文档库 最新最全的文档下载
当前位置:文档库 › 重要极限的证明

重要极限的证明

重要极限的证明
重要极限的证明

1.求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ

/(2n+1))=√(2n +1)/2^n,

Sol:复数方法:

复数方程 z^(2n+1)=1的根是 a1,a2,a3,...,a(2n),1。

其中,ak=cos(2kπ/(2n+1))+i sin(2kπ/(2n+1)),k=1,2,...,2n。

所以,ak=(a1)^k

所以,z^(2n+1)-1=(z-a1)(z-a2)...(z-a(2n))(z-1),即

(z-a1)(z-a2)...(z-a(2n))=(z^(2n+1)-1)/(z-1)=z^(2n)+z^(2n-1)+...+z+1。

两边令z=1,并取模,则:

|1-a1|×|1-a2|×......×|1-a2n|=2n+1.........(*)

因为,|1-ak|=√|(cos(2kπ/(2n+1))-1))+i sin(2kπ/(2n+1))|=2×

sin(kπ/(2n+1)),所以由(*)式得:

2^n×sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))

=2n+1。

所以,sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n+1)/2^n

2.三角函数

求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ

/(2n+1))=√(2n +1)/2^n.

证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ

/(2n+1))=√(2n +1)/2^n

设Z=cos2π/(2n+1)+ isin2π/(2n+1)

则x^(2n+1)=1的根为1,z,...z^2n

得x^2n+...+x+1=(x-z)(x-z^2)...(x-z^2n)

2n+1=|(1-z)||(1-z^2)|...|(1-z^2n)| (1)

又|(1-z^k)|=2sinkπ/(2n+1) (2)

|1-z^k| = |1-(cos(2kπ/(2n+1)) +sin(2kπ/(2n+1)) )|

=|1-cos(2kπ/(2n+1))) -sin(2kπ/(2n+1)) )|

=√((1-2cos(2kπ/(2n+1)) +cos^2 (2kπ/(2n+1))) + sin^2 (2kπ/(2n+1))) =√(2-2cos(2kπ/(2n+1)) )

=√(4sin^2(kπ/(2n+1))

=2sin(kπ/(2n+1)

2n+1 =( n(π/(2n+1)). n(2π/(2n+1)) n(3π/(2n+1))........ n(2nπ/(2n+1)) 两边开方,得

sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ/(2n+1)) =√(2n+1) / 2^n

另外那个类似,可以尝试自己证一下.

3.为什么sinπ/n+sin2π/n......+sin(n-1)π/n=cotπ/2n?

解:2 sin [π/(2n)]·sin(π/n)= cos [π/n -π/(2n)]- cos [π/n +π/(2n)]= cos [π/(2n)]- cos [3π/(2n)]2 sin [π/(2n)]·sin(2π/n)= cos [2π/n -π/(2n)]- cos [2π/n+π/(2n)]= cos [3π/(2n)]- cos

[5π/(2n)]2 sin [π/(2n)]·sin(3π/n)= cos [3π/n -π/(2n)]- co s [3π/n +π/(2n)]= cos [5π/(2n)]- cos [7π/(2n)]……2 sin [π/(2n)]·sin[(n-1)π/n]= cos [(n-1)π/n -π/(2n)]- cos [(n-1)π/n +π/(2n)]= cos [(2n-3)π/(2n)]- cos [(2n-1)π/(2n)]

故:2 sin [π/(2n)] ·{sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]}= cos [π/(2n)]- cos [(2n-1)π/(2n)]= cos [π/(2n)]- cos [π-π/(2n)]=2 cos [π/(2n)]

故:sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]= cos[π/(2n)]/ sin

[π/(2n)]= cot [π/(2n)]

4.级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么? Sol:收敛,Dirichlet 判别法.这是最典型的一个用Dirichlet 判别法判别收敛的例子.sinn 的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[cos1/2-cos(2n+1)/2)]/sin1/2,于是有界,1/(n+1)单调递减趋于0,收敛.不绝对收敛.|sinn/(n+1)|>=sin^2n/(n+1)=[1-cos(2n)]/2(n+1).类似用Dirichl et 判别法知道级数cos2n/(n+1)收敛,但级数1/(n+1)发散,于是易知不绝对收敛.建议记住这个典型例子.

1

2122ln ln ...ln lim .2ln ln ln ...ln n ln 2ln 1:ln 2ln =ln 2

o n n n n x n

o n n n n c c c I n

n c c c n n sol n n n n n

I →∞+++=+++-≤==-求

5.求sin π/n*sin2π/n*…*sin(n-1)π/n 的值,用复数思想

6.三角函数连乘(正弦)求证:sin[π/(2n+1)]*sin[2π/(2n+1)]*sin[3π/(2n+1)]*……*sin[nπ/(2n+1)]=(根号下2n-1)/2^n

Sol:

7.证一般项级数∑sin√(n^2+1)π条件收敛

Sol:∵sin√(n2+1)π

=[(-1)^n]sin[√(n2+1)π-nπ]

=[(-1)^n]sin[√(n2+1)-n]π

=[(-1)^n]sin{1/[√(n2+1)+n]}π

lim(n→∞)[sin{1/[√(n2+1)+n]}π]/(1/n)

=lim(n→∞)nπ/[√(n2+1)+n]

=π/2

∴∑sin{1/[√(n2+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n2+1)+n]}π发散

lim(n→∞)sin{1/[√(n2+1)+n]}π=0,且sin{1/[√[(n+1)2+1]+(n+1)]}π≤sin{1/[√(n 2+1)+n]}π

由莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n2+1)+n]}π收敛

∴原级数条件收敛

其他回答:sin√(n^2+1)π=(-1)^n sin(√(n^2+1)π+nπ)

再利用分子有理化可得:(-1)^n sin(π/[根号(n^2+1)+n])

利用 Dirichlet判别法可知级数收敛。

而它的绝对值级数可以等价为:sin(π/[根号(n^2+1)+n])~π/[根号(n^2+1)+n]~1/n即发散。

9.Sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n) 这等式怎么证?大概要从哪个方面入手?

sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n)

用复数

w=cos(2π/n)+isin(2π/n)

w'=cos(2π/n)-isin(2π/n)

z^n=1

(z-1)(z^(n-1)+z^(n-2)+……+z+1)=0

z^(n-1)+z^(n-2)+……+z+1=(z-w)(z-w^2)(z-w^3)……(z-w^(n-1))

z=1

n=(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))

1-w^k=2sinkπ/n(sinkπ/n+icoskπ/n)

|1-w^k|=|2sinkπ/n(sinkπ/n+icoskπ/n)|=|2sinkπ/n||(sinkπ/n+icoskπ

/n)|=|2sinkπ/n|=2sin(kπ/n)

取模

|n|=|(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))|

|n|=|(1-w)||(1-w^2)||(1-w^3)|…|(1-w^(n-1))|

n=2^(n-1)sin(π/n)sin(2π/n)……sin[(n-1)π/n]

得证

重要极限的证明

1.求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ /(2n+1))=√(2n +1)/2^n, Sol:复数方法: 复数方程 z^(2n+1)=1的根是 a1,a2,a3,...,a(2n),1。 其中,ak=cos(2kπ/(2n+1))+i sin(2kπ/(2n+1)),k=1,2,...,2n。 所以,ak=(a1)^k 所以,z^(2n+1)-1=(z-a1)(z-a2)...(z-a(2n))(z-1),即 (z-a1)(z-a2)...(z-a(2n))=(z^(2n+1)-1)/(z-1)=z^(2n)+z^(2n-1)+...+z+1。 两边令z=1,并取模,则: |1-a1|×|1-a2|×......×|1-a2n|=2n+1.........(*) 因为,|1-ak|=√|(cos(2kπ/(2n+1))-1))+i sin(2kπ/(2n+1))|=2× sin(kπ/(2n+1)),所以由(*)式得: 2^n×sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1)) =2n+1。 所以,sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n+1)/2^n 2.三角函数 求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ /(2n+1))=√(2n +1)/2^n. 证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ /(2n+1))=√(2n +1)/2^n 设Z=cos2π/(2n+1)+ isin2π/(2n+1) 则x^(2n+1)=1的根为1,z,...z^2n 得x^2n+...+x+1=(x-z)(x-z^2)...(x-z^2n) 2n+1=|(1-z)||(1-z^2)|...|(1-z^2n)| (1) 又|(1-z^k)|=2sinkπ/(2n+1) (2) |1-z^k| = |1-(cos(2kπ/(2n+1)) +sin(2kπ/(2n+1)) )| =|1-cos(2kπ/(2n+1))) -sin(2kπ/(2n+1)) )| =√((1-2cos(2kπ/(2n+1)) +cos^2 (2kπ/(2n+1))) + sin^2 (2kπ/(2n+1))) =√(2-2cos(2kπ/(2n+1)) ) =√(4sin^2(kπ/(2n+1)) =2sin(kπ/(2n+1) 故 2n+1 =( n(π/(2n+1)). n(2π/(2n+1)) n(3π/(2n+1))........ n(2nπ/(2n+1)) 两边开方,得 sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ/(2n+1)) =√(2n+1) / 2^n 另外那个类似,可以尝试自己证一下. 3.为什么sinπ/n+sin2π/n......+sin(n-1)π/n=cotπ/2n?

两个重要极限的证明

两个重要极限的证明第六节极限存在准则、两个重要极限 教学目的:1 使学生掌握极限存在的两个准则;并会利用它们求极限; 2使学生掌握利用两个重要极限求极限的方法; 教学重点:利用两个重要极限求极限 教学过程: 一、讲授新课: 准则I:如果数列满足下列条件: (i)对 ; (ii) 那么,数列的极限存在,且。 证明:因为,所以对,当时,有,即 ,对,当时,有,即,又因为,所以当时,有, 即有:,即,所以。 准则I′如果函数满足下列条件: (i)当时,有。 (ii)当时,有。 那么当时,的极限存在,且等于。 第一个重要极限: 作为准则I′的应用,下面将证明第一个重要极限:。 证明:作单位圆,如下图: 设为圆心角,并设见图不难发现:,即:,即, (因为,所以上不等式不改变方向) 当改变符号时,及1的值均不变,故对满足的一切 ,有。 又因为, 所以而,证毕。 【例1】。 【例2】。 【例3】。 【例4】。 准则Ⅱ:单调有界数列必有极限 如果数列满足:,就称之为单调增加数列;若满足:,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。 如果,使得:,就称数列为有上界;若,使得:,就称有下界。 准则Ⅱ′:单调上升,且有上界的数列必有极限。 准则Ⅱ″: 单调下降,且有下界的数列必有极限。 注1:由前已知,有界数列未必有极限,若加单调性,就有极限。 2:准则Ⅱ,Ⅱ′,Ⅱ″可推广到函数情形中去,在此不一一陈述了。 第二个重要极限: 作为准则Ⅱ的一个应用,下面来证明极限是不存在的。 先考虑取正整数时的情形:对于,有不等式:,即:, 即: (i)现令,显然,因为将其代入,所以,所以为单调数列。 (ii)又令,所以, 即对,又对所以{ }是有界的。 由准则Ⅱ或Ⅱ′知存在,并使用来表示,即

两个重要极限的证明

两个重要的极限 1.证明:0sin lim 1x x x →= 证明:如图(a )作单位圆。当0>。(1) 由偶函数性质,上式对02x π-<<时也成立。 故(1)式对一切满足不等式0||2x π<<的x 都成立。 由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x =。 函数f(x)=sin x x 的图象如图(b )所示。 2.证明:1lim(1)n n n →∞+存在。 证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11 (1)n n n b a n b b a ++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。 (1) 令a=1+11 n +,b=1+1n ,将它们代入(1)。由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n +为递增数列。 再令a=1,b=1+12n 代入(1)。由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。不等式两端平方后有214(1)2n n >+ ,它对一切自然数n 成立。联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。于是由单调有界定理知道极限1lim(1)n n n →∞+是存在的。 3.证明:1lim(1)x x e x →∞+=。 证明:所求证的极限等价于同时成立下述两个极限: 1lim (1)x x e x →+∞+= (1) 1lim (1)x x e x →-∞+= (2) 现在先应用2中数列极限1lim(1)n n e n →∞+=,证明(1)式成立。 设n≤x

重要极限的证明_1

重要极限的证明 重要极限的证明极限是ea0在n比较大时,(1 (1-a)/n)^n=原式=(1 1/n)^n取极限后,e》=原式的上极限》=原式的下极限》=e^(1-a)由a的任意性,得极限为e利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

两个极限的简单证明

两个重要的极限的证明 引言: 两个重要极限是高等数学极限理论中的经典内容,第一个重要极限0sin lim 1x x x →=的证明,现行教材中 通常采用在单位圆中利用面积关系构造不等式sin cos 1x x x < <,再用夹逼原理证明得到结论。用极限理论计算圆或扇形面积都涉及到0sin lim 1x x x →=的结论运用,或者运洛比达法则证明极限0sin lim 1x x x →=,要利 用导数公式()sin cos x x '=,而这个公式恰是利用0sin lim 1x x x →=,因此,这些方法都有循环证明的嫌疑; 第二个主要极限01lim x x x e x →? ?+= ???的证明,通常作法是,先考虑x 取正整数n 而趋于+∞的情形,设 1n n x x n ? ?=+ ?? ?,用牛顿二项式证明{}n x 单调有界,再用单调有界数列必有极限的准则,证明数列{}n x 的 极限存在,方法比较复杂,特别是有界性的证明需要一定的技巧,所以本文只对两个重要极限作一个简单 的证明。 1.证明:0sin lim 1x x x →= 证明:如图(a )作单位圆。当0>。 (1) 由偶函数性质,上式对02x π-<<时也成立。 故(1)式对一切满足不等式0||2 x π <<的x 都成立。 由0lim x →cos x =1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x =。 函数f(x)=sin x x 的图象如图(b )所示。 2.证明:1 lim(1)n n n →∞+存在。 证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11 (1)n n n b a n b b a ++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。 (1) 令a=1+11n +,b=1+1n ,将它们代入(1)。由于11 (1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++ >++,这就是说1 {(1)}n n +为递增数列。 图(a ) 图(b )

重要极限的证明

重要极限的证明 重要极限的证明极限是e a>0 在n比较大时,(1+(1-a)/n)^n取极限后,e》=原式的上极限》=原式的下极限》=e^(1-a) 由a的任意性,得 极限为e 利用极限存在准则证明: (1)当x趋近于正无穷时,(Inx/x^2)的极限为0; (2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。 1)用夹逼准则: x大于1时,lnx>0,x^2>0,故lnx/x^2>0 且lnx1),lnx/x^2故(Inx/x^2)的极限为0 2)用单调有界数列收敛: 分三种情况,x0=√a时,显然极限为√a x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在. 设数列极限为A,Xn和X(n-1)极限都为A. 对原始两边求极限得A=[A+(a/A)]/2.解得A=√a 同理可求x0综上,数列极限存在,且为√ (一)时函数的极限: 以时和为例引入. 介绍符号: 的意义, 的直观意义. 定义( 和. ) 几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1验证例2验证例3验证证…… (二)时函数的极限: 由考虑时的极限引入. 定义函数极限的“ ”定义. 几何意义. 用定义验证函数极限的基本思路. 例4 验证例5 验证例6验证证由= 为使需有为使需有于是, 倘限制, 就有 例7验证例8验证( 类似有(三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域然后介绍等的几何意义. 例9验证证考虑使的 2.单侧极限与双侧极限的关系: Th类似有: 例10证明: 极限不存在. 例11设函数在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(3学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。

对两个重要极限的重要性的认识

e x x x =+∞→)11(lim 1sin lim 0=→x x x 对两个重要极限的重要性的认识 摘要 :通过对两个重要极限重要性的理解和认识, 总结有关两个重要极限的论文成果,指出两个重要极限在微积分的计算过程中起到了重要的桥梁纽带作用,主张学习数学知识不仅局限于课本,要培养提高探究问题的能力,系统全面的看待问题,深刻细致的体会微积分思想的严谨性。 关键词 : 重要极限;重要性;证明;应用 1.绪论 两个重要极限在微积分的计算和整个微积分思想中起着举足轻重的作用,目 前,关于这方面的分析已经很成熟,有关于它们的来源,证明,应用和深入扩展,本文系统的总结了部分具有代表性的成果,从而可以直观全面的认识和体会两个重要极限的重要性,对刚接触极限理论,没有深入认识两个重要极限的学生来说,具有指导意义。 《数学分析》课程在讲述关于两个重要极限 和 时,着重强调了它在整个极限计算中有重要地位。 它能将许多复杂的极限计算迅速简化, 应用非常灵活。因此,这两个重要的极限可以说是全部微积分学计算的基础, 其重要性就不难理解了。试想, 若没有它们, 那么只要遇见微积分相关的计算题, 必须用最基本的方法,有些还不一定求得出来,更不用说由它们推广出的更复杂的应用了。 2.两个重要极限的证明 两个重要极限是极限理论的重要内容, 也是解决极限问题的一种有效方法, 在学生的学习中, 起着重要作用,了解它们的证明方法对充分理解和认识它们是十分必要的,它的证明过程也是对两边夹定理及单调有界数列必有极限这一准则的恰当应用。 2.1第一个重要极限:1sin lim 0=→x x x 证明:作单位圆,如图1:

相关文档