文档库 最新最全的文档下载
当前位置:文档库 › 本科通信系统第15章

本科通信系统第15章

卫星通信系统基础知识

卫星通信系统基础知识 卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。 1、卫星通信系统基本概念 1.1系统组成 卫星通信系统由卫星端、地面端、用户端三部分组成。卫星端在空中起中继站的作用,即把地面站发上来的电磁波放大后再返送回另一地面站,卫星星体又包括两大子系统:星载设备和卫星母体。地面站则是卫星系统与地面公众网的接口,地面用户也可以通过地面站出入卫星系统形成链路,地面站还包括地面卫星控制中心, 及其跟踪、遥测和指令站。用户段即是各种用户终端。 叮搬迅地球』占 1.2卫星通信网络的结构 点对点:两个卫星站之间互通;小站间信息的传输无需中央站转接;组网方式简单。

星状网:外围各边远站仅与中心站直接发生联系,各边远站之间不能通过卫星直接相互通信(必要时,经中心站转接才能建立联系)。 网状网:网络中的各站,彼此可经卫星直接沟通。 混合网:星状网和网状网的混合形式 星状网网状网混合网 1.3卫星通信的应用范围 长途电话、传真 电视广播、娱乐 计算机联网 电视会议、电话会议 交互型远程教育 医疗数据 应急业务、新闻广播交通信息、船舶、飞机的航行数据及军事通信等 1.4卫星通信使用频率 电波应能穿过电离层,传输损耗和外部附加噪声应尽可能小 有较宽的可用频带,尽可能增大通信容量 较合理的使用无线电频谱,防止各宇宙通信业务之间及与其它地面通信业务之间产生相 互干扰

典型民航飞机通信系统

第一节音频选择系统

1.1音频选择系统 功用:在机载设备中主要起遁信爻换况的作用。为驾驶舱人员相互之间的通讯提供服务,以及机组与地勤人员在前起落架飞行内话插口之间的联系。并为机组提供键控、发射、接通飞机无线电通讯系统和接通无线电导航系统的功能。 EXTgRRAL POWER PAMl 应? EXTERML ◎⑥⑥ FU6KT SWICE INTERPHON E MOSE PILOT WWetLWELL ◎ 0LL IN USE LX9?T SEE £POK£KS 外接电源板瞿豔 EXTERNAL POWER PANEL Q外接电源板 负戏控制中心 LOAO COHTWK CEMTER P6 内话喇叭 WDIO- ACC£S$9RY WIT SEE 音頻附加组件 』 ---------------------HIC SELECIOK-------------------- ------ □□□□□□□ 1- VHF- 2 1- Hf- 2 普” :{j; Pt @ ? @ ? @ ? ? 1 - teAV - 2 1 - A6F - 2 ?R ? @ @ @ X/C 8CO? AUDIO SELECTOR PANEL AUPIO ACCESSORY UNIT

1.1音频选择系统组成 组成: K着频选择板(ASP) 2、喇叭和耳机 3、话筒

1.1音频选择系统组成 1、音频选择板 (ASP) 发射机选择器 接收机选择器 ASS方式选择 器

1)发射机选择器 每个ASP都独立地行使职责并使机组成员能够选择所需的无线电通信设备或内话进行发话,一次只能按下一个电门,当按下第二个电门时,即取消第一个电门。 2)接收机选择器 当按下接收机选择器电门,即可选择相应的通信或导航系统的接收机。 3)A SS方式选择器 选择ASS的工作方式。

应急指挥车卫星通信系统方案

一、项目概述 当前,突发安全生产事件发生地点不确定,部分地区通信不便,特别是发生安全生产事件时,交通通信极易中断,因此执行应急监测时,为及时发送调查、监测信息,必须配备卫星通讯设备,保证应急信息传输通畅。本项目卫星通信系统建设主要包括卫星地面中心站通信系统、静中通应急指挥车卫星通信系统两大部分。 二、项目建设目标与原则 2.1 建设目标 1、建设安监局卫星地面中心站通信系统、一台静中通应急指挥车,实现两者之间的卫星通信。并依托卫星网络,借助音视频编码设备,实现双向视频、音频、数据的实时通信。 2.2 建设原则 系统总体设计遵循“安全保密、技术先进、功能完善、实用可靠、投资合理、运行方便、扩展容易”的原则,具体如下: 1、规范性: 各类设备、通信和控制软件及协议必须符合国内外相关标准。 2、先进性: 系统设计和设备规格完全符合行业技术规范和技术发展潮流,适应主流技术发展的要求。采用当今成熟、先进的技术及设备,在功能和性能方面体现出技术发展的先进性。 3、可靠性: 系统应具有在各种情况下的高可靠运行能力。 4、安全性: 系统对于信息、设备和人身的安全上具有较高的保障。 5、电磁兼容性: 系统整体设计方案严格按照电磁兼容分析结论实施,保证整个系统的各个部分无相互干扰的协同工作。 7、可扩展性: 在技术发展和业务增加时系统具有较大的扩展能力。

8、经济性: 按照需求合理配置系统,确保系统中每一个环节的投入比例达到最高的性能价格比,最大限度地有效利用资金。 三、项目总体技术要求 ?卫星通信:采用卫星Ku波段转发器,实现中心站到任意现场的实时的视频、图像、话音及数据的传输和显示,保障省中心站对现场信息的实时掌控,为领导的指挥决策提供有效及时的现场资料和依据。 ?3G公网通信:利用中国电信或联通3G公网通信系统,实现图像、话音、数据的双向通信。 1、卫星地面中心站通信系统要求 卫星地面中心站通信系统应具有卫星音视频传输及数据通信功能,实现与应急指挥车的互联互通,实现将中心站的各种信息传输到应急指挥车。 ▲中心地面站采用三轴控制(方位、俯仰、极化)天线系统具有一键通信标自动跟踪功能。 2、静中通应急指挥车要求 1)指挥调度功能 利用专用卫星通信系统,及时接收中心站的实时信息,监视现场情况,实现语音、图像、文字数据的双向通信,确保对安全生产现场实施指挥调度。 2)现场信息采集和处理功能 适用于各种复杂环境,能够采集安全生产现场图像、声音等信息。系统具有声音(包括通信话音)、图像、数据等各种信息处理存储能力,具有编辑、发送指挥信息能力。 3)通信保障功能 系统具有电话、音视频、计算机网络等有线接口,无线宽带图像传输等多种通信设备,具有安全生产现场指挥调度和远程通信的能力。 4)辅助决策功能 为领导及时了解灾情,提供生产现场情报,为抗灾指挥决策提供依据。辅助领导分析判断情况;辅助拟制各种保障方案和预案。 5)公网通信 利用中国电信或联通3G公网通信系统,实现图像、话音、数据的双向通信。

超导滤波器在民航甚高频地空通信系统中的应用研究

超导滤波器在民航甚高频地空通信系统中的应用研究 发表时间:2019-07-01T12:59:37.957Z 来源:《防护工程》2019年第6期作者:杨银 [导读] 高效滤除杂波、防止干扰的同时保证民航通信质量以及飞行安全。 民航江西空管分局南昌 300114 摘要:民航甚高频地空通信系统能够为空中交通管制部门、航空公司航务管理部门乃至飞行员直接提供优质的话音通信服务,如何保证有效信号顺利通过至关重要,必须合理化滤除杂波。因此,本文从不同角度入手客观阐述了超导滤波器在民航甚高频地空通信系统中的应用,高效滤除杂波、防止干扰的同时保证民航通信质量以及飞行安全。 关键词:超导滤波器;民航甚高频地空通信系统;应用;研究 在新形势下,民航交通运输业发展速度不断加快,航空运输量大幅度增加,对空中交通管理提出了更高层次的要求。甚高频地空通信系统是空中交通管理系统必不可少的组成要素,直接关系到空中交通管理有效发展,有效防止杂波干扰、邻道干扰、同频干扰等是不可忽视的关键点,而这离不开高效运转的滤波器。超导滤波器优势作用明显,要将其合理化应用到民航甚高频地空通信系统中,确保民航通信顺畅的同时最大化提高通信效率以及效益。 一、民航甚高频地空通信系统 民航飞行是否安全和甚高频地空通信系统深度联系,可以供飞机和飞机、地面台站和飞机双向传输数据乃至话音。民航甚高频地空通信系统由收发信机、天线等组成,接收或者辐射射频信号是天线的主要功能。该系统具有调频功能,一般来说,民航在118.000——151.975MHz范围内都能顺利实现通信,民航主要通信过程体现在118.000——136.975MHz,频道间隔为25kHz,以甚高频无线电波为对应通信载体的VHF通信范围比较小,只能实现目视范围内的通信,通信距离还会随着飞机的飞行高度动态变化。在飞机起落等过程中必须实现双向通信,直接关系到民航甚高频地空通信系统运行稳定性。与此同时,发射机以及接收机天线共用系统是民航甚高频地空通信系统的关键点,调制的话音要在发射机作用下发射出去而射频信号要在天线作用下发射出去,接收机可以将接收到的通信信号调解成音频等。相应地,下面便是作用到民用航空以及海事近距离通信中的甚高频地空通信系统结构图。 甚高频地空通信系统结构图 二、超导滤波器在民航甚高频地空通信系统中的应用 1、腔体滤波器 在民航甚高频地空通信系统运行中,发射机天线共用系统、接收机天线共用系统都离不开滤波器,腔体滤波器常应用到民航传统甚高频收发系统中。为了更好地滤除杂波以及避免干扰,民航对滤波器各方面有着较高层次要求,比如,工作频率±500Khz处衰减不小于 15dB,通带插损小于1.5dB。谐振导体、谐振腔等是腔体滤波器的组成要素,具有一定优势特征,高可靠性、体积小等,但要借助网络分析仪,规范化调试腔体滤波器,确保其满足工作频率方面的性能参数要求,整个调试复杂化,加上很多甚高频遥控台设置的地区有着较高的海拔,交通不方便等,无形中增加了调试难度系数。与此同时,部分较强的干扰信号会借助腔体滤波器出现在收发信机中,干扰有用的通信信号,影响民航安全飞行,要多层次优化应用到民航甚高频地空通信系统中的滤波器。 2、超导滤波器及其应用 2.1超导滤波器 超导体就是导体在超低温情况下电阻接近为0,超导滤波器是超导体制作而成的。超导滤波器可以有效弥补传统腔体滤波器缺陷问题,抗干扰能力非常强,能够实时、快速抑制民航通信传输中出现的各类干扰信号,包含邻近通带边缘1.5MHz的干扰,可以在一定程度上有效降低带内的噪声以及互调干扰,降低通信中故障发生系数,在源头上保证通信信号质量的同时增加传输容量,提供优质的话音通信服务以及民航飞行安全性、稳定性。 2.2超导滤波器应用 在导体温度达到零下200摄氏度的时候,导体表面的电阻接近为0,根据这一特性制作而成的超导滤波器有着较高的Q值,最大值为10万,腔体滤波器Q值只有其1/12。与此同时,超导滤波器的过渡带相当陡峭,峰值可以达到-100dB/400KHz,阻带抑制超过60dB,通带插损小于0.1dB。与此同时,低噪放能够在温度超低的情况下工作,噪声系数小于0.5dB,在民航甚高频地空通信系统运行中,可以根据超导滤波器优势作用以及民航通信具体情况,将超导滤波器作用到甚高频遥控台接收机输入端,确保通信信号传输中出现的交调干扰、互调干扰等能够得到有效抑制,将低噪放作为接收机射频输入端的设备,和超导滤波器相互作用,从根本上抑制各类干扰的同时促使运行中的甚高频接收机有着较高的灵敏程度,增强话音通信信号。在此过程中,可以根据甚高频遥控台主接收机、分集接收机具体情况,将超导滤波器安装到合理的位置,解决甚高频遥控台出现的干扰问题。此外,通常情况下,有用通信信号通带相邻位置的干扰信号比较强,腔体滤波器很难有效抑制该位置干扰信号,导致其进入遥控接收机,低噪放、混频器二者出现非线性互调失真现象,互调产物出现在有用信号带内部,形成的干扰很难滤除,降低民航通信信号质量或者中断通信。针对这种情况,可以将超导滤波器科学应用到民航甚高频地空通信系统中,有效抑制较强的干扰信号出现在遥控接收机中的混频器、低噪放,有效防止非线性互调失真,降低接收机运行中互调干扰发生率。与此同时,在低温-200摄氏度状态下的低噪放作用下,民航接收机的灵敏程度明显提高,即3dB,加上超导滤波器多样化优势作用发挥,甚

第一章 通信系统概论

第一章通信系统概论 1.1 绪论 1.2 通信系统的组成 1.3 通信系统的分类与通信方式1.4 通信系统的质量指标 1.5 通信技术的发展

1.1 绪论 通信 广义上说用任何方法通过任何媒介跨时/空传递信息,均称为通信。

1.1 绪论 ◆通信的定义: 是指由一地向另一地进行消息的有效传递。 ◆通信的目的: 就是传递消息。 ◆本课程对通信的定义: 利用电子等技术手段,借助电信号(含光信号) 实现从一地向另一地进行消息的有效传递称为通信。

1.2 通信系统的组成 1.2.1 通信系统模型 信 源信宿噪声源 信道发送设备 接收设备产生或发出将信源产生的消息信号 变换成便于传送的形式从带有干扰的接收信号中正 确恢复出原始 信号 接受消息 的人或机 信号传输的通道各处噪声的集中表现

1.2 通信系统的组成 ◆信源:把待传输的消息转换成原始电信号,如电话 系统中电话机可看成是信源。 ◆发送设备:将信源和信道匹配起来,即将信源产生的 原始电信号变换成适合在信道中传输的信号。 ◆信道:信号传输的通道,可以是有线的,也可以是无 线的。 ◆接收设备:任务是从带有干扰的接收信号中恢复出相 应的原始电信号来。 ◆信宿:将复原的原始电信号转换成相应的消息。

1.2 通信系统的组成 1.2.2 模拟通信系统和数字通信系统1.信源消息分为两大类 连续消息离散消息 消息的载体是电信号,电信号的变化体现在某一参量的变化上(如连续波的幅度、频率或相位;脉冲波的幅度、宽度或位置)。 消息的状态连续变化或是不可数的。如语音、活动图片等消息的状态是离散的或是可数的。 如符号、数据等

民航飞机电气仪表及通信系统习题

民航飞机电气仪表及通信系统网上习题1. 由发射天线向空中辐射,被电离层反射后到达接收点的电波称为 A:地波 B:空间波 C:天波 D:(无) 正确答案: C 2. 沿地球表面传播的电波称为 A:地波 B:空间波 C:天波 D:(无) 正确答案: A 3. 沿视线直接传播到接收点或经地面反射后达到接收点的电波称为 A:地波 B:空间波 C:天波 D:(无) 正确答案: B 4. 地面对电波传播的影响是 A:折射 B:反射 C:吸收电波的能量 D:(无) 正确答案: C 5. 电波能否被电离层折射后返回地面,取决于 A:电波的入射角和电离层的厚度 B:电离层的电子密度和厚度 C:电波的入射角、频率以及电离层的电子密度 D:(无) 正确答案: C 6. 下列说法哪种正确? A:电波的入射角越小,被电离层折射后越容易返回地面。 B:电离层的电子密度越小,电波被电离层折射后越容易返回地面。 C:电波的频率越低,被电离层折射后越容易返回地面。 D:(无) 正确答案: C 7. 电离层对电波传播的影响是 A:电离层对电波的散射 B:电离层对电波的绕射 C:电离层对电波的折射和能量吸收 D:(无) 正确答案: C 8. 下列说法哪种正确? A:电波在不均匀媒质中传播时,仅传播速度发生改变。 B:电波在不均匀媒质中传播时,仅传播方向发生改变。 C:电波在不均匀媒质中传播时,传播速度和传播方向都将发生改变。 D:(无) 正确答案: C 9. 下列说法哪种正确? A:电波的入射角越小,越容易折射。 B:电波的频率越低,越容易折射。 C:电波的频率越高,越容易折射。 D:(无) 正确答案: B 10. 白天,中波主要利用什么方式传播?A:地波 B:空间波 C:天波 D:(无) 正确答案: A 11. 短波主要利用什么方式传播? A:地波 B:空间波 C:天波 D:(无) 正确答案: C 12. 超短波主要利用什么方式传播? A:地波 B:空间波 C:天波 D:(无) 正确答案: B 13. 短波通信的缺点是 A:通信距离近 B: 存在衰落现象和静区 C:发射天线尺寸较大

移动卫星通信站系统设计方案

卫星通信系统建设招标文件 技 术 规 范 书 2013年4月

目录 1概述 (1) 1.1总体需求 (1) 1.2技术要求 (1) 1.3设计原则 (2) 2系统组成 (4) 3卫星通信设计 (5) 3.1卫星通信体制选择 (5) 3.2卫星链路计算 (5) 4X移动卫星通信站系统设计方案 (6) 4.1X移动卫星通信站功能 (7) 4.2卫星通信子系统 (7) 4.2.1x天线伺服控制系统 (7) 4.2.1.1x天线组成 (8) 4.2.1.2x天线系统设计要求 (8) 4.2.1.3x天线系统功能要求 (9) 4.2.1.4x天线系统技术指标 (9) 4.2.2卫星功放 (11) 4.2.3卫星调制解调器 (12) 4.2.3.1卫星调制解调器(网管) (12) 4.2.3.2卫星调制解调器(业务) (13) 4.2.4频谱仪 (14) 4.2.4.1便携式频谱仪 (14) 4.2.4.2机架式频谱仪 (15) 4.3视音频处理子系统 (17) 4.3.1图像采集 (18) 4.3.1.1单兵无线图像传输设备 (18) 4.3.1.2便携式摄像机 (20) 4.3.1.3装载平台室外云台摄像机 (21) 4.3.1.4装载平台室内云台摄像机 (23) 4.3.1.5装载平台两侧及后部摄像机 (24) 4.3.2图像处理与显示 (25) 4.3.2.1视频编解码器 (25) 4.3.2.2高清视频矩阵 (26) 4.3.2.3高标清转换器 (27) 4.3.2.4四联监视器技术要求: (28) 4.3.2.59寸头枕监视器技术要求: (29) 4.3.3音频系统 (30) 4.3.3.1数字调音台 (30) 4.3.3.2无线话筒 (30) 4.3.4VOIP语音网关 (33)

甚高频通信系统

甚高频地空通信系统 一、无线通信基础 1、甚高频地空通信基础 通信以话音、图像、数据为媒体,通过光或电信号将信息传输到另一方。 甚高频通信系统供飞机与地面台站、飞机与飞机之间进行双向话音和数据通信联络。甚高频系统采用调幅工作方式,其工作的频率范围由118.000~151.975MHZ(实际使用最大频率为136MHZ),频率间隔为25KHZ,这是国际民航组织规定的频率范围和频道间隔。甚高频传输方式的特点是:由于频率很高,其表面波衰减很快,传播距离很近,通信距离限制在视线距离内,所以它以空间波传播方式为主,电波受对流层的影响大;受地形,地物的影响也很大。 2、通信的分类: (1)、模拟通信与数字通信 信道中传输的是模拟信号时称为模拟通信。 信道中传输的是数字信号时称为数字通信。 (2)、有线通信与无线通信 使用光缆、铜缆等进行连接的通信为有线通信。 使用电磁波、光波等连接的通信为无线通信。 3、甚高频收发信机分类: (1)、按设备分为:VHF便携收发信机, VHF 单体收发信机,VHF

共用天线系统。 (2)、按发射功率分为:塔台设备的发射功率不应超过10W,进近设备发射功率在25W,航路对空设备发射功率应在50W。 VHF 便携电台主要用于塔台指挥、校飞、电磁环境测量、应急等。 VHF 单体收发信机适用于通信波道少,有足够天线场地的机场使用。随着民航业务的发展,对VHF 的波道数量需求越来越多,对天线场地和电磁环境的要求越来越高,逐步由VHF 单体电台过渡到VHF 共用天线系统。 VHF 遥控台主要用于航路地空通信,通过设臵遥控台来解决航路或区域的全程通信覆盖,解决本场的VHF作用距离以外不能覆盖的通信。 二、甚高频调幅AM收发信机工作原理 1、发射机 调幅发射机一般由音频放大器、振荡器、混频(调制器)、前臵放大器、高频功率放大器等组成。 音频放大器的功能是将音频电信号进行放大,但是要求其失真及噪音要小。 混频器是将放大后的音频信号加在高频载波信号上面,形成的高频电磁波调制信号,其包络与输入调制信号呈线性关系,目的就是为了增强信息信号的抗噪声能力。调制原理:振荡器的主要作用是产生调制器所需的稳定的甚高频载波信号,一般都采用

飞机通信系统简介

飞机通信系统简介 飞机通信系统是飞机电子系统的一个组成部分,它主要用于在飞行各阶段中飞行员和地面的航行管制人员、签派以及地面其它相关人员的语音联系,同时也提供了飞机员之间和乘务员之间的联络服务。飞机通信系统主要分为:甚高频通信系统、高频通信系统、选择呼叫系统和音频综合系统。为了让大家对飞机电子系统有所了解,下面就对通信系统各个组成作个简单介绍。 (一)甚高频通信系统(VHF :Very High Frequency ) 由于VHF使用甚高频无线电波。所以它的有效作用范围较短,只在目视范围之内,作用距离随高度变化,在高度为300米时距离为74公里。是目前民航飞机主要的通信工具,用于飞机在起飞、降落时或通过控制空域时机组人员和地面管制人员的双向语音通信。起飞和降落时期是驾驶员处理问题最繁忙的时期,也是飞行中最容易发生事故的时间,因此必须保证甚高频通信的高度可靠,所以民航飞机上一般都装有一套以上的备用系统。 甚高频通信系统由收发机、控制盒和天线三部分组成。收发机用频率合成器提供稳定的基准频率,信号调制到载波后,通过天线发射出去。接收机从天线上收到信号后,经过放大、检波、静噪处理变成音频信号,输入驾驶员的耳机。天线为刀形,一般都安装在机腹和机背上。如图所示:

甚高频所使用的频率范围为118.000~135.975MHZ ,每25KHZ为一个频道,可设置720个频道由飞机和地面控制台选用,其中121.500MHZ定为遇难呼救的全世界统一的频道。121.600~121.925MHZ主要用于地面管制。值得注意的是通信信号使用同一频率,一方发送完毕后,要停止发射来等待对方信号的进入。 (二)高频通信系统(HF:High Frequency ) 高频通信系统是远距离通信系统。它使用了和短波广播的频率范围相同的电磁波,它利用电离层的反射,因而通信距离可达数千公里,用于飞行中保持与基地和远方航站的联络。使用的频率范围为2-30MHZ ,每1KHZ为一个频道。大型飞机一般装有两套高频通信系统,使用单边带通信,这样可以大大压缩所占用的频带,节省发射功率。高频通信系统由收发机组、天线耦合器、控制盒和天线组成,它的输出功率较大,需要有通风散热装置。现代民航机用的高频通信天线一般埋入飞机蒙皮之内,装在飞机垂尾前缘。 (三)选择呼叫系统(SELCAL ) 它的作用是用于当地面呼叫一架飞机时,飞机上的选择呼叫系统以灯光和音响通知机组有人呼叫,从而进行联络,避免了驾驶员长时间等候呼叫,从而减少飞行员的疲劳。每架飞机上的选择呼叫必须有一个特定的四位字母代码,机上的通信系统都调在指定的频率上,地面的高频或甚高频系统发出包含着这个四字代码的呼叫脉冲,飞机收到这个呼叫信号后输入译码器,如果呼叫的代码与飞机代码相符,则译码器把驾驶舱信号灯和音响接通,通知驾驶员进行通话。 (四)音频综合系统(AIS) 包括飞机内部的通话系统,如机组人员之间的通话,对旅客的广播和电视等娱乐设施以及飞机在地面时机组和地面维护人员之间的通话。它分为飞行内话系统、勤务内话系统、客舱广播及娱乐系统、呼叫系统。 l)飞行内话系统:主要是飞行员使用的系统,飞行员利用音频选择板进行选择要使用的通信设备并向外发射信号。同时音频信号也经过音频选择板由飞行员选择后再输入耳机或扬声器中。此外飞行员也可以选择收听从各种导航设备来的音频信号。

推荐-便携式卫星通信系统方案 精品

便携式卫星通信系统

目录

1需求分析 根据应急通信及现场新闻采访的需求,建设1套卫星机动通信系统以满足应急通信及现场新闻采访的需求,包括1套通信固定站和1套卫星通信便携站及现场图像采集传输系统,固定站和卫星通信便携站之间的通信采用现有卫星通信ku资源实现。卫星通信便携站将通过现场图像采集传输系统采集到的话音、数据及视频传送到卫星通信便携站,再经卫星通信便携站通过卫星传输到固定站和指挥中心的大屏幕上。 根据通信系统实际情况,卫星通信系统建设规模如下: (1)指挥中心建固定卫星通信地球站; (2)建设1套机动通信机动平台。 本建议书对用户需求分析要点如下: 1.1技术需求 根据通信系统需求,工程系统配置包括固定和机动两大系统: 1、位于指挥中心的固定站通信系统:包括 ●天线系统:Ku频段天线系统一套; ●主站室外单元设备:包括低噪声放大器系统一套,SSPA系统(内置 BUC)一套,安装在天线基座架上; ●室内单元设备:包括调制解调器系统一套;视频编码器和解码器一套;语音 网关一套;网管、监控设备一套; 2、应急通信机动平台:包括 ●卫星通信便携站一套; 自动卫星便携天伺馈系统、一体化卫星信道设备、BUC ●单兵图传设备一套; 1.2设计思路 我们的设计原则是建立在满足用户当前需求和今后的扩展要求之上,采用以下设计思路: ●系统设计采用成熟技术,尽量减少技术风险,采用模块化、通用化设计原

则。设备故障部件或单元的替换、检查和修理应该很容易进行。硬件和软件 预留扩容能力,可方便的实现系统扩容。 ●设备布局充分考虑电磁干扰、散热及便于维护。 ●天线分系统技术指标满足IESS-207所规定的E标准地球站的性能要求,安 装设备满足IESS-308/310中有关的性能要求。 ●地球站系统所选用的设备均为技术先进、质量可靠的在用设备。设计寿命应 大于15年。在设计寿命内,地球站系统总的可用度应优于99.9%,满足每 天24小时有人/无人值守下连续运行的要求。 1.3设计依据 (1)遵循IESS-207 E-3标准地球站的性能要求和IESS-308和IESS-310最新版本中规定的中速、高速数据速率的电视业务、话音业务、数据业务设备技术参数要求。 (2)中华人民共和国通信行业相关标准: ●YD 5050-20XX 《国内卫星通信地球站工程设计规范》 ●YD/T 5017-20XX《国内卫星通信地球站设备安装工程验收规范》 ●YD 5059-20XX《电信设备安装抗震设计规范》 ●YD 5098-20XX《通信局(站)防雷与接地工程设计规范》

卫星通信技术在智能交通中的应用

卫星通信技术在智能交通中的应用

卫星通信技术在智能交通中的应用 姓名:李泽宇学号:100740318 专业:交通3班 摘要:本文卫星通信系统的组成及功能以及其在智能交通中的应用,就卫星通信技术中的卫星定位系统在智能交通中的应用作简要分析,并简单介绍了现代卫星通信技术在智能交通中的应用案例,提出了个人对智能交通系统未来发展的建议和祝愿,希望智能交通为人民带来便捷的出行。 关键字:卫星通信系统;智能交通;应用 前言:卫星通信是一种利用人造地球卫星作为中继站来转发无线电波而进行的两个或多个地球站之间的通信。卫星通信技术服务于人类的各个角落,为人类的生活,交流带来了方便。现代卫星通信技术在智能交通中的应用涉及到了多个方面,如全球卫星定位系统GPS 及其在智能交通系统ITS 中的应用;基于卫星定位和无线通信技术的道路电子收费系统;卫星通信技术将在交通运输领域深入应用等。 正文:1 卫星通信系统 1.1 卫星系统的组成卫星通信系统是由通信卫星和经该卫星连通的地球站两部分组成。静止通信卫星是目前全球卫星通信系统中最常用的星体,是将通信卫星发射到赤道上空35860 公里的高度上,使卫星运转方向与地球自转方向一致,并使卫星的运转周期正好等于地球的自转周期(24 小时),从而使卫星始终保持同步运行状态。故静止卫星也称为同步卫星。静止卫星天线波束最大覆盖面可以达到大于地球表面总面积的三分之一。因此,在静止轨道上,只要等间隔地放置三颗通信卫星,其天线波束就能基本上覆盖整个地球(除两极地区外),实现全球范围的通信。目前使用的国际通信卫星系统,就是按照上述原理建立起来的,三颗卫星分别位于大西洋、太平洋和印度洋上空。 1.2 卫星系统的功能 1.2.1 卫星系统功能方框图示于下图: 1.2.2 位置与姿态控制系统从理论上讲,静止卫星的位置相对于地球说是静止不动的,但是实际上它并不是经常能够保持这种相对静止的状态。这是因为地球并不是一个

船载卫星通信系统解决方案

船载卫星通信系统解决方案 2010年5月12日 摘要:本文阐述了船载卫星通信系统在海事搜救中的解决方案和实际应用。 关键词:船载动中通天线;卫星通信技术 我国是国际航运大国,拥有辽阔的海域。1985年我国加入《1979年国际海上搜寻救助公约》。交通运输部在构筑和谐社会的新形势下,提出了将海事搜救建成“全方位覆盖、全天候运行、快速反应的水上安全保障体系,对发生在我国搜救责任区内的海上险情实施快速有效救助”的总体目标。 实现海上搜救的信息化、可视化、自动化已经是大势所趋,现代卫星移动通信技术的发展和应用,为实现这一目标提供了可靠技术保障。船载卫星通信系统的应用有效地保障了海上搜救中信息的传输。 文中详细阐述了海事搜救中对船载卫星通信系统的需求、解决方案和实际应用。通过最新的移动卫星通信技术,从根本上解决海事搜救通信中实时图像、语音、数据的传输问题。 根据海事搜救的特点,将海事搜救实时通信指挥系统的需求归纳如下:实时图像传输,即将搜救船上摄像机采集的现场图像实时传回指挥中心;建立搜救船与指挥中心的视频会议系统;建立搜救船与指挥中心的语音通话系统,实现电话、传真等功能;建立搜救船上局域网与指挥中心局域网互联,实现移动办公和现场指挥;建立搜救船上Internet接入,便于搜救时收发邮件和查找资料。 根据以上需求,提出采用基于全网IP的LinkStar高速卫星通信网络的船载卫星通信系统解决方案。 一、船载卫星通信系统链路解决方案 船载卫星通信系统链路包含以下几个部分:船载卫星动中通天线、卫星通信系统、卫星

地面站、指挥中心的通信专线或指挥中心远端卫星接收站等,其卫星通信系统链路原理如图1所示。 船载卫星动中通天线与通信卫星进行通信,通信卫星与卫星地面站进行通信,卫星地面站与指挥中心的专线,或通过与指挥中心远端卫星端站进行通信,从而实现搜救船与指挥中心的卫星通信。 船载卫星动中通天线是实现船岸通信的最重要组成部件,需要保证船在航行过程中克服船的横摇、纵摇以及上下起伏,保持与通信卫星的稳定通信。 因此,船载卫星动中通天线的选择首先要保证的是在复杂的航行条件下天线能稳定地跟踪通信卫星。其次是它的通信能力,天线的通信设备要能支持较高通信带宽。第三,安装方便。对于海事局60米巡逻船而言,船上能提供的船载天线安装空间有限,因此安装方便非常重要。 在本文所述的解决方案中,选择的是以色列Orbit Orsat(AL-7103MKⅡ)船载动中通卫星天线,如图2所示:

中国民航甚高频数据通信系统

中国民航甚高频数据通信系统 现在,当您在中国境内乘坐大型民航客机的时候,您可能还不知道,您已经在享受中国民航甚高频数据通信系统提供的服务了。这一系统是由中国民航总局及中国七大骨干航空公司共同组建、唯一覆盖全国航路的地空数据通信网络。实际上,它也是世界上的第三大地空数据通信网。 作用 从前,当民航客机离开机场进入航路的时候,飞机虽然可以与空管系统的地面站联络,但基本上就和航空公司失去了直接联系。因为一般话音电台的通信距离只有三四百公里,超过这一距离,飞行员就无法同起飞机场的地面通话了,或者无法同所属的航空公司保持直接的通信联系了。也就是说,飞机在飞行中出了问题不能立即报告所属航空公司,航空公司有什么重要事情也无法直接立即告诉飞行中的飞机。中国民航甚高频数据通信系统正是为了解决这一问题而建 立的。它可为航空公司、航空管制部门、航空行政管理部门、机场、信息服务机构和社会公众机构等,提供地面与飞机间的双向、实时、可靠的数据通信服务。比如,飞机在飞行途

中发生了一些意外的情况而又难以排除时,飞行员便可以借助中国民航的甚高频数据通信系统,把各种飞行参数以及发动机状态等内容及时传送给航空公司,以便各方面协调解决问题,杜绝事故隐患。此外,航空公司还可通过这一系统随时了解飞机所处的位置,以便对飞机进行实时监控,更好地调度本公司飞机的运营。这一系统对空管部门的作用更大,因为它是采用报文形式传输数据的,飞行员可以根据打印出来的报告来处理问题。在报告中,各种参数一目了然,也就杜绝了由于空管人员口误而造成的指挥错误。 组成 中国民航甚高频数据通信系统主要由飞机机载数据收发设备(ACARS)、远端地面站、网络管理与数据处理子系统、地面数据通信网络,以及用户网络五大部分组成。 飞机机载数据收发设备主要有两个作用:一是在飞机上接收航空公司传来的信息;二是从飞机上向航空公司发出信息。这套设备主要由安装在飞机驾驶舱内的多功能控制显示组件(MCDU)、管理组件(MU)、打印机,以及甚高频电台等组成。其特点是操作简单、可靠,大部分飞行参数是管理组件自动生成的,飞行员只需要按几个按键就可以把这些资料发送出去,极大地减轻了飞行员的工作压力,并且可以

卫星通信的SATCOM系统设计解决方案

卫星通信的SATCOM系统设计解决方案 过去二十年来,商用航空领域一直依赖卫星通信协调民用航空乘客出行。随着数据流量和物联网(loT)应用的增长,对卫星通信系统的需求已达到顶峰。 对于商用喷气机和大型客机而言,商用飞机的高带宽数据访问需求也增长显著。我们发射了支持更高频率的新卫星,以实现这种带宽增长。本文将考察这些技术趋势,以及可通过市场上提供的可定制架构实现所需性能并缩短上市时间的解决方案。 SATCOM介绍和历史 不断提高数据速率的需求正在推动SATCOM领域中的许多新发展。SATCOM链路的数据速率将从kbps提高至Mbps,这将实现更高效的数据和视频传输。无人机的大幅增加为SATCOM链路创造了一个新的舞台。而且,商业航空航天市场中对数据和互联网接入不断增长的需求正在推动Ku频段和Ka频段不断发展,以支持最高达1000 Mbps的数据速率。同时,支持传统数据链路、最大限度减小尺寸、重量和功耗(SWaP)和减少系统开发投入也正在推动对开发灵活架构和最大限度提高系统重用率的需求。 SATCOM系统通常利用对地静止轨道(GEO)卫星—相对于地球表面静止的卫星。要实现对地静止轨道,卫星必须具有非常高的海拔高度—与地球表面的距离超过30 km。这样的高轨道的好处在于,覆盖大面积的地面只需要很少的卫星,而且由于知道其固定坐标,因此将数据传输至卫星较为简单。由于这些系统的发射成本较高,因此它们专为长使用寿命而设计,非常稳定,但有时也会有点过时。 由于海拔高度较高且存在辐射,因此往往需要采用额外的设备屏蔽或卫星屏蔽措施。而且,由于卫星离得太远,地面上的用户可能会有重大信号损失,同时还会影响信号链设计和元件选择。地面到卫星的距离较长还会造成用户和卫星之间的高延迟,这会影响部分数据和通信链路。 最近,人们提出了许多GEO卫星的替代方案或补充系统,无人飞行器和低地轨道(LEO)卫星也正在考虑当中。借助低轨道,这些系统可减小基于GEO的系统方面的挑战,但会影响覆盖范围,需要更多的卫星或无人飞行器才能实现类似的全球覆盖。

甚高频地空通信系统备案系统备案表

附件1 甚高频地空通信甚高频地空通信甚高频地空通信系统系统系统备案备案备案表表 本部分由备案人填写 Ⅰ 备 案 信 息 台站名称 设备产权单位 设备维护单位 设备类型 □单信道系统 □多信道共用天线系统 □收信机 □发信机 □收发信一体机 设备型号 设备(临时)使用许可证号 生产厂家 通信方式 □语音 □数据 设备配置 信道 设备用途 □主用 □备用 天线类型 □定向天线 □全向天线 遥控系统 主控方 受控方 工作频率 发射功率 供电方式 传输方式 设备安装地点 持有执照人数 投产开放日期 飞行校验日期 台站坐标1 (北京54坐标系) 东 经 度 分 秒 北 纬 度 分 秒 台站坐标2 (WGS-84) 东 经 度 分 秒 北 纬 度 分 秒 注:经纬度精确到0.01秒,高度和高程精确到0.1米。 II II 备备 案 材 料 附下述哪些文件 □校验或验证报告 □工程竣工验收报告 □试运行用户报告和记录数据 其他1 其他2 III III 声明声明声明::本单位保证上述填写内容属实本单位保证上述填写内容属实,,如有不实后果本单位负责如有不实后果本单位负责。。 联系人: 联系电话: 备案单位(盖章) 年 月 日

附件2 高频地空通信高频地空通信高频地空通信系统系统系统备案备案备案表表 本部分由备案人填写 Ⅰ 备 案 信 息 台站名称 设备产权单位 设备维护单位 设备类型 □收信机 □发信机 □收发信一体机 设备型号 设备(临时)使用许可证号 设备生产厂家 设备用途 □备用 □应急 天线生产厂家 天线型号及类型 发射功率 工作频率 反射地网类型 是否配备选呼设备 □是 □否 供电方式 传输方式 设备安装地点 持有执照人数 竣工验收日期 投产开放日期 台站坐标1 (北京54坐标系) 东 经 度 分 秒 北 纬 度 分 秒 台站坐标2 (WGS-84坐标系) 东 经 度 分 秒 北 纬 度 分 秒 注:经纬度精确到0.01秒,高度和高程精确到0.1米。 II II 备备 案 材 料 附下述哪些文件 □校验或验证报告 □工程竣工验收报告 □试运行用户报告和记录数据 其他1 其他2 III III 声明声明声明::本单位保证上述填写内容属实本单位保证上述填写内容属实,,如有不实后果本单位负责如有不实后果本单位负责。。 联系人: 联系电话: 备案单位(盖章) 年 月 日

卫星通信系统

卫星通信系统 现代社会处处离不开通信,通信系统与我们的生活紧密相关,随处可见。例如:我们每天离不开的手机,当我们用它和亲人朋友打电话时,在使用移动通信系统;我们在使用百度地图时对用GPS定位时,使用卫星通信系统;当我们链接WiFi 在浏览器搜索时,我们使用着网络系统,这时如果发挥一下你的想象力,想象着从你所在的某个方位在你看不见的地下和空气中有着光纤和微波编织着相互交错的大网,而就是这张大网将你和世界联系在一起了,是一件多么神奇而又美妙的事情。 一、卫星通信系统的历史、现状、未来趋势 1.1卫星通信系统的历史 卫星通信自二十世纪五、六十年代以来的发展过程大致经历了以下五个阶段: 1.第一阶段1945年-1964年,1945年英国人Arthur C. Clarke最早对利用 卫星建立全球通信提出了科学设想以来,美国和前苏联先后研制出低轨道无源、有源及准同步实验卫星。 2.第二阶段1965年-1972年,国际卫星通信组织开始通过静止卫星向全球 提供商业服务。 3.第三阶段1973年-1982年,卫星系统为陆地、空中、海上用户提供固定 和移动卫星通信业务。 4.第四阶段1983年-1990年,卫星通信被逐步应用于专用数据网、数话兼 容网和卫星直播业务。在这个时期,用户端的VSAT网络得到迅猛的发展,被广泛应用于公众服务、医疗、商业、军事和教育等领域。 5.第五阶段1990年-现在,卫星通信领域进入发展的重要时期,LED、MEO 和混合式轨道卫星通信系统开始广泛应用于全球电信网,以满足宽带和移动用户的各种需求。 1.2卫星通信系统的现状 近年来,世界上的许多国家相继建立了国内卫星通信系统,最早建立国内卫星通信系统的是加拿大。目前美国拥有的国内卫星通信系统数量最多,日本正在发展30/ZOGHz的国内卫星通信系统,澳大利亚、巴西、墨西哥也都准备建立国内卫星通信系统。而我国卫星通信的一个严重问题是依赖国外卫星,巨大的市场被国外卫星占领。 1.3卫星通信系统的未来趋势 未来卫星通信将沿着数字化、网络化、以及信息化方向前进,针对卫星通信的未来发展趋势而言,由于C、K波段的使用趋于饱和我们应该在现有的基础上提高频段频谱的利用率,同时将IP与ATM技术相结合去建立卫星宽带综合业务数字通信网——国家信息高速公路;要进一步去实现建立小型化、智能化、经济化未来的卫星通信网,实现移动用户间可以利用卫星进行通信,而不再需要基站;如果将卫星与 Internet 网络相连,实现卫星互联网技术,这样就可以利用宽带卫星进行双向传输,并且下载和地面网络反馈的速度也得到了大幅提升,同时也大大减轻了频谱拥挤现象以及抗干扰能力。 二、卫星通信系统模型

民航飞机的通信系统

民航飞机的通信系统 通信系统的主要用途是使飞机在飞行的各阶段中和地面的航行管制人员、签派、维修等相关人员保持双向的语音和信号联系,当然这个系统也提供了飞机内部人员之间和与旅客联络服务。 它主要分为:甚高频通信系统、高频通信系统、选择呼叫系统和音频系统。 (本页插图以空中客车320驾驶舱为例,是目前较为先进的一套,其他现代化民航客机均类似。只是名称、面板设计、功能强弱有所不同) A320无线电管理面板 (部分) RMP :Radio Management Panel 1.甚高频通信系统( VHF : Very High Frequency ) 使用甚高频无线电波。它的有效作用范围较短,只在目视范围之内,作用距离随高度变化,在高度为300米时距离为74公里。是目前民航飞机主要的通信工具,用于飞机在起飞、降落时或通过控制空域时机组人员和地面管制人员的双向语音通信。起飞和降落时期是驾驶员处理问题最繁忙的时期,也是飞行中最容易发生事故的时间,因此必须保证甚高频通信的高度可靠,民航飞机上一般都装有一套以上的备用系统。 甚高频通信系统由收发机组、控制盒和天线三部分组成。收发机组用频率合成器提供稳定的基准频率,然后和信号一起,通过天线发射出去。接收部分则从天线

上收到信号,经过放大、检波、静噪后变成音频信号,输入驾驶员的耳机。天线为刀形,一般在机腹和机背上都有安装。 甚高频所使用的频率范围按照国际民航组织的统一规定在118.000~ 135.975MHZ ,每25KHZ为一个频道,可设置720个频道由飞机和地面控制台选用,频率具体分配为: 118.000~121.400MHZ、123.675~128.800MHZ和132.025~135.975MHZ三个频段主要用于空中交通管制人员与飞机驾驶员间的通话,其中主要集中在 118.000~121.400MHZ; 121.100MHZ、121.200MHZ用于空中飞行情报服务; 121.500MHZ定为遇难呼救的全世界统一的频道。 121.600~121.925MHZ主要用于地面管制; 值得注意的是通信信号是调幅的,通话双方使用同一频率,一方发送完毕,停止发射等待对方信号。 2.高频通信系统(HF:High Frequency ) 是远距离通信系统。它使用了和短波广播的频率范围相同的电磁波,它利用电离层 的反射,因而通信距离可达数千公里,用于飞行中保持与基地和远方航站的联络。使用的频率范围为2-30MHZ ,每1KHZ为一个频道。大型飞机一般装有两套高频通信系统,使用单边带通信,这样可以大大压缩所占用的频带,节省发射功率。高频通信系统由收发机组、天线耦合器、控制盒和天线组成,它的输出功率较大,需要有通风散热装置。现代民航机用的高频通信天线一般埋入飞机蒙皮之内,装在飞机尾部,不过目前该系统很少使用。 3.选择呼叫系统(SELCAL ) 它的作用是用于当地面呼叫一架飞机时,飞机上的选择呼叫系统以灯光和音响通知机组有人呼叫,从而进行联络,避免了驾驶员长时间等候呼叫或是由于疏漏而不能接通联系。每架飞机上的选择呼叫必须有一个特定的四位字母代码,机上的通信系统都调 在指定的频率上,当地面的高频或甚高频系统发出呼叫脉冲,其中包含着四字代码,飞机收到这个呼叫信号后输入译码器,如果呼叫的代码与飞机代码相符,则译码器把驾驶舱信号灯和音响器接通,通知驾驶员进行通话。 A320音频控制面板(部分) ACP:Audio Control Panel

相关文档
相关文档 最新文档