上的电场线上的两点,一带电质点在a 点由静止释放,沿电场线

向上运动,到b 点恰好速度为零,下列说法中正确的是 ( )

A .带电质点在a 、b 两点所受的电场力都是竖直向上的

B .a 点的电势比b 点的电势高

C .带电质点在a 点的电势能比在b 点的电势能小

D .a 点的电场强度比b 点的电场强度大

18.如果把q=1.0×10-8C的正电荷,从无穷远移至电场中的A 点,需要克服电场力做功W=1.2×10-4J,那

么:(1)q 在A 点的电势能和A 点的电势各是多少?(2)q 未移入电场前A 点的电势是多少?

v A A B v B 图

1-26

1-27

案:1、B 2、 BC 3、C 4、两、0,2E 1或2E 2 5、x <-1或0Ea>Eb>Ec

8、A 9、AD 10、C 11、A 12、BC 13、B 14、D 15、C 16、C 17、A 18、A 19、C 20、B

21、B 22、AD 23、D

1、 大、小、大、高

2、 AD (正电荷A-C 电场力做正功,负电荷A-C 电场力做负功)

3、 C

4、 AB (同种电荷靠近电场力做负功,异种电荷靠近电场力做正功)

5、 AC (此等势面应为点电荷产生的等势面,由轨迹弯曲方向可判断受静电斥力作用,粒子在靠近O 点时,电场力一定做负功,远离O 点时,电场力一定做正功)注意:本题涉及知识点:点电荷等势面、力与运动的关系、电场力做功与电势能变化的关系、动能定理等。

6、 BD

7、 AC

8、 C (根据力与运动轨迹的关系可知,粒子运动轨迹为直线,其合外力应与AB 在同一直线上,所以电场力方向与场强方向相反,如图,其运动为匀减速直线运动,重力和电场力都做负功)

9、 A

10、AD (画出点电荷周围的电场线分布进行分析即可,同时注意要取无穷远为零电势)

11、CD (根据公式计算比较,注意两点:计算要代入正负号;电势、电势能的正负表示大小)

12、AC

13、AC

14、CD (合外力做功引起动能变化,电场力做功引起电势能变化)

15、C (由轨迹弯曲方向可判断静粒子受静电力的方向与电场方向相同,粒子运动A-B 过程时,电场力做正功)

16、BCD (由轨迹弯曲方向可判断静粒子受静电力的方向如图所示,由于未知场强方向,故无法判断粒子带电性质,但是可知粒子运动a-b 过程中,电场力做负功)

17、ABD (由静止释放可知电场力方向向上(粒子带正电),与运动方向一致,做正功;又因始末速度均为0,故粒子先加速后减速,所以在a 点电场力大于重力,在b 点电场力小于重力)

18、(1)41.210pA A E W J -∞==?

41.210PA A E V q ?==?(2)41.210PA A E V q ?==?

电场强度经典习题难题 改过

a b c 电场强度习题综合题 1、下列说法正确的是:( ) A 、 根据E =F/q 可知,电场中某点的场强与电场力成正比 B 、 根据E =kQ/r 2 ,可知电场中某点的场强与形成电场的点电荷的电荷量成正比 C 、 根据场强的叠加原理,可知合电场的场强一定大于分电场的场强 D 、电场线就是点电荷在电场中的运动轨迹 2、一带电量为q 的检验电荷在电场中某点受到的电场力大小为F ,该点场强大小为E ,则下面能正确反映这三者关系的是 ( ) 3.电场中有一点P ,下列哪种说法是正确的( ) A .若放在P 点电荷的电荷量减半,则P 点的电场强度减半 B .若P 点没有试探电荷,则P 点电场强度为零 C .P 点电场强度越大,则同一电荷在P 点所受电场力越大 D .P 点的电场强度方向为试探电荷在该点的受力方向 4、在x 轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷Q2,且Q1 =2Q2,用E1、E2分别表示这两个点电荷所产生的场强的大小,则在x 轴上,E1=E2点共有 处,这几处的合场强分别为 。 5、如图所示,在x 轴坐标为+1的点上固定一电量为4Q 的点电荷,在坐标原点0处固定一个电量为-Q 的点电荷.那么在x 轴上,电场强度方向为x 轴负方向的点所在区域是__________. 6.如图所示,A 、B 、C 三点为一直角三角形的三个顶点,∠B =30°,现在A 、B 两点放置 两点电荷qA 、qB ,测得C 点场强的方向与AB 平行向左,则qA 带_____电,qA ∶qB =____. 7、如图所示为在一个电场中的a 、b 、c 、d 四点分别引入试探电荷,测得试探电荷的电量跟它 所受电场力的函数关系图象,这个电场 (填“是”或“不是”)匀强电场,若不是, 则场强的大小关系为 。 8、如图所示,一电子沿等量异种电荷的中垂线由A →O →B 匀速运动,电子重力不计,则 电子除受电场力外,所受的另一个力的大小和方向变化情况是( ) A .先变大后变小,方向水平向左 B .先变大后变小,方向水平向右 C .先变小后变大,方向水平向左 D .先变小后变大,方向水平向右 9、如图所示,在a 、b 两点固定着两个带等量异种性质电的点电荷,c 、d 两点将a 、b 两点的连线三等分,则:( ) A 、c 、d 两点处的场强大小相等 B 、c 、d 两点处的场强大小不相等 C 、从c 点到d 点场强先变大后变小 D 、从c 点到d 点场强先变小后变大 10、两个固定的等量异种电荷,在他们连线的垂直平分线上有a 、b 、c 三点,如图所示,下列说法正确的是 ( ) A .a 点电势比b 点电势高 B .a 、b 两点场强方向相同,a 点场强比b 点大 C .a 、b 、c 三点与无穷远电势相等 D .一带电粒子(不计重力),在a 点无初速释放,则它将在a 、b 线上运动 11、如图所示,P 、Q 是两个电荷量相等的异种电荷,在其电场中有a 、b 、c 三点在一条直线上,平行于P 、Q 的连线,b 在P 、Q 连线的中垂线上,ab=bc,下列说法正确的( ) A.?a>?b>?c B. ?a>?c>?b C.Ea>Eb>Ec D.Eb>Ea>Ec 12、如图所示,在等量异种电荷连线的中垂线上取A 、B 、C 、D 四点, B 、D 两点关于O 点对称,则关于各点场强的关系,下列说法中正确的 是:( ) A 、E A >E B ,E B =E D B 、E A

行程问题典型例题及答案详解

行程问题典型例题及答案详解 行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。 例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间? 分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则 回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。 例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少? 分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。 解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。 答:汽车在后半段路程时速度加快8千米/时。 例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时? 分析:求时间的问题,先找相应的路程和速度。 解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时) 答:行驶这段路程逆水比顺水需要多用10小时。

高二物理 电场强度电场线 典型例题

电场强度电场线典型例题 【例1】把一个电量q=-10-6C的试验电荷,依次放在带正电的点电荷Q周围的A、B两处图,受到的电场力大小分别是F A= 5×10-3N,F B=3×10-3N. (1)画出试验电荷在A、B两处的受力方向. (2)求出A、 B两处的电场强度. (3)如在A、B两处分别放上另一个电量为q'=10-5C的电荷,受到的电场力多大? [分析] 试验电荷所受到的电场力就是库仑力,由电荷间相互作用规律确定受力方向,由电场强度定义算出电场强度大小,并根据正试验电荷的受力方向确定场强方向. [解答] (1)试验电荷在A、B两处的受力方向沿它们与点电荷连线向内,如图中F A、F B所示.

(2)A 、B两处的场强大小分别为; 电场强度的方向决定于正试验电荷的受力方向,因此沿A、B两点与点电荷连线向外. (3)当在A、B两点放上电荷q'时,受到的电场力分别为 F A' =E A q' =5×103×10-5N=5×10-2N; F B'=E B q' =3×103×10-5N=3×10-2N. 其方向与场强方向相同. [说明] 通过本题可进一步认识场强与电场力的不同.场强是由场本身决定的,与场中所放置的电荷无关.知道场强后,由F=Eq即可算出电荷受到的力. [ ] A.这个定义式只适用于点电荷产生的电场

B.上式中,F是放入电场中的电荷所受的力,q是放入电场中的电荷的电量 C.上式中,F是放入电场中的电荷所受的力,q是产生电场的电荷的电量 是点电荷q1产生的电场在点电荷q2处的场强大小 何电场. 式中F是放置在场中试验电荷所受到的电场力,q是试验电荷的电量,不是产生电场的电荷的电量. 电荷间的相互作用是通过电场来实现的.两个点电荷q1、q2之间的相互作用可表示为 可见,电荷间的库仑力就是电场力,库仑定律可表示为

五年级行程问题经典例题

行程问题(一) 专题简析: 行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米 分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。 32×2÷(56-48)=8(小时) (56+48)×8=832(千米) 答:东、西两地相距832千米。 练习一 》 1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米 2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米

例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米 分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。 [ (40×3-25×2-7)÷3=21(千米) 答:慢车每小时行21千米。 练习二 1,兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米 2,汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地 & 例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东、西两村相距多少千米 分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。 因此,东西两村的距离是15×(5-1)=60(千米)

带电粒子在复合场中的运动分析及例题

专题带电粒子在复合场中的运动 考点梳理 一、复合场 1.复合场的分类 (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁 场交替出现. 二、带电粒子在复合场中的运动形式 1.静止或匀速直线运动 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动 当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动. 3.较复杂的曲线运动 当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 4.分阶段运动 带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.

【规律总结】 带电粒子在复合场中运动的应用实例 1. 质谱仪 (1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成. 图5 (2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =1 2 m v 2. 粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r . 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2 . 2. 回旋加速器 (1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周 运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一 次地反向,粒子就会被一次一次地加速.由q v B =m v 2 r ,得 E km =q 2B 2r 2 2m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6 半径r 决定,与加速电压无关. 特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理. 3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相 垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度 选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B , 即v =E B . 图7 4. 磁流体发电机 (1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的 磁感应强度为B ,则由qE =q U L =q v B 得两极板间能达到的最大电势 图8

静电场典型例题集锦(打印版)

静电场典型题分类精选 一、电荷守恒定律 库仑定律典型例题 例1 两个半径相同的金属小球,带电量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则 相互作用力可能为原来的多少倍? 练习.(江苏物理)1.两个分别带有电荷量Q -和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F 。两小球相互接触后将其固定距离变为2 r ,则两球间库仑力的大小为 A . 112F B .34F C .4 3 F D .12F 二、三自由点电荷共线平衡.. 问题 例1.(改编)已知真空中的两个自由点电荷A 和B, 94 A Q Q =, B Q Q =-,相距L 如图1所示。若在直线AB 上放一自由电荷C,让A 、B 、C 都处于平衡状态,则对C 的放置位置、电性、电量有什么要求? 练习 1.(原创)下列各组共线的三个自由电荷,可以平衡的是( ) A 、4Q 4Q 4Q B 、4Q -5Q 3Q C 、9Q -4Q 36Q D 、-4Q 2Q -3Q 2.如图1所示,三个点电荷q 1、q 2、q 3固定在一直线上,q 2与q 3的距离为q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电量之比q 1∶q 2∶q 3为( ) A .-9∶4∶-36 B .9∶4∶36 C .-3∶2∶-6 D .3∶2∶6 三、三自由点电荷共线不平衡... (具有共同的加速度)问题 例1.质量均为m 的三个小球A 、B 、C 放置在光滑的绝缘水平面的同一直线上,彼此相隔L 。A 球带电量 10A Q q =,B Q q =,若在小球C 上外加一个水平向右的恒力F ,如图4所示,要使三球间距始终保持L 运动, 则外力F 应为多大?C 球的带电量C Q 有多大? 图1 图4

七年级行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流, 回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设 甲车共 行使了 xh ,则乙车行使了h x )(60 25-.(如图1) 依题意,有72x+48)(60 25-x =360+100,

解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425 57525575.=-++x x 解得:x=1320. 答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2.

带电粒子在匀强电场中的运动典型例题与练习

专题: 带电粒子在匀强电场中的运动典型题 注意:带电粒子是否考虑重力要依据情况而定 (1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。 (2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。 一、带电粒子在匀强电场中的加速运动 【例1】如图所示,在真空中有一对平行金属板,两板间加以电压U 。在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由静止开始从正极板向负极板运动,到达负极板的速度为多大? 【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少? 二、带电粒子在电场中的偏转(垂直于场射入) ⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动. ⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解). 02102v t at t ì?????í?????? 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等 设粒子带电量为q ,质量为m ,如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d . 则场强U E d =, 加速度qE qU a m md = = , 通过偏转极板的时间:0 L t v = 侧移量:y =22 220 1242L U qUL at dU mdv == 偏加 偏转角:0tan at v q = =20 2LU qUL dU mdv =偏加 (U 偏、U加分别表示加速电场电压和偏转电场电压) 带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2 L y q =.粒子可看作是从两板间的中点沿直线射出的 q U M N q U v 0 v 图6-4-3

电场强度的叠加原理及电场强度的计算

第二讲:电场强度的叠加原理及电场强度的计算 内容:§9-3 电场强度的求法 要求: 1.理解场强叠加原理; 2.掌握用积分的方法计算电场强度。 重点与难点: 1.电场强度及其计算。 作业: 习题:P37:9,11 预习:电场强度的叠加原理

四、电场强度叠加原理 1.点电荷的场强:电荷Q ,空间r 处 2 04r r Q q F E πε== 2.点电荷系: 在点电荷系Q 1,Q 2,…,Q n 的电场中,在P 点放一试验电荷q 0,根据库仑力的叠加原理,可知试验电荷受到的作用力为∑= i F F ,因而P 点的电场强度为 ∑∑∑=== i i i E q F q F q F E = 即 ∑∑3 04r r Q E E i i πε == 点电荷系电场中某点的场强等于各个点电荷单独存在时在该点的场强的矢量和。这就是电场强度的叠加原理。 3.连续分布电荷激发的场强 将带电区域分成许多电荷元d q ,则 ? ?=0 2 04r r dq E d E πε= 其中,对于电荷体分布,d q =ρd v , ???v r r dv E 0 204 περ= 对于电荷面分布,d q =σds ,02 04r r ds E s ??πεσ= 对于电荷线分布,d q =λd l ,?l r r dl E 0 2 04 πελ= 其中体密度 dV dQ V Q V =??→?lim 0 =ρ 单位C/m 3; 面密度 dS dQ S Q S =??→?lim =σ 单位C/m 2;

线密度 dl dQ l Q l =??→?lim =λ 单位C/m 。 五、 电场强度的计算: 1.离散型的:∑∑3 04r r Q E E i i πε == 2.连续型的:? ?=0 2 04r r dq E d E πε= 空间各点的电场强度完全取决于电荷在空间的分布情况。如果给定电荷的分布,原则上就可以计算出任意点的电场强度。计算的方法是利用点电荷在其周围激发场强的表达式与场强叠加原理。计算的步骤大致如下: ● 任取电荷元d q ,写出d q 在待求点的场强的表达式; ● 选取适当的坐标系,将场强的表达式分解为标量表示式; ● 进行积分计算; ● 写出总的电场强度的矢量表达式,或求出电场强度的大小和方向; ● 在计算过程中,要根据对称性来简化计算过程。 例1. 电偶极子(Electric Dipole )的场强。 1. 几个概念: (1)两个电量相等、符合相反、相距为l 的点电荷+q 和-q ,若场点到这两个电荷的距离比l 大得多时,这两个点电荷系称为电偶极子。 (2)从-q 指向+q 的矢量l 称为电偶极子的轴。 (3)l q p =称为电偶极子的电偶极矩 2. 电偶极子的电场强度 (1)电偶极子轴线延长线上一点的电场强度 如图所示,取电偶极子轴线的中点为坐标原点O ,沿极轴的延长线为O x 轴,轴上任意点A 距原点的距离为x ,则正负电荷在点A 产生的场强为 ()i l x q E 2 02/41-= +πε () i l x q E 2 02/41+-=-πε 由叠加原理可知点A 的总场强为 ()()() i l x xl q i l x q l x q E E E ??? ?????-??????-= +22202204/242/2/41πεπε=+-+=- 当x >>l 时,2 224/x l x ≈-

电场强度-经典例题+课后习题

同步导学第1章静电场第03节 电场强度 [知能准备] 1.物质存在的两种形式:与. 2.电场强度 (1)电场明显的特征之一是对场中其他电荷具有. (2)放入电场中某点的电荷所受的静电力F 跟它的电荷量q 的 .叫做该点的电场强 度.物理学中规定电场中某点的电场强度的方向跟电荷在该点所受的静电力的方向相同. (3)电场强度单位,符号.另一单位,符号 . (4)如果1 C 的电荷在电场中的某点受到的静电力是1 N ,这点的电场强度就是. 3.电场强度的叠加:电场中某点的电场强度为各个场源点电荷在该点产生的电场强 度的. 4.电场线 (1)电场线是画在电场中的一条条有方向的曲线(或直线).曲线上每点的切线方向表 示该点的电场强度方向. (2)电场线的特点: ①电场线从正电荷(或无限远处)出发,终止于无限远或负电荷. ②电场线在电场中不相交,这是因为在电场中任意一点的电场强度不可能有两个方向. ③在同一幅图中,电场强度较大的地方电场线较,电场强度较小的地方电场线较,因此 可以用电场线的来表示电场强度的相对大小. 5.匀强电场:如果电场中各点电场强度的大小.方向,这个电场就叫做匀强电场. [同步导学] 1. 电场和电场的基本性质 场是物质存在的又一种形态.区别于分子、原子组成的实物,电场有其特殊的性质,如: 几个电场可以同时“处于”某一空间,电场对处于其间的电荷有力的作用,电场具有能量等. 本章研究静止电荷产生的电场 ,称为静电场.学习有关静电场的知识时应该明确以下 两点: (1)电荷的周围存在着电场,静止的电荷周围存在着静电场. (2)电场的基本性质是:对放入其中的电荷(不管是静止的还是运动的)有力的作用, 电场具有能量. 2. 电场强度 (1)试探电荷q 是我们为了研究电场的力学性质,引入的一个特别电荷. 试探电荷的特点:①电荷量很小,试探电荷不影响原电场的分布;②体积很小,便于研 究不同点的电场. (2)对于q F E ,等号右边的物理量与被定义的物理量之间不存在正比或反比的函数关系,只是用右边两个物理量之比来反映被定义的物理量的属性.在电场中某点,比值 q F 是与q 的有无、电荷量多少,电荷种类和F 的大小、方向都无关的恒量,电场中各点都有一 个唯一确定的E.因为场强E 完全是由电场自身的条件(产生电场的场源电荷和电场中的位 置)决定的,所以它反映电场本身力的属性.

五年级行程问题典型练习题

行程问题(一) 【知识分析】 相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。 【例题解读】 例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米, 两地相距多少千米? 【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。 (1)两车经过几小时相遇?8×2÷(90-85)=3.2小时 (2)两地相距多少千米?(90+85)×3.2=560(千米) 例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地 相距多少千米? 【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离 1.5×2×8÷(10-8)×=120千米 【经典题型练习】

1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车 每小时都比原来多行10千米,则2小时就相遇,求两地的距离? 2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8 分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?

【知识分析】 两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题 【例题解读】 例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米? 【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米 从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离 95×3—55=230千米 【经典题型练习】 1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相 遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离 2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站 80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?

电场强度叠加专题--高三专题复习

电场强度叠加的基本方法 命题研究: 电场强度是描述电场力的性质的物理量,是电场中最基本、最重要的概念之一,高中阶段的学习对整个电场部分起了辅垫作用,而在高考中也是考试的热点。求解电场强度的基本方法有:定义法E=F/q,真空中点电荷场强公式法E=KQ/r2,匀强电场公式法E=U/d,矢量叠加法E=E1+E2+E3……等。但对于某些电场强度计算,必须采用特殊的思想方法。现结合例题分析场强叠加的几种方法 专项攻破: 一.基本法 遵循平行四边形定则(矢量合成) 【典例1】图中a、b是两个点电荷,它们的电量分别为Q1、Q2,MN是ab连线的中垂线,P 是中垂线上,电荷连线上方的一点。下列哪种情况能使P点场强 方向指向MN的左侧?() A.Q1、Q2都是正电荷,且Q1|Q2| C.Q1是负电荷,Q2是正电荷,且|Q1||Q2| 二.对称法 对称法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。 【典例2】如图所示,带电量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心。若图中a点处的电场强度为零,根据对称性,带电薄板在图中b点处产生的电场强度大小为________,方向_________。(静电力恒量为k) 【典例3】 ab是长为l的均匀带电细杆,P1、P2是位于ab所在直线上的两点,位置如图所示.ab上电荷产生的静电场在P1处的场强大小为E1,在P2处的场强大小为E2,则以下说法正确的是( )

行程问题经典例题

8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此 圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次 相遇.求此圆形场地的周长. 【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完 12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32 圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路 程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为 32 圈,所以此圆形场地的周长为480米. 行程问题分类例析 欧阳庆红 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上 分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离 和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追 及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25 分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续 行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.

解答:设甲车共行使了xh,则乙车行使了h x) ( 60 25 -.(如图1) 依题意,有72x+48) ( 60 25 - x=360+100, 解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm就应返回. 依题意,有6 4 25 575 25 575 . = - + + x x 解得:x=1320. 答:这架飞机最远飞出1320km就应返回. 解法二:设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2. (575+25)t=600×2.2=1320. 答:这架飞机最远飞出1320km就应返回. 说明:飞机顺风与逆风的平均速度是575km/h,则有6 4 575 2 . = x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是) / (h km v v v v v x v x x 574 550 600 550 600 2 2 2 ≈ + ? ? = + ? = +逆 顺 逆 顺 逆 顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km,甲、乙两人的速度分别为21 km/h、14 km/h. (1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇? (2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题. 解答:(1)设经过xh两人首次相遇. 依题意,得(21+14)x=42, 解得:x=1.2. 因此,经过1.2小时两人首次相遇. (3)设经过xh两人第二次相遇. 依题意,得21x-14x=42×2, 图1

高中物理静电场题经典例题

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那 么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势 分别为1V 、6V 和9V 。则D 、E 、F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V ¥ C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 . B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A B a P · m 、q 。 >U + - ~ A E B 。

高中物理解题思路:电场叠加问题的处理

高中物理解题思路:电场叠加问题的处理 小段弧长ΔL,ΔL上分布的电量应等于半径为R,电量为Q的均匀带电球面上相应一小环带所带电的一半,故有: 即圆环上电荷分布规律为: 点评:本题的求解关键在于将圆环上电荷的不均匀分布与球面上电荷的均匀分布相联系,而这种联系是建立在两者于直径上的场强等效而产生的,静电学的等效处理是一种很有效的解题方法。 通过阅读“高中物理解题思路:电场叠加问题的处理六”这篇文章,小编相信大家对高中物理又有了更进一步的了解,希望大家学习轻松愉快! 环球物理 功能介绍我们每天与您分享:物理教学的艺术,物理学习的方法,物理兴趣的培养,物理达人的塑造,物理学霸的成功之路!激励人生,哲理故事,分享智慧,名人格言,传播正能量!! 方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表

达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A 当作短路电流,而得出r=E/I短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站

数学行程问题公式大全及经典习题答案

路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间 关键问题 确定行程过程中的位置路程 相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和 相遇问题(直线) 甲的路程+乙的路程=总路程 相遇问题(环形) 甲的路程 +乙的路程=环形周长 追及问题 追及时间=路程差÷速度差 速度差=路程差÷追及时间 路程差=追及时间×速度差 追及问题(直线) 距离差=追者路程-被追者路程=速度差X追及时间 追及问题(环形) 快的路程-慢的路程=曲线的周长 流水问题 顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 解题关键 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式: 顺水速度=船速+水速,(1)

逆水速度=船速-水速.(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。 根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度-船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速-逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。 另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)÷2, 水速=(顺水速度-逆水速度)÷2。 例:设后面一人速度为x,前面得为y,开始距离为s,经时间t后相差a米。那么 (x-y)t=s-a 解得t=s-a/x-y. 追及路程除以速度差(快速-慢速)=追及时间 v1t+s=v2t (v1+v2)t=s t=s/(v1+v2) (一)相遇问题 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。 小学数学教材中的行程问题,一般是指相遇问题。 相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。 它们的基本关系式如下: 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度 (二)追及问题 追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。 根据速度差、距离差和追及时间三者之间的关系,罕用下面的公式: 距离差=速度差×追及时间 追及时间=距离差÷速度差 速度差=距离差÷追及时间

电场强度经典习题(精品)

电场强度习题 安徽泗县二中倪怀轮 1、下列说法正确的是:() A、根据E=F/q可知,电场中某点的场强与电场力成正比 B、根据E=kQ/r2 ,可知电场中某点的场强与形成电场的点电荷的电荷量成正 比 C、根据场强的叠加原理,可知合电场的场强一定大于分电场的场强 D、电场线就是点电荷在电场中的运动轨迹 2、一带电量为q的检验电荷在电场中某点受到的电场力大小为F,该点场强大小为E,则下面能正确反映这三者关系的是() 3.电场中有一点P,下列哪种说法是正确的( ) A.若放在P点电荷的电荷量减半,则P点的电场强度减半 B.若P点没有试探电荷,则P点电场强度为零 C.P点电场强度越大,则同一电荷在P点所受电场力越大 D.P点的电场强度方向为试探电荷在该点的受力方向 4、在x轴上有两个点电荷,一个带正电荷Q1,另一个带负电荷Q2,且Q1 =2Q2,用E1、E2分别表示这两个点电荷所产生的场强的大小,则在x轴上,E1=E2点共

a b c 有 处,这几处的合场强分别为 。 5、如图所示,在x 轴坐标为+1的点上固定一电量为4Q 的点电荷,在坐标原点0处固定一个电量为-Q 的点电荷.那么在x 轴上,电场强度方向为x 轴负方向的点所在区域是__________. 6.如图所示,A 、B 、C 三点为一直角三角形的三个顶点,∠B =30°,现在A 、B 两点放置两点电荷qA 、qB ,测得C 点场强的方向与AB 平行向左,则qA 带_____电,qA ∶qB =____. 7、如图所示为在一个电场中的a 、b 、c 、d 四点分别引入试探电荷, 测得试探电荷的电量跟它所受电场力的函数关系图象,这个电场 (填“是”或“不是”)匀强电场,若不是,则场强的大小关系 为 。 8、如图所示,一电子沿等量异种电荷的中垂线由A →O →B 匀速 运动,电子重力不计,则电子除受电场力外,所受的另一个力的 大小和方向变化情况是( ) A .先变大后变小,方向水平向左 B .先变大后变小,方向 水平向右 C .先变小后变大,方向水平向左 D .先变小后变大,方向水平向右 9、如图所示,在a 、b 两点固定着两个带等量异种性质电的点电 荷,c 、d 两点将a 、b 两点的连线三等分,则:( ) A 、c 、d 两点处的场强大小相等 B 、c 、d 两点处的场强大小不相等 C 、从c 点到d 点场强先变大后变小 D 、从c 点到d 点场强先变小后变大 10、两个固定的等量异种电荷,在他们连线的垂直平分线上有a 、b 、c 三点,如图所示,下列说法正确的是 ( ) A .a 点电势比b 点电势高 B .a 、b 两点场强方向相同,a 点场强比b 点大 C .a 、b 、c 三点与无穷远电势相等 D .一带电粒子(不计重力),在a 点无初速释放,则它将在a 、b 线上运动 11、如图所示,P 、Q 是两个电荷量相等的异种电荷,在其电场中有

相关文档
相关文档 最新文档