文档库 最新最全的文档下载
当前位置:文档库 › 超线性功放的设计

超线性功放的设计

超线性功放的设计
超线性功放的设计

超线性功放的设计

随着移动事业的迅猛发展,特别是CDMA和第三代移动通信技术的发展,使得系统对功放线性的要求越来越高。在移动通信系统中,为了保证一定范围的信号覆盖,我们通常使用功率放大器来对信号放大,进而通过射频前端和天线系统发射出去。而在CDMA或WCDMA以及TDSCDMA的基站中,如果采用一般的高功放(通常工作于AB类),将由于非线性的影响产生频谱再生效应,为了较好的解决信号的频谱再生和EVM(误差矢量幅值)问题,就必须对功放采用线性化技术。不仅如此,功放在基站放大器中的成本比例约占50%,如何有效、低成本地解决功放地线性化问题就显得非常重要。

1、超线性功放解决方案的提出

传统解决功放的线性的方法多数是采用功率回退的方法来保证功放的互调分量也就是保证功放工作在线性范围,从而不影响信号的覆盖以及通信。图1给出了关于三阶截点、1dB压缩点以及三阶互调随输入功率的变化曲线。

图1、分贝压缩点输出功率

从图中可以看出,传统的解决方法就是通过将输入功率降低,如果输入功率降低1dB,那么系统的互调分量将会好2dB,依次类推,就是说为了保证线性,

对于CDMA 或者WCDMA 的功放,我们只能用100W 的放大管子来出5W 功率。但是由于管子是为100W 设计的,其静态工作点仍旧很高,静态电流依然很大。所以,功放整体电流会很大,电流大意味着功放的效率很低,将会有很大一部分热量只能释放到管子以及电路板上,这些热量既是一种能量的浪费,更重要的是会造成降低芯片的使用寿命。利益方面,能提供如此大功率的放大管子的价格是非常昂贵的。

基于以上这些考虑,同时单纯的功率回退所能获取的互调是有限的,随着功率的进一步增高,仍旧依靠功率回退是不能解决问题的。所以,这里提出一种前馈预失真的设计方案来同时解决线性、效率以及成本问题。

2、前馈预失真功放设计方案 目前较为成熟和流行的超线性解决方案包括前馈技术、预失真技术(包括模拟预失真和基带预失真)、反馈技术等方法。考虑到单纯采用前馈技术对误差功放的要求较高并不能降低太多成本和提高太多的效率,单纯的采用预失真技术虽然可以提高线性和效率但并不能达到超线性的要求。结合两项技术的有缺点,这里提出一种前馈结合预失真的技术。详细的原理框图见图2。

图2前馈预失真方案框图

如图2所示,输入信号首先通过定向耦合器一路经过延时线准备和输出信号

延迟线

进行抵消,从而检测对消的情况,另一路送入预失真单元(PD)中产生失真信号,从而改善主功放的线性程度。同时主功放的输出耦合一部分同经过延时的主信号进行对消,去除主信号,仅仅保留误差信号,通过功分器,一方面作为对消效果的检测从而作为闭环控制的参考,;另一方面送入误差功放放大在与主功放耦合对消互调信号,从而进一步改善互调。这里如果改善效果仍旧不理想,达不到超线性的要求即70dBc的话,可以将前馈环在增加一级,够成3或4级环,从而提高改善效果。

上述仅是开环的方案,考虑到由于输入功率、温度等因素都可以影响对消效果,这里必须设计一个闭环的控制环节,使得系统中的衰减器和移相器能够根据环境参数的改变,自动跟踪变化,自动适应调节,从而保证整体的线性要求。

闭环的实现首先是建立在对整个环内若干个参考点的采样来指导各个常数的变化,包括输入功率,输出误差功率,环境温度,主信号与误差信号对消情况等若干个因素决定各个参数的变化。同时,系统要求自适应算法的反映速度必须在20ns之内,才能保证一旦参数发生变化,整体互调能及时跟踪变化。避免出现短时的互调变差的现象。

下面将分各个单元分别介绍系统的实现方法以及核心技术问题。

2.1、预失真产生单元(PD)

预失真部分采用的是模拟预失真方案。该方案已经通过前期试验论证,对于600KHz的双音信号互调可以改善15dB以上,对于1.28MHz的调制信号,ACPR 可以改善10dB以上。预失真产生单元的整体框图如图3所示。

图3预失真产生框图

输入信号经过3dB电桥分成两路,0°端作为主信号经过延时线送入合成的3dB电桥;-90°端作为误差信号的产生端再经过一个3dB的电桥,这里的0°端产生失真信号,通过调节放大管FP2189的偏压使其互调分量非常的大,经过移相器调节相位准备于主信号对消,-90°端首先通过衰减器调节幅度在通过偏压调节非常好的FP2189使其产生非常好的互调信号,这样在通过合成电桥的-90°端口,从而使得主信号与误差信号相差-180°,从而使得产生互调信号的部分去除主信号只保留误差信号。在通过调节衰减器和移相器使其相位与通过延时线的主信号相位相差-90°,从而借助另一个3dB合成电桥的-90°端实现主信号与失真信号相位相差-180°,也就意味着失真信号倒相,从而在主功放放大的过程中对消主信号的互调分量。

上述预失真信号的产生是本项目的第一个技术难点,但是经过尽两个月的试验,已经完成论证了该方法的可行性,如前所述,对于2.14GHz的600KHz双音信号互调可以改善15dB以上,对于1.28MHz的CDMA调制信号,ACPR可以改善10dB以上。

2.2、前馈单元

上述预失真方案经过试验验证,可以改善互调15dB,ACPR改善10dB,这样可以改用小一些的管子推出大的功率。但是这还并不能达到超线性的要求(即-70dBc),因此,再次引入前馈的方法进一步改善线性。如果单纯使用前馈的方法,对于误差功放的功率要求要高,因为主功放的互调产物较高,这样在误差功放处必须能推出大的功率才可以抵消掉。所以,增加了误差功放的价钱并降低了效率。但是,如果在主功放前增加预失真单元,就可以大大降低互调产物,减轻误差功放的要求,提高效率。

前馈部分的原理框图如图4所示

图4 前馈原理图

输入信号经过主功放放大,由于主功放的非线性,将有互调分量产生。通过耦合器将经过放大的主信号与输入信号进行相减,从而使得放大后的主信号仅仅有失真信号,将失真信号通过误差放大器进行放大,使其幅度与主信号的互调产物幅度相同,再通过移相器和衰减器的调节,使其与主信号相位正好相差-180°,从而抵消掉主信号中的互调产物,进一步改善功放的线性度。

实际设计中,如果一级环路抵消效果不理想,达不到-70dBc的超线性要求,可以考虑继续增加环路,进一步抵消失真信号。

2.3、闭环自适应单元

预失真单元和前馈部分均可以大幅度改善功放整体的线性化程度,但是经过试验论证,他们的对消效果会受到信号的幅度和相位的影响。如果对消的两路信号相位相差超过2°,以及两路信号的幅度相差超过5dB,其改善效果将非常差。但是,由于功放本身将会收到诸如环境温度的变好、输入信号的强弱的变化等诸多因素的影响,因而必须要求我们的功放能自动适应各种环境的应用。所以,为了满足上面提出的要求,整个系统必须具有自适应单元,通过根据环境的变化自动调整各个参数,从而保证功放工作在超线性。

闭环自适应单元将是整个项目的难点。一方面需要受控的参数非常多,可获取的输入信号又非常的少,同时,整体数学模型很难建立,无法用数学模型描述输入与输出之间的关系。另一方面,从输入信号发生变化到输出信号的时间延迟大约20ns以内,这就要求整个算法必须在20ns完成由输入到输出的计算,也就是说要求算法的实时性非常高。

算法的出发点将是根据查表法,通过试验获取大量在不通环境下所获取的移相器和衰减器的控制电压,以此作为样本,设计一款神经网络机器。通过大量的样本训练该神经网络,使其具有根据环境变量以及输入功率等因素快速的决定各个衰减器和移相器的控制电压。最终该神经网络机器将在FPGA中实现。

试验数据的获取将用PC机设计一款能够操作信号源以及频谱仪的程序,将功放放入高低温箱中做高低温试验,同时调节输入功率的大小,并设计一个收索算法,通过上位机自动完成试验的过程,获取大量的试验样本,从而对神经网络在MATLAB上进行训练。并最终在FPGA中实现。

以上目前只是一种假设,闭环自适应算法将是整个超线性功放的难点,将会

花大量时间在这里收集资料,尝试各种方案,最终提出并设计一个最适合的实现方案。因此,在这里可能会花费大量的时间和精力。

3、超线性功放产品实现方案

图5预失真+主功放实现方案

图6预失真+前馈+主功放方案

4、超线性功放关键技术问题

①带宽问题。

随着频率的增高,相位和时延均会发生变化,这就要求在整个频带内各个模块的频响特性要一致。

②抵消问题。

预失真和前馈的根本出发点都是信号的对消问题,也就是说让两个信号在相位上相差180°,如果相位相差对消的误差超过2°,将大大的降低对消的效果。也就是说相位能否对上,是决定效果的关键。

③衰减器和移相器

衰减器和移相器是预失真和前馈的主要调节单元。如果衰减器带有附加相移或者移相器带来附加衰减,都将使得整个系统无法控制。另外两者的时延也是决定延迟线的关键。经过试验的论证,用电桥搭成的衰减器和移相器虽然能够满足要求,但是附加相移和衰减过大,同时一致性较差,将不利于生产。所以,进一步选用一些集成的衰减器和移相器进行试验。

④自适应算法

如前在闭环控制算法中提到的,算法的相应时间和相应速度是一个非常关键的技术指标。同时由于输入的参数太少,并且整个数学模型很难建立,因此自适应算法的研发将是整个项目的瓶颈,将会花大量的时间和精力在这里。

5、超线性功放的优势

超线性功放作为一种时下非常流行的技术与传统的设计功放的方法相比具有很多优势,它不仅仅是可以使得功放的线性化程度做的很好,同时可以大大的降低成本,提高效率,增加效益等。

①成本上的优势

虽然超线性功放在结构上比传统的功放复杂了很多,也增加了例如衰减器和移相器等附加的芯片,可能会在这增加一些开销,但是由于它可以大大提高功放的线性化程度,也就是说原来必须用100w的放大管子出20w功率,现在可能仅仅用45w的管子就可以出20w,这样在放大管子上节省的开销将远远超过那些衰减器和移相器的开销。

②效率上的优势

传统的功放都是采用的功率回退的方法,无形中将是放大管工作在很高的静态工作点但输出功率并不大,将有大量的能量浪费在静态电流以及热量上面。采用了超线性化技术,由于改善了功放的非线性,可以使得功放管子的工作状态进一步提高,减小静态电流的浪费,大大提高了效率。同时也相当于提高了整体的稳定性。

③在大功率放大器上的优势

以类似于基站放大器上200W的功放为例,对于四载频的基站放大器,需要四个200W的功放。因为功率太高,无法保证功放的线性,只能一个载波一个放大器,这样还需要合路、供电系统等一系列的开销,从而使得整机体积非常大。

如果改用了超线性功放,可以说一个功放就可以搞定,大大降低了成本减小了体积。这样在市场上将有很强的竞争力。

6、项目时间安排

以上对超线性功放的设计方案做了简要的介绍和分析,由于这个项目的难度和它的新颖性,方案的设计可能还有很多不完善的地方,将在项目实施的进程中进一步完善。另外,项目中有很多内容都是我们首次尝试,同时项目所包含的内容也是非常之大之广,因而项目的实施进程会慢一些,项目进展时间会长一些。目前初步计划项目的执行时间为1年,项目的大致时间安排如下:

2007年7月:完成预失真部分的射频部分。

2007年8、9月:设计预失真部分的控制算法;

2007年10、11月:设计自动试验系统,获取试验数据;

2007年12月:训练神经网络;

2007年12月:预失真部分闭环FPGA实现;

2008年1、2月:完成前馈部分的射频通路;

2008年3月:完成前馈部分的控制部门;

2008年4月:完成超线性功放的连调。

微波线性功率放大器综述

微波线性功率放大器综述 1概述 微波线性功率放大器在现代微波(无线)通信系统中的重要性越来越大。特别是在CDMA 体制移动通信系统中,线性功率放大器已经是必不可少的重要部件。 2基本指标 2.1 AM/AM AM/PM失真 一个HPA的线性特征可以用AM/AM和AM/PM 曲线来表示. 输入的RF 信号可以表示为: x(t)=R i(t)?cos[ω0t+θx(t)] (1) 相应的输出表示为: y(t)=G[R i(f)] ?cos{ω0t+θx(t)+ψ[R i(f)]} (2) 其中G和ψ表示AM/AM 和AM/PM曲线,如图一。 图. 1 实测的放大器失真曲线 理想的线性功放的曲线如图2。 图. 2 理想的放大器AM/AM和AM/PM曲线

2.2 双音IMD 、IP3、P1dB 双音IMD ,在放大器输入端加入两个CW 信号,在放大器的输出端测量的3阶、5阶等信号大小,以dBc 表示。 IP3 IMD 、IP3及P 1dB 定义图示 2.3 ACPR ACPR 主要应用在象CDMA 这样的宽频谱信号的研究上。邻道功率(ACP )定义为当主信道加一信号时,紧邻主信道的两个信道内的功率大小。邻道功率的产生主要来自两个方面,一是由于器件的非线性作用产生,二是由于主信道信号本身频谱较信道宽。ACPR 定义为ACP 功率与主信道功率的比值。 图3 邻道功率(ACP )定义 图4 器件非线性产生的邻道功率 对移动通信的CDMA 信号而言,其IM3(即ACPR )与IP3的关系可以通过一公式表示。 IP3=-5log[P IM3(f 1,f 2)B 3/P O [(3B-f 1)3-(3B-f 2)3]]+22.2 (dBm) 其中: P IM3(f 1,f 2) 表示要求的IM3的输出功率(W ) B 表示二分之一CDMA 信号带宽 (KHz ) f 1,f 2表示两个边带频率相对于中心频率的差值(KHz )

线性化微波功放现状及发展趋势1..

线性化微波功放现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 教师:徐瑞敏教授 姓名:XXX 学号:2014210202XX 报告日期:2014.10.26

线性化微波功放现状及发展趋势 一、引言 电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。 对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。 第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。 二、功率放大器的非线性特性 现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫使我们不得不给予功率放大器的线性化问题以足够重视。要研究线性化技术,首先必须了解功率放大器的非线性失真特性,以做到有的放矢。 理想情况下,功率放大器工作在线性状态,传输系数与输入信号的幅度和相位无关。但在实际情况中并非这么简单,由于晶体管的特性,在达到一定输入功率时,放大器将呈现出非线性。信号的输入输出不在是上面简单的函数关系。放大器随着输入信号的增大,从线性区进入非线性区,此时功放的增益不再是常数,而是一个与输入信号有关的变量,输入输出呈非线性,甚至在达到一定输入功率后,功放输出将不再增加。此外功率放大器输出端产生了与输入频率有关的新的频率分量,当信号输入时,除了基波分量,还会出现各阶互调分量和高次谐波分量。这种非线性特性,在通信系统中对相邻信道的干扰,降低系统的性能。对于

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

音频功率放大器的设计与制作

电子技术课程设计报告 设计课题:音频功率放大器的设计与制作 拔河游戏机的设计与制作

模电部分 音频功率放大器的设计与制作 一、设计任务与要求 1)话筒放大器和前置放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20kΩ(也有低输出阻抗的话筒如20Ω,200Ω等),所以话筒放大器的作用是不失真的放大声音信号(最高频率达到20kHz)。其输入阻抗应远大于输出阻抗。前置放大器要求失真小、通频带宽。 2)电子混响器电子混响器的作用是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。该部分电路有专用电路可以选用,不作设计要求。 3)音调控制器音调控制器的作用是控制、调节音响放大器输出频率的高低,音调控制器只对低音频或高音频的增益进行提升或衰减,中音频增益保持不变。这部分参考电路较多,要求通过仿真进行选取,并进行必要的计算。 4)功率放大器功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能的大,输出信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有单电源供电的OTL电路和正负双电源供电的OCL 电路。有专用集成电路功率放大器芯片。可采用由集成运算放大器和晶体管组成的功率放大器,要求进行必要的计算和计算机仿真。 设计参数 ①放大器的失真度<1%。 ②放大器的功率>1W。 ③放大器的频响为50Hz—20kHz。 ④音调控制特性为自选。 (3)设计要求 1)调研,查找并收集资料。 2)总体设计,画出框图。

3)单元电路设计。 4)电气原理设计---绘制原理图。 5)参数计算——列元器件明细表。 6)用EWB对设计电路进行仿真实验,并给出仿真结果及关键点的波形。 7)撰写设计说明书。 8)参考资料目录。 二、方案设计与论证 2.1 音响模块流图 图2-1电路整体框图 话音放大器:话音放大器的作用是不失真地放大音频信号。 电子混响器:电子混响器是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。 混合前置放大器:混合前置放大器的作用是将音乐信号和电子混响后的声音信号混合放大。 音调控制器:音调控制器主要是控制、调节音响放大器的幅频特性。 功率放大器:功率放大器的作用是给音响放大器的负载RL提供一定的输出功率 电路方案的比较与论证 2.2话音放大电路的比较与论证 方案一:采用uA741运算放大器设计电路,uA741通用高增益运算通用放大器,早些年最常用的运放之一。应用非常广泛,双列直插8脚或圆筒8脚封装。工

超线性功放的设计

超线性功放的设计 随着移动事业的迅猛发展,特别是CDMA和第三代移动通信技术的发展,使得系统对功放线性的要求越来越高。在移动通信系统中,为了保证一定范围的信号覆盖,我们通常使用功率放大器来对信号放大,进而通过射频前端和天线系统发射出去。而在CDMA或WCDMA以及TDSCDMA的基站中,如果采用一般的高功放(通常工作于AB类),将由于非线性的影响产生频谱再生效应,为了较好的解决信号的频谱再生和EVM(误差矢量幅值)问题,就必须对功放采用线性化技术。不仅如此,功放在基站放大器中的成本比例约占50%,如何有效、低成本地解决功放地线性化问题就显得非常重要。 1、超线性功放解决方案的提出 传统解决功放的线性的方法多数是采用功率回退的方法来保证功放的互调分量也就是保证功放工作在线性范围,从而不影响信号的覆盖以及通信。图1给出了关于三阶截点、1dB压缩点以及三阶互调随输入功率的变化曲线。 图1、分贝压缩点输出功率 从图中可以看出,传统的解决方法就是通过将输入功率降低,如果输入功率降低1dB,那么系统的互调分量将会好2dB,依次类推,就是说为了保证线性,

对于CDMA 或者WCDMA 的功放,我们只能用100W 的放大管子来出5W 功率。但是由于管子是为100W 设计的,其静态工作点仍旧很高,静态电流依然很大。所以,功放整体电流会很大,电流大意味着功放的效率很低,将会有很大一部分热量只能释放到管子以及电路板上,这些热量既是一种能量的浪费,更重要的是会造成降低芯片的使用寿命。利益方面,能提供如此大功率的放大管子的价格是非常昂贵的。 基于以上这些考虑,同时单纯的功率回退所能获取的互调是有限的,随着功率的进一步增高,仍旧依靠功率回退是不能解决问题的。所以,这里提出一种前馈预失真的设计方案来同时解决线性、效率以及成本问题。 2、前馈预失真功放设计方案 目前较为成熟和流行的超线性解决方案包括前馈技术、预失真技术(包括模拟预失真和基带预失真)、反馈技术等方法。考虑到单纯采用前馈技术对误差功放的要求较高并不能降低太多成本和提高太多的效率,单纯的采用预失真技术虽然可以提高线性和效率但并不能达到超线性的要求。结合两项技术的有缺点,这里提出一种前馈结合预失真的技术。详细的原理框图见图2。 图2前馈预失真方案框图 如图2所示,输入信号首先通过定向耦合器一路经过延时线准备和输出信号 延迟线

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

扩音机电路的设计与实现报告

扩音机电路的设计与实现报告(电子信息工程小实习) 默认分类2009-10-17 20:11:17 阅读814评论27 字号:大中小订阅 一、实验目的 1,了解扩音机电路的形成和用途。 2,掌握音频放大电路的一种实现方法。 3,提高独立设计电路和验证试验的能力。 一、摘要 扩音机电路是把微弱的声音信号放大成能推动扬声器的大功率信号,主要由运算放大器和 集成音频功率放大器构成。电路结构分为前置放大,音调控制,功率放大三部分。 前置放大主要完成小信号的放大,一般要求输入阻抗高,输出阻抗低,频带宽,噪声要小,音调控制主要是实现对输入信号高、低音的提升和衰减;功率放大器决定了整机的输出功率,要求效率高,是真尽可能小,输出功率大。 三、设计任务要求 (1 )最大输出功率0.5w,放大倍数400倍以上 (2 )负载阻抗为8 (3 )具有音调控制功能,即用两个点位期分别调节高音和低音。当输入信号为1KHz时, 输出为0dB ;当输入信号为100Hz时,调节低音电位器可以是输出功率变化12dB ;当输入信号为10KHz时,调节高音电位器也可以是输出功率变化12Db (4 )输出功率的大小连续可调,即用电位器可调节音量的大小。‘ (5 )频率响应:当高、低音调电位器处于极不提升也不衰减的位置时,-3dB的频率范围是(6)输入断短路时,噪声输出电压的有效值不超过10mv,直流输出电压不超过50mv,

静态电源电流不超过100mA 所用原器件及测试仪表清单 A )所用原器件清单 序号名称数量 1 电解电容22肝 1 2 电解电容220 y2 F 3 电解电容10诉3 4 电解电容100 y1 F 5 电解电容1 yF 1 6 二极管1N4001 2 7 电容0.01 y F 2 8 电容330 pF 1 9 电容100 pF 1 10 电容0.1 y F 2 11 电容0.22 y F 1 12 电阻100K 4 13 电阻10K 2 14 电阻22K 2 15 电阻51K 3 名称数量 电阻680 Q 1 电阻18K 1 电阻1 Q 1 电阻3.3K 1 电阻3.9K 1 电阻8.21K 1 水泥电阻 1 LF353N 2 TDA2030A 1 散热片 1 螺钉 1 序 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

功放电路集锦

功放电路集锦 一、双30W功放 图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。如电路有自激现象,则增大C5和C14的容量。该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。该功放也可用作家庭影院系统的环绕声功放。

二、40W功放 图2为采用高保真音响专用功放集成电路TDAl514构成的40W功率放大器,具有快速切断保护和延时静噪功能。电路输入阻抗20k,输入灵敏度600mV,电压增益30dB,信噪比80dB。制作两套该功放,分别用于左、右声道,即可构成2×40W立体声功率放大器。 三、50W功放 图3是50W高保真功率放大器,采用LM3886音频功放集成电路构成。电路输入阻抗20k,输入灵敏

度1000mV,电压增益26dB,信噪比110dB,输出连续平均功率50W,峰值功率可达135W,总静态电流50mA,电源电压范围±(30~40)V。Ll用φ1.2mm漆包线在10Ω/5W金属膜电阻(R7)上平绕10匝后与该电阻并联即可。LM3886还具有静音功能,其第8脚为静音控制端,当第8脚开路(或接地)时为静音状态;第8脚通过30k电阻接-35V时则无静音。调试时,如发现总静态电流过大,则是电路自激,可适当调节负反馈回路中的C3、R4或移相网络中的C4。 四、60W功放 图4是采用LM3875T构成的60W高保真功率放大器,具有外围电路简单、易于制作的特点。电路输入阻抗≥20k,输入灵敏度1100mV,电压增益26dB,频响范围5Hz~lOOkHz,总失真≤O.05%,信噪比114dB,电源电压范围±(20~40)v。L1绕制方法同图3电路。 五、70W功放 图5为采用STK4040X1构成的音频功率放大器,额定输出功率70W,最大谐波失真O.008%,频响范围20Hz-20kHz(-3dB),电路输入阻抗30k,输入灵敏度1000mV,电压增益27dB。L1可用φ1.2mm 漆包线在φ10mm骨架上平绕15圈后脱胎而成。

扩音器的设计与制作

Xxxxxxxxxxxxxxxxxxxxxxxxx(大学)扩音器的设计与制作 院系:电子工程学院 专业:电子科学与技术 班级: 组员: 指导老师:

摘要 扩音机是生活中很常见的一类电子产品,使用非常广泛。扩音机电路是把微弱的声音信号放大成能推动扬声器的大功率信号,电路结构主要分为麦克风信号输入、前置放大器、有源带通滤波器、功率放大器等部分,前置放大主要完成小信号的放大,一般要求输入阻抗高,输出阻抗低,频带宽,噪声要小。在本次设计中前置放大级分为两级,第一级为共源放大电路,整个电路的放大倍数主要靠第一级;第二级为射级跟随器,保证音调控制电路有较好的效果,给音调控制电路以较小的信号源内阻。音调控制主要是实现对输入信号高、低音的提升和衰减;由于集成运算放大器具有电压增益高、输入阻抗高等优点,用它制作的音调控制电路具有电路结构简单、工作稳定等优点。 关键词:扩音机;前置放大;音调控制

ABSTRACT Megaphone is very common life of a class of electronic products, the use of it is very extensive. Amplifier circuit is put the faint sound amplification can push into the high-powered signal, circuit structure is mainly divided into the preamplifier, tone control two parts. Preamplifier main perform small signal amplifier, general requirement high input impedance, output impedance low, wide frequency band, the noise is small. In the design of preamplifier level are divided into two levels, the first level for common source amplifier circuit, the whole circuit amplification depend mainly on the first level; The second grade level is shot with, ensure tone control circuit has good effect, to the tone control circuit with a small signal source resistance. Tone control mainly is the realization of the input signal is high, the bass ascension and attenuation; Due to the integrated operational amplifier has voltage gain high input impedance, higher advantages, and use it to make the tone of the control circuit has simple structure, stable circuit, etc. Key words:Megaphone; Preamplifier; tone control

TDA2030A单电源功放的设计

一、设计目的 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.学会TDA2030A单电源功放的设计方法和性能指标测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 二、设计内容 1.TDA2030A单电源功放的设计 三、设计任务及要求 1. TDA2030A单电源功放: (1).TDA2030A极限参数: (2).T DA2030A主要参数(VCC= 16V,RL=4Ω,Ta=25℃): 2 3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。 4.批准后,进实验室进行组装、调试,并测试其主要性能参数。 四、设计步骤 1.电路图设计: (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出TDA2030A单电源功放方框图。 (2)系统分析:根据系统功能,选择各模块所用电路形式。 (3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2.电路安装、调试: (1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。 (2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。 (3)重点测试稳压电路的稳压系数。

(4)将各模块电路连起来,整机调试,并测量该系统的各项指标。 五、总体设计思路 1.TDA2030A单电源功放的设计原理 六、实验设备及元器件 1.万用表 2.示波器 3.交流毫伏表 4.计算机 5.腐蚀设备 6.电烙铁 7.转印机 8.打印机 9.TDA2030A单电源功放元件清单:

音响入门到高手必看知识

音响入门到高手必看知识音箱作为声频的终端器材,仿佛人的嗓门,在很大程度上决定了一套音响的好坏。可以毫不夸张地说:选择一对好的音箱是一套音响成功的关键所在,来不得半点马虎。然而纵观当今音响市场,成品音箱品牌不下数百种,其中不乏著名的国际品牌:如美国的BOSE(博士)、JBL、INFINITY(燕飞利仕)、Westlake Audio(西湖)、PolkAudio(音乐之声):英国的ATC(皇牌)、B&W、T annoy(天朗)、MonitorAudio(猛牌)、KEF、HARBETH(雨后初晴):丹麦的(皇冠)DYNAUD10(丹拿)、DALI(丹尼)、Jamo(尊宝):德国的Heco(德高)、密力(Maagnat)、ELAC(意力);法国的梦幻之声(VIS10NACOUSTIQUE)、JMLab(劲浪):国产精品有美之声战神系列、金琅、惠威、新德克、福音、小旋风等等,林林总总、不胜枚举。质量参差不齐,价格天差地别。即便是同品牌同系列的音箱,往往音质高出一丁点,价格就会成几何积数倍上升。这正是因为自人类发明电子声频工程以来,唯音箱进步最慢、技术最薄弱。据英国《发烧天书》记载:一部成名多年的英国老牌长青树音相Rogersls 3/5自六十年代推出,畅销近四十年,其音色这纯正优雅,至今仍为众多资深Hi-Fi发烧友视为炙手可热的抢手货。在音响科技高度发展的今天,实在有些令人费解。所以您可千万别小看了音箱的打造,别以为音箱只不过是把几个喇叭与几个Hi-Fi或Hi-END箱。音箱的学问大了,大到没法用

书写,各家各派众说纷纭。正如医学界的中医与西医之争,或如医治一些疑难杂症:说得明白的治不好病,治得好病的却说不明白。然而对消费者而言,我们只要学会如何鉴别与挑选就成。那么有没有一种通俗简便的方法,让毫无经验的大多数消费者不是凭贵价、不是碰运气,而是凭下面介绍的音箱试听“七要点”来学会判断一对音箱的好坏: 1.试听前对音箱的初步了解 对于一对音箱的最初了解,可用“观、掂、敲、认”的步骤来鉴别:即一观工艺,二掂重量、三敲箱体、四认铭牌。 外观工艺就是从音箱外表的第一部象来判断该次和品质优劣:用天然原木精工打造的音箱当然最好,许多天价级的世界名牌至尊音箱,包括意大利的Chario(卓丽)、Guarneri Homage(名琴)等,但此类好箱因环保、资源匮乏加工工艺难度大,时间长等因素,绝不会普及得象随处可见的“飘柔”洗发水,价格肯定没法低。故常见的音箱均是以MDF中密度纤维板表面敷以一层薄薄的木皮做装饰:敷真木皮精工外饰的音箱,尤其是如酸枝、雀眼、花梨、胡桃、桢楠、红橡等珍稀木皮,其天然木纹视觉效果极好,手感滑腻舒适。尤其以对称蝴蝶花纹真木皮经多层涂复打磨钢琴亮漆者,大多均可视为中高档精品音箱,仿冒品极少。用PVC塑料贴皮的箱子属大路货,虽做工精细,最好也只能算中低档货色。而以本纹纸贴面装饰的箱子虽然看上去极时应多注意箱体背后的贴皮接缝和喇叭安装位挖扎工艺是否精确到位。假冒伪

基于ADS的功率放大器设计与仿真[图]

基于ADS的功率放大器设计与仿真[图] 0 引言 随着无线通信技术的发展,无线通信设备的设计要求也越来越高,功率放大器作为发射机最重要的部分之一,它的性能好坏直接影响着整个通信系统的性能优劣,因此,无线系统需要设计性能良好的放大器。通过采用EDA工具软件进行电路设计可以掌握设计电路的性能,进一步优化设计参数,以达到加速产品开发进程的目的。本文仿真设计采用恩智浦半导体的LDMOS晶体管BLF6G27-10G,该晶体管工作频段在2500~2700 MHz之间,直流28V供电。具有很好的线性度,它采用特殊工艺,具有良好的热稳定度。同时使用EDA软件,利用负载牵引和源牵引相结合的方法进行设计,使其输出功率在频率为2.6GHz时达到6.5W。 1 功率放大器的相关设计理论 对于任何功率放大器,它必须在工作频段内是稳定的,同时它应该具有最大的输出功率和最佳的输出效率,因为输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。在功放的匹配网络设计中,需要选择合适的源阻抗和负载阻抗,而他们的选择和功率放大器的稳定性、输出功率、效率以及增益息息相关。 1.1 稳定准则 稳定性是指放大器抑制环境的变化(如信号频率、稳定、源和负载等变化时),维持正常工作特性的能力,一个微波管的绝对稳定条件是: 在选定的晶体管的工作条件下若满足K>1,则此时放大器处在绝对稳定状态,若不满足此条件,则需进行稳定性匹配电路的设计。 1.2 功率增益 放大器的功率增益(Power Gain)有几种不同的定义方式,在这里只介绍工作功率增益,这是设计时较为关心的量,它定义为负载吸收的功率与放大器的输入功率之比。 1.3 功率附加效率(PAE) 功率附加效率是指射频输出功率和输入功率的差值与供给放大器的直流功率的比值,它既反映了直流功率转化为射频功率的能力,又反映了放大射频功率的能力。 1.4 1dB功率压缩点(P1dB) 当晶体管的输入功率达到饱和状态时,其增益开始下降,或者称为压缩。1dB压缩点为放大器线性增益和实际的非线性增益之差为1dB的点,换句话说,它是放大器增益有1dB压缩的输出功率点。 2 设计步骤 2.1 静态工作点的确定 在晶体管的Datasheet中,给出了漏极(D)的工作电压和电流,因此,需要通过仿真和测试得到栅极(G)电压。在ADS中导入BLF6G27-10G的模型库,建立直流仿真电路,图1就是通过对晶体管BLF6G27-10G进行直流仿真所获得的伏安特性曲线。 与BLF6G27-10G的Datasheet给出数据相比,本例所仿真出来的静态工作点和Datasheet给出数据较接近,并且得到了栅极电压(VGS=1.8V),因此这样晶体管的静态工作点就确定了。 2.2 稳定性分析和偏置电路 要使晶体管可靠的工作,必须使晶体管在工作的频段内稳定。这一点对于射频功放是非常重要的,因为它可能在某些工作频率和终端条件下有产生振荡的倾向。因此要对功率管BLF6G27-10G在ADS的环境中进行稳定性分析,在ADS元件面板中调出扼流电感DC_Feed和

扩音机电路的设计

课程设计报告 课程名称:模拟电子技术基础 设计名称:扩音机电路设计 姓名: 学号: 班级: 成绩: 指导教师: 起止日期:2009年12月28日至2010年1月1日

课程设计任务书

扩音机电路的设计 一、 设计的目的和意义 (一)、实验目的 1,了解扩音机电路的形成和用途。 2,掌握音频放大电路的一种实现方法。 3,提高独立设计电路和验证试验的能力。。 (二)、意义:对以后的毕业设计打下基础,锻炼个人的学习和查阅资料的能力以及对课外相关本专业知识的了解。 二、 设计原理 扩音机电路的工作原理与音频功率放大器的工作原理相似,具有放大音频先好并将其还原纯真声音信号的电子装置。扩音机电路时一个典型的多级放大器,其原理如下图所示。 前置级主要完成对小信号的放大。一般要求输入阻抗要高,输出阻抗低,频带宽度要宽,噪声要小。音调控制级主要实现对输入信号高、低音的提升和衰减。功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。首先根据技术指标要求,对整机电路作适当安排,确定各级的增益分配,然后对各级电路进行具体的设计计算。 因为P0max=8W 。所以此时的输出电压:V0=RL P m ax *0 =8V 。要使输入为5mv 的信号放大到8v 的输出,所需要的总放大倍数为1600倍,扩音机中各级增益的分配为:前置级电压放大倍数为80;音调控制级中频电压放大倍数为1;功率放大级电压放大倍数为20。 三、 详细设计及实验步骤 1、 前置放大级 由于信号源提供的信号非常微弱,因此在音调控制器前面要加一级前置放大级。该前置放大级的下限频率要小于音调控制器的低音转折频率,前置放大器的

ATX电源改功放电源

ATX 电源改功放电源 本人将旧ATX 电源改造为±22V 电源,加一功放电路做成功放,成本约70元,效果相当不错,已成功改造3台。用开关电源给功放供电最明显的是交流声非常小。本文主要介绍ATX 电源的改造方法,供参考。 首先要选定功放电路,然后才能根据功放要求改造电源。功放体积要小,否则放在电源内就困难了。我用的是小余电子买的LM1875的PCB 板,功放IC 用TDA2050,改造一下做成电流反馈型功放,固定在电源外壳的内部,外面加散热器。TDA2050最大输出功率32W ,最高电压25V ,最大输出电流5A ,电源电压按22V 设计。下面重点介绍采用TL494芯片电源的改造。 一、从回收电脑的地方买一个坏电源,不超过10块钱,先把它修好,如果不会修也就别想改了。一定要先修好再改,不然改造完了不能正常工作查故障可就麻烦了。修好后将输出部分所有连接线、电感、电容、LM339和整流部分全部拆除。改造要利用原来的焊孔和线路计划安放新器件,因为器件较少很容易放下,无法走通时可通过切断,焊连线跳线措施完成线路。输入电路和辅助电源部分不要动,不在电路板上的PFC 和EMI 滤波要拆掉,因为空间紧张。 二、主变压器改造 输出变压器的拆开重绕,是整个改造中难度最大的一步,方法是: 1、用电烙铁将变压器磁芯加热70 多度,拆开磁芯(磁芯易碎,温度高时更易碎!),完好的拆下磁芯是非常关键的一步,如果磁芯坏了市场上也能买到。 2、ATX 电源主变压器普遍采用三明治绕法,高压绕组分成两部分在最里层和最外层,低压绕组在中间,这样的好处是漏感小。拆掉外层的一次绕组,记清这一绕组的匝数和绕向。接着拆掉所有的二次绕组,只保留最内层的一次绕组,检查内层绝缘材料是否破损,必要时再加一层胶布,注意如果击穿将使次级输出带电,很危险! 3、一般ATX 电源变压器的次级5V 是3匝,12V 是7匝,每匝1.7V 左右,改造后也要保证每匝1.7V 左右,高电压小电流可取稍高些,低电压大电流可取稍低些。本电源 V V 7.122=13匝。 4、准备直径0.8的漆包线10米(可以到电机修理部去找)。绕法是双线并绕13 匝,一定要绕的密实平整,绕好后把一组的头和另一组的尾相接做为接地端。再用绝缘材料包好,这一层间是高压一定要包好绝缘材料。 5、最后把拆下的外层一次线圈按原匝数原方向绕回,方向错了相当于一次线圈短路。焊好外引线,二次侧使用原5V 和12V 输出的引角并联,分别做正负输出用(见图)。外面再包上一层绝缘材料。装好磁芯,用胶粘牢。磁芯与骨架之间不能有缝隙,可以塞牙签,否则重负载时变压器会吱吱叫。

扩音机的设计与制作

通信电子线路课程设计说明书 扩音机 系、部:电气与信息工程系 学生姓名:王文刚 指导教师:贾雅琼职称讲师 专业:电子信息工程 班级:电子0903 完成时间: 2011年12月6日

摘要 近几年来,计算机技术进入了前所未有的快速发展时期,随着电子信息技术的发展关于音响放大器在电子技术基础中所处的位置越来越重要,它不仅是电子信息类专业的一个重要部分,而且在其他类专业工程中也是不可缺少的。放大器电路做为子系统的应用,发展更是迅速,已成为新一代电子设备不可缺少的核心部件,其现实生活中的运用也是非常普遍和广泛。 扩音机电路是把微弱的声音信号放大成能推动扬声器的大功率信号,主要由运算放大器和集成音频功率放大器构成。电路结构分为前置放大,音调控制,功率放大三部分。 前置放大主要完成小信号的放大,一般要求输入阻抗高,输出阻抗低,频带宽,噪声要小,音调控制主要是实现对输入信号高、低音的提升和衰减;功率放大器决定了整机的输出功率,要求效率高,是真尽可能小,输出功率大。 关键词:扩音机;功率放大器;音调控制

ABSTRACT In recent years, computer technology has entered the rapid development period of hitherto unknown, with the development of electronic information technology in electronic technology based on audio amplifier in the increasingly important position, it is not only the specialties of electronic information is an important part, but also in other types of professional engineering is necessary. Amplifier circuit as the subsystem of application, development is rapid, has become a new generation of electronic equipment indispensable core component, its real life use is very common and widely. Amplifier circuit is the voice signal amplification to drive the loudspeaker to the high power signals, mainly by the operational amplifier and integrated audio power amplifier. The circuit structure is divided into a preamplifier, tone control, power amplifying part three. Preamplifier mainly performed in small signal amplification, general requirements of high input impedance, low output impedance, frequency bandwidth, noise is small, the tone control is to achieve the main input signal in high, bass enhancement and attenuation; power amplifier determines the output power, high efficiency is required, it is as small as possible, large output power. Key words: amplifier; power amplifier; tone control

音 响 基 础 知 识

基础知识 一、功放 1、功率放大器:用来放大音频信号的器材,也就是说前置放大器和功率放大器(纯 功放)的统称。 2、中心机:是由功放、卡拉OK、独立声道输入系统、均衡器、调音台等器材组 成(如H2000,包括独立声道输入系统、独立Hi-Fi音乐中心、专业宽频带卡 拉OK、专业均衡器组成) 3、纯功放:即两声道,要求对音频信号进行高保真功率放大的放大器。(后级放大 器) 4、AV功放:用于家庭影院音响系统的放大器。 放大器: 按功能分: ⑴纯功放 ⑵A V功放:①4声道放大器(定向逻辑) ②5+1声道放大器(THX) ③5.1声道放大器(AC-3、DTS)流行 ④6.1声道放大器(THX EX、DTS EX) ⑤7声道放大器(AC-3+DSP) ⑶卡拉OK放大器:①卡拉OK扩音机(有扩音) ②卡拉OK机(无扩音,功放放大) 按名称分: ⑴晶体管放大器(石机) ⑵电子管放大器(胆机) ⑶电子管和晶体管放大器(混合机) ⑷合并式放大器 ⑸前级放大器、后级放大器 ⑹甲类放大器 ⑺甲乙类放大器 ⑻单声道放大器 ⑼双声道放大器 前级放大器:对音频信号进行电压放大的电路和对音频信号进行必要控制的电路(主要进行音频处理) 后级放大器:将前级放大器放大和控制后级的信号进行专门的功率放大。 合并式放大器:将前级放大器和后级放大器装置在一个外壳内的放大器。 胆机:用电子管作为放大器件构成的放大器(不能放置于A V功放内)即电子管。特点:低音柔和,传输音频慢。 石机:用晶体管作为放大器件构成的放大器。 混血机:用晶体管和电子管共同构成的放大器。(这种机器充分利用晶体管和电子管的特性来发挥各自的长处,改善了石机的冷色面、金属声,改良胆机的低音力度和速度,使之具有混血的优势,主要用于纯功放。) 甲类放大器:一种性能优越的放大器,主要用于纯功放中。(它以牺牲放大器的功率换取高品质的音质,以声音靓丽著称)

小型音响的设计与制作

小型音响的设计与制作 摘要 随着电子技术,特别是随大规模集成电路的产生而出现的微型计算机技术的飞速发展,人类生活发生了根本性的改变。如果说微型计算机的出现使现代科学研究得到了质的飞跃,那么可以毫不夸张地说,单片机技术的出现则是给现代工业领域带来了一次新的技术革命。 伴随着社会的进步,媒体电脑技术突飞猛进,慢慢改变着人们的工作、生活、学习和交流方式,它的应用给社会带来了巨大的进步,很多人认为音箱只要能发声就行,但实际上不管是家庭影院还是个人电脑,购买时一般都会配上音箱,假如没有了音箱,多媒体只能是一句空话。 在人们的生活娱乐中,音响的存在必不可少。例如:电视机、收音机、家用电脑等许多领域,都需要用到音响来给人们带来听觉的效果。专业的音响系统主要由听觉系统(人的耳朵)、硬件系统(器材)、软件系统(信号源)及听音环境组成。音响系统主要技术指标有:频率特性、信噪比、动态范围、瞬态响应、立体声分离度、立体声平衡度。 这些都是组成音响的主要成分。 本次研究的课题,小型音响的制作,比起专业的来讲,简单得多,但功能并不比专业的逊色。该设计制作使用扩音机电路电压放大器和功率放大器,还介绍了其性能指标和测试方法、故障检修等。 Abstract Minitype computer art with electron technology, especially, following the large-scale integrated circuit creation but appearing's ultimacy happened in development , human being life at full speed changing. If the microcomputer appearing has made modern study of science get a qualitative leap, can

相关文档