文档库 最新最全的文档下载
当前位置:文档库 › 皂苷提取

皂苷提取

皂苷提取
皂苷提取

ORIGINAL ARTICLE

Optimization of Microwave-Assisted Extraction of Tea Saponin and Its Application on Cleaning of Historic Silks

Jun He ?Zi-ying Wu ?Shuo Zhang ?

Yang Zhou ?Feng Zhao ?Zhi-qin Peng ?Zhi-wen Hu

Received:11March 2013/Accepted:7August 2013/Published online:20August 2013óAOCS 2013

Abstract Microwave-assisted extraction (MAE)was utilized to extract tea saponin from oil-tea camellia seed cake.The factors in?uencing the extraction ef?ciency were studied,including the effects of microwave power,irradi-ation duration,temperature,ratio of solvent to material and aqueous ethanol concentration.By systematic orthogonal experiments,the optimal extraction technology was https://www.wendangku.net/doc/0514531521.html,pared with a conventional extraction method,MAE shows great advantages with the extraction time reduced from 6h to 4min,50%organic solvent saved and about 14%extraction yield enhanced.Fourier transform infrared spectroscopy testing and high performance liquid chromatography analysis proved that the extracted resul-tants were tea saponin with similar compounds as a stan-dard tea saponin.The extracted tea saponin was applied on

the cleaning of historic silks and showed good removal effect on the stains.This work provides useful information for fully use of oil-tea camellia seed cake and new appli-cations of tea saponin at the protection of historic textiles.Keywords Microwave-assisted extraction áTea saponin áOil-tea camellia seed cake áCleaning

Introduction

Tea saponin is a kind of non-ionic surfactant which has good foaming,emulsifying and decontaminating properties [1,2].It plays important roles in daily chemical,food,pharmaceutical and agricultural industries [3,4].As a kind of natural source surfactant,it is mild,safe and pollution-free and ef?cient as detergent.Moreover,it shows quite faint yellow color,which is lighter than most of natural surfactants and could be a candidate to develop detergents for cleaning of old textiles with no or low color in?uencing and other damages.

The oil tea tree is widely cultivated in Xiangxi,a southwest district in China where the Miao and Tujia minorities live.Every year,plenty of oil-tea camellia seed cakes are produced after the process of oil production and treated as waste residues.However,the residues contain a large amount of tea saponin (about 16wt%)and other ingredients including water,?avonoid,polysaccharide,etc.[3].In order to make full use of the wasted oil-tea camellia seed cake,it is important to separate tea saponin from the oil-tea camellia seed cake in an economical,ef?cient and pollution-free way and to develop its new applications.Although conventional extraction methods like macer-ation and stirring extraction,shaking extraction,and heat re?ux extraction are widely applied in the separation of tea

J.He áZ.Wu áS.Zhang áZ.Peng áZ.Hu

Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,

Zhejiang Sci-Tech University,Hangzhou 310018,China J.He áZ.Wu áS.Zhang áZ.Peng áZ.Hu

Laboratory of Cultural Relics Protection Materials,

Zhejiang Sci-Tech University,Hangzhou 310018,China Z.Wu (&)

Key Laboratory of Advanced Textile Materials and

Manufacturing Technology,Laboratory of Cultural Relics Protection Materials,Institute of Material and Textile,Zhejiang Sci-Tech University,Hangzhou 310018,China e-mail:zywu2007@https://www.wendangku.net/doc/0514531521.html,

Y.Zhou áF.Zhao

China National Silk Museum,Hangzhou 310002,China Y.Zhou áF.Zhao

Key Scienti?c Research Base of Textile Conservation,State Administration for Cultural Heritage,Hangzhou 310002,China

J Surfact Deterg (2014)17:919–928DOI 10.1007/s11743-013-1523-8

saponin for their availability,large amount of organic solvents were utilized during these extraction processes[5, 6].These methods were considered as time-consuming, low ef?cient and expensive[7].Therefore,people still try to?nd more available methods for the separation of tea saponin.For instance,Jin Yan and his co-workers[8] applied a two-stage foam fractionation technology to sep-arate tea saponin.Effects of temperature,initial pH,load-ing liquid volume and super?cial air?ow rate in the two-stage foam fractionation process were investigated.

Microwave-assisted extraction(MAE)is a process of using microwave energy to heat the solvent in contact with a sample to partition compounds of analytical interest from the sample matrix into the solvent[9,10].In MAE,the solvent mixture is heated directly by microwaves,and the direct interaction of microwaves with the free water mol-ecules present in the plant cells,which results in the sub-sequent rupture of the plant tissue and the release of the active compounds into the organic solvent[11,12].Thus MAE has many advantages such as higher ef?ciency, shorter time,lower cost and environmental friendliness [13,14].

Since1985,MAE had been applied in the extraction of compounds from different plants[15].In the past20years, MAE has been frequently used in analytical laboratories [16].Particularly,the speed of the extraction process using microwave energy and the quality of the extracted com-pounds make this technique a powerful tool for isolating important pharmaceutical compounds and in other new applications.For instance,the extraction of ginseng sapo-nins[5],volatile compounds[17],and total bioactive saponin fraction from Gymnema sylvestre[10]were reported.MAE was also applied in the extraction of tea saponin in China by several researchers[18–20].They carried out pilot studies on the effects of different factors on the extraction yield.However,in these studies,the authors only depicted the correlative relationship between the yields and some in?uencing factors.The effects of temperature and the aqueous ethanol concentration had not been discussed.No systematic analysis was being done to make the relationship clear and the highest yield reported was only12.16%.The ingredients of resultant extractives were not identi?ed and no product application was reported.

Therefore,we improved MAE in the extraction of tea saponin from waste oil-tea camellia seed cakes.Systematic orthogonal experiments(including?ve factors)were done after single factor experiments to determine the optimal extraction technology for tea saponin extraction by MAE. The results by the optimal extraction technology were compared with those by a conventional extraction.The contents of the extractives were calibrated.The chemical compositions of the extractives were compared with a standard tea saponin by Fourier transform infrared spec-troscopy.The ingredients of the extractives were tested by high performance liquid chromatography.The extracted tea saponin was applied for the cleaning of historic silks. Materials and Methods

Reagents and Materials

Fat-extracted oil-tea camellia seed cakes were provided from Xiangxi(Hunan,China)and ground into?ne powder (\250l m)in a mill before use.Ethanol(AR)was pur-chased from Hangzhou Gaojing Fine Chemical Industry Co.,Ltd(Hangzhou,China).Vanillin(AR)and standard tea saponin(purity of96wt%)were purchased from Aladdin Chemistry Co.,Ltd(Shanghai,China).30%(w/ w)hydrogen peroxide and95–98%(w/w)sulfuric acid were purchased from Sinopharm Chemical Reagent Co., Ltd(Shanghai,China).

Apparatus

Rotary evaporator(RE-52CS,Yarong Bio-instrument Co., Ltd.Shanghai,China);Vacuum drying oven(DZF-6020, Shanghai Jing Hong Laboratory Instrument Co.,Ltd. Shanghai,China);High-speed centrifuge(TGL-16C, Shanghai Anting Scienti?c Instrument Factory,Shanghai, China);UV/Vis spectrophotometer(752S,Shanghai Lengguang Industrial Co.,Ltd.Shanghai,China);Micro-wave extraction system(MAS-II,Shanghai Sineo Micro-wave Chemistry Technology Co.,Ltd.Shanghai,China); Fourier transformed infrared spectroscope(VECTOR222, BRUKER,Germany);High performance liquid chromato-graph(1100series,Agilent,American).

Extraction Methods

Heat Re?ux Extraction of Tea Saponin

Among the conventional extraction methods like macera-tion and stirring extraction,shaking extraction and ultra-sonic extraction for the extraction of tea saponin,heat re?ux extraction was adopted here to compare with MAE for its universality.In this experiment,heat re?ux extrac-tion was performed as Mandal[10]described,with some parameters changed.Oil-tea camellia seed cake powder (10g)was extracted at75°C for6h under re?ux with 200ml of85%(v/v)ethanol aqueous solution in a250-ml round-bottom?ask heated in a water bath.After the extraction,the sample was centrifuged and the supernatant was evaporated for dryness under vacuum environment. Then the dried residue was decolorized by30%(w/w)

H2O2aqueous solution for1h.Finally the dried and ground resultant powders(\250l m)were ready for quantitative analysis.

Microwave-Assisted Extraction of Tea Saponin Microwave-assisted extraction was performed in a closed microwave extraction system equipped with a magnetron of2,450MHz with a nominal maximum power of 1,000W,a re?ux unit,ten power levels,a time controller, a temperature sensor,an exhaust system,a liquid crystal display and a stirring device.Accurately weighed powder (10g)of fat-extracted oil-tea camellia seed cake was mixed with ethanol aqueous solution in a250-ml extraction vessel.Then the container was closed with a lid and a temperature sensor was inserted into the container to measure and control the internal temperature.The samples were irradiated with microwave energy under different experimental conditions,including changing microwave power,irradiation duration,temperature,ratio of solvent to material and aqueous ethanol concentration.After extrac-tion,the samples were centrifuged,decolorized(30%(w/ w)H2O2aqueous solution,1h),dried,ground(\250l m) and submitted to quantitative analysis.

Vanillin Sulfuric Acid Colorimetry for Quantitative Analysis

Calibration Curve of Tea Saponin

The determination of the total content of tea saponin was performed as described by Xiang[21].The standard curve which was used as the benchmark for the extraction yield determination was obtained as follows.Accurately weighed dried standard tea saponin(100.00mg)was dis-solved in80%(v/v)ethanol aqueous solution in a100-ml volumetric?ask.Standard tea saponin solutions with the concentration of1g/L and the amount of0,0.1,0.2,0.3, 0.4and0.5ml were accurately transferred into a5-ml test tube respectively.Then,80%(v/v)ethanol aqueous solu-tions were added to make the total volume being0.5ml.

0.5ml vanillin anhydrous ethanol solution[8%(w/v)]was added into these test tubes respectively.These test tubes were transferred into an ice water bath,and concentrated sulfuric acid solutions[4ml,77%(w/w)]were added to the test tubes respectively,too.Then the tubes were transferred from the ice water bath into a water bath of 60°C for25min.After being cooled to room temperature, with a blank solution as reference,the absorbency was scanned by using a UV/Vis spectrophotometer.Scanning results showed that the maximum adsorption was at 550nm,so the absorbency at Vis550nm was determined with a quartz cuvette.

Regression gives the linear relationship:

C?924:37Aà0:015R2?0:9973

àá

e1Twhere C(mg/ml)is the concentration of tea saponin of solution for colorimetric analysis.A is the absorbance at Vis550nm.R is the correlation coef?cient. Determination of Total Extraction Yield

The accurately weighed tea saponin sample(100.00mg) extracted above was dissolved in80%(v/v)ethanol aqueous solution in a100-ml volumetric?ask.The con-centration of the sample was1g/L.0.5ml the solution was transferred into a5-ml test tube.Then the absorbency of the sample was determined by the colorimetric method as described in2.4.1and the total extraction yield(Y)was calculated by Eq.(2)according to the standard curve.

Y?

eA?924:37à0:015T?m1

m2?1000

e2Tm1(g)is the mass of the extracted tea saponin.m2(g)is the mass of oil-tea camellia seed cake powder.A is the same as in Eq.(1).

Results and Discussion

Analysis of Single Factor Experiments

The effects of?ve factors(microwave power,irradiation duration,temperature,ratio of solvent to material and aqueous ethanol concentration)were studied respectively to obtain the optimal parameters.In single factor experi-ments,only one parameter was changed,the other four parameters were constant.The constant parameters were set at a microwave power of400W,an irradiation duration of4min,a temperature of60°C,a ratio of solvent to material of10ml/g and an aqueous ethanol concentration of70%(v/v).The data around the parameter which cor-responded to the highest yield were chosen as optimal for next orthogonal experiments.Each experiment was per-formed four times.

Effect of Microwave Power

Figure1shows the relationship between extraction yield and different microwave powers.In general,it shows that there is a sharp increase in extraction yield with the microwave power increasing from100to400W.How-ever,no obvious variation in extraction yield is shown at power levels between400and700W.A quick decrease in extraction yield with increasing microwave power is observed for power levels higher than700W.A similar

observation was made in the MAE of ?avonoids from Saussurea medusa maxim cultured cells [22].

During the process of MAE,microwave energy affects plant molecules directly by ionic conduction and dipole rotation which make the energy dissipate in a volumetric fashion inside the samples and solvents.Then molecular movement and heat are generated,and therefore the extractive is separated from the matrix [10,23].With the power increased from 100to 400W,more electromagnetic energy was transmitted to the solvents and samples,which resulted in more violent molecular movement and heating,and therefore more extractives were separated from the matrix.Thereby the extraction yield was gradually improved.At 400–700W,evaporation of the solvent was speeded up by the rapid increase of electromagnetic energy and temperature resulting from the higher microwave power.Thus,although the microwave power was stronger,the solvent participating in the extraction system was limited,which consequently resulted in the extraction yield showing little change.At 700–1,000W,the evaporation of the solvent was so violent under the in?uencing of high microwave energy that more and more solvent was released from the extraction system.As a result,the extraction yield showed a pronounced decrease.In con-clusion,400–700W microwave power was considered as the optimum.

Effect of Irradiation Duration

The effects of irradiation duration on the yield of tea saponin are shown in Fig.2.Three phases are observed in the extraction process.In the ?rst phase (from 2to 3min),about 85%of the total yield is obtained.In the second phase (from 3to 5min),the increase in the extraction yield tends to be slower.In the third phase (after 5min),the

yield of tea saponin decreases a little and there is no sig-ni?cant difference in yield with a longer duration.It seems that most tea saponins were extracted in the ?rst 5min.After 5min,extraction almost ended and the extracted tea saponins were decomposed partially by being kept at high temperature for a long period of time.Similar tendencies were observed in the MAE of artemisinin [24]and of tri-terpenoid saponins from Ganoderma atrum [7].Conse-quently,4–7min was chosen as the optimal irradiation duration.

Effect of Temperature

The effects of temperature on the yield of tea saponin were studied with eight levels at intervals of 5°C from 40to 75°C.The results are shown in Fig.3.In the range of 40–55°C,the extraction yield improves with increasing temperature.On the one hand,molecular movement was enhanced with the increasing temperature.The inside of the plant matrix was easier immersed in solvent molecules.On the other hand,the dissolving capacity of the solvent was improved at higher temperatures [25].Both of the factors favored the extraction of tea saponin.At 55–75°C,the extraction yield decreases gradually with the increase in temperature.This is due to the rapid evaporation of solvent at higher temperatures and less solvent participated in the extraction system.From the above,50–65°C was consid-ered optimal for the extraction of tea saponin.Effect of Ratio of Solvent to Material

Figure 4shows the relationship between extraction yield and the ratio of solvent (water–ethanol mixture)to the material.At 4–13ml/g,the yield increases straightly with the increasing ratio of solvent to material.This is

incurred

Fig.1Effect of microwave power on yield of tea

saponin Fig.2Effect of irradiation duration on yield of tea saponin

by the gradually increasing immersion of the sample in the solvent.At low ratios of solvent to material,the solvents were insuf?cient to immerse the samples.Therefore,the samples were not dissolved or heated enough to release tea saponin suf?ciently.At higher ratios,the samples were fully dissolved by suf?cient immersion.Consequently,microwave energy was well absorbed and functioned on the separation.At 13–19ml/g,the yield drops sharply.This is probably due to insuf?cient stirring of the samples when solvent was in large volumes [25,26].As a consequence,some powders were still conglomerated with each other and could not be fully brought into contact with the sol-vent.Moreover,microwave energy was dispersed through larger volumes of solvent so that the samples could not absorb enough energy to break cells and release target substances.It is worth noting that at 19–25ml/g the yield increases again.It is known that extraction is a process in which extractive molecules are separated with the matrix

and diffused into the mixed https://www.wendangku.net/doc/0514531521.html,rge amounts of solvent might facilitate the diffusion of tea saponin mole-cules from the matrix to the solution,which resulted in more gathering of tea saponin and therefore a higher yield.However,when the amount of solvent was too large,the mixtures of sample and solvent were dif?cult to heat to the desired temperature in a short time.Consequently,the extraction yield decreased,as shown with more than 25ml/g.In consideration of cost,within the range of 7–16ml/g was considered to be the optimal ratio.Effect of the Concentration of Aqueous Ethanol

The effects of different aqueous ethanol concentrations (11levels at intervals of 5%from 40to 90%)on yield are shown in Fig.5.It shows that the yield of tea saponin is greatly in?uenced by the aqueous ethanol concentration.At 40–50%,the increase in ethanol concentration resulted in a signi?cant increase in extraction yield.This is probably due to the decrease in solvent polarity with the increasing ethanol concentration.It was found that high ethanol content will decrease the polarity of the mixture to a degree favorable for extraction [27].At 50–65%,the yield increases a little and starts to decrease.But there is no big change in the extraction yield.After 70%,the extraction yield reduces rapidly.One possible reason is that a higher ethanol content would result in a lower solvent boiling point.As a consequence,ethanol evaporated extensively and the solubility in the solvent decreased.Another reason is that high ethanol content would facilitate the rapid solidi?cation of impurities such as proteins,soluble poly-saccharides,etc.,which was not favorable for MAE.From the above results,50–65%was optimal aqueous ethanol

concentration.

Fig.3Effect of temperature on yield of tea

saponin

Fig.4Effect of ratio of solvent to material on yield of tea

saponin

Fig.5Effect of aqueous ethanol concentration on yield of tea saponin

Analysis of Orthogonal Experiments

After the single factor experiments,the results of single effects of?ve factors on extraction yield were obtained.In order to determine the optimal parameters,a45orthogonal array was designed to investigate the synergistic effects of the?ve factors on extraction yield,as shown in Table1. Each experiment was performed four times.

Table2gives the average extraction yields of sixteen groups,and the last?ve rows list the average extraction yields and the ranges of average extraction yields of each level for?ve parameters.The average extraction yield of Group13is14.64%,the highest of all.And its parameters are A4B1C4D2E3(aqueous ethanol concentration of65%, temperature of50°C,irradiation time of7min,microwave power of500W and ratio of solvent to material of13ml/g).However,the results of orthogonal experiments should be analyzed to identify the optimal parameters.

In Table2,the ranges of each level for?ve parameters are represented.The ranges of average extraction yields of each microwave power,irradiation time,temperature,sol-vent-to-material ratio,and aqueous ethanol concentration level are0.36,0.51,0.39,0.77and1.05%,respectively. Therefore,the in?uence rank of each factor is as follows: aqueous ethanol concentration[ratio of solvent to material [irradiation time[temperature[microwave power. Aqueous ethanol concentration and ratio of solvent to material are the most two in?uential factors.Considering yield,ef?ciency and cost,A4B1C1D1E3(microwave power of400W,irradiation duration of4min,temperature of 50°C,ratio of solvent to material of13ml/g,aqueous ethanol concentration of65%)was chosen as the?nal

Table1The factor levels in orthogonal experiment Level Factor A Factor B Factor C Factor D Factor E Aqueous ethanol

concentration(%)

Temperature

(°C)

Irradiation

duration(min)

Microwave

power(W)

Ratio of solvent

to material(ml/g) 1505044007 25555550010 36060660013 46565770016

Table2The results of orthogonal experiment and range analysis

Group A B C D E Extraction yield(%)Standard deviation(n=4)

11111113.100.21

21222213.090.24

31333313.140.18

41444413.080.23

52123413.550.29

62214313.330.23

72341212.530.13

82432112.840.15

93134212.830.11

103243112.520.22

113312413.810.21

123421314.150.25

134142314.640.19

144231414.100.24

154324113.990.18

164413213.730.17

k1(%)13.2413.6613.6313.6113.25//

k2(%)13.0613.2613.6913.6013.04//

k3(%)13.3313.3713.2313.2313.82//

k4(%)14.1113.4513.1913.3113.64//

R(%) 1.050.390.510.360.77//

optimal parameters.The average extraction yield under this condition is14.73%,which is slightly higher than the average extraction yield14.64%under A4B1C4D2E3.

Comparison of MAE and Heat Re?ux Extraction

As described above,a conventional extraction(heat re?ux extraction)and MAE of tea saponin from oil-tea camellia seed cake(under the conditions of A4B1C1D1E3)were conducted respectively and the relevant results are listed in Table3.It can be seen that MAE has great advantages on extraction time,solvent consumption,ethanol concentra-tion and extraction yield.

At present,conventional extractions like heat re?ux extraction are widely used in many plants for active sub-stance extraction.The two biggest disadvantages of con-ventional extractions are the high solvent and time consumption.Moreover,many conventional extractions use methanol and n-butanol as solvent.It is well known that methanol and n-butanol are much more toxic than ethanol to human being or the environment.Since extrac-tion yield,ef?ciency,cost and most importantly,environ-mental friendliness and safety should be considered in the selection of extraction method,we believe that conven-tional extractions are not favorable in modern industry. MAE is a relatively new method,which is gaining popu-larity mainly by its ef?ciency.As shown in Table3,the extraction time was reduced from6h(conventional extraction)to4min(MAE).About50%ethanol was saved and the extraction yield was enhanced by about14% in MAE.These results prove that MAE is quite suitable for the extraction of tea saponin from oil-tea camellia seed cake.With the advancement in MAE technology,it may replace conventional extractions someday.

FTIR Comparison of the Extracted Tea Saponin

and Standard Tea Saponin

FTIR spectra supplied information about molecular func-tional groups with which some chemical compounds can be identi?ed.Figure6shows the FTIR comparison of the tea saponin extracted above and the standard tea saponin. Compared with the spectra of the standard tea saponin (Fig.6a),characteristic peaks at3,426cm-1attributed to the stretching vibration of O–H,2,927cm-1presenting the antisymmetric stretching vibration of saturated–CH2, 1,717and1,623cm-1indicating the existence of–CO–, 1,384cm-1contributed by the absorption of symmetrical formation vibration of–CH3,and the band from900to 1,150cm-1presenting the absorption of C–O–C are all present in the spectra of the extracted tea saponin(Fig.6b). Therefore,the resultant substance extracted above is tea saponin with compounds similar to the standard tea saponin.

HPLC Comparison of the Extracted Tea Saponin

and Standard Tea Saponin

HPLC is a chromatographic technique used to separate the components in a mixture,to identify each component,as well as to quantify each component.Figure7shows the HPLC comparison of(a)standard tea saponin(b)extracted tea saponin and(c)non-discolored extracted tea saponin. There are two main peaks(Peak I,II)in the three curves(a, b,c).According to Liu’s research[28],the HPLC curve of tea saponin contains two main peaks,similar to the Peak I and Peak II shown in Fig.7,which present the character-istic peaks of theasaponin(effective component of tea saponin as a surfactant)and?avonoid(the coloring com-ponent for its yellow color),respectively.From the peak strength,which is the highest for Peak I,one?nds that theasaponin is the main ingredient in the tea saponin extracted above and the standard tea saponin.The peak strength of Peak II in Fig.7b is higher than that in Fig.7a, which indicates that the amount of?avonoid is higher in

Table3Comparison of MAE with heat re?ux extraction method Extraction method Extraction

time

Solvent

consumption(ml)

Ethanol

concentration(%)

Extraction

yield(%) MAE4min1306514.73 Heat re?ux extraction6h20085

12.88 Fig.6FTIR comparison of(a)extracted tea saponin and(b)standard

tea saponin

the extracted tea saponin than that of the standard tea saponin.But compared with the non-discolored extracted tea saponin,the amount of ?avonoid is much lower,which is discernible from the much lower peak strength of Peak II in Fig.7b compared with Fig.7c.From these results,it can be said that the main ingredient of the extracted tea saponin is theasaponin,effective component of tea saponin as surfactant,with some loadings of ?avonoid,the component giving it its yellow color.It needs to be further puri?ed for application.

Application to the Cleaning of Historic Silks

Many cultural relics,especially those of contaminated historic textiles,need to be cleaned before further protec-tion and conservation.But as we know,there is no spe-cialized detergent that is designated for the cleaning of old textiles.In the cleaning of old textiles,it should be effec-tive at stain removal and safe [29].The safety includes no damage to the color,handle,strength etc.of the old tex-tiles,and the friendliness to human beings and the envi-ronment,too.Therefore,it is important and urgent to develop effective and safe detergents for cleaning old textiles.

Therefore,the tea saponin extracted in this study was applied to the cleaning of old silks with further puri?cation according to the description of Liu [30].Table 4shows the surface tension of puri?ed tea saponin solutions at 20°C.From this Table,one can see that the surface

tension

Fig.7HPLC comparison of (a )standard tea saponin (b )extracted tea saponin and (c )non-discolored extracted tea saponin

Table 4Surface tension of different concentration tea saponin Tea saponin concentration [%(w/w)]Surface tension (Nm/m)0.071.890.255.210.440.280.638.820.838.951.038.002.037.703.0

37.74

Fig.8Photographs of a whole contaminated window shade silk and contaminated partial side,b before cleaning,and c after cleaning

changes little when the concentration of tea saponin is above0.4%(w/w).The critical micelle concentration (CMC)is considered to be an ideal concentration at which the surface tension of a surfactant solution is the lowest and the surfactant performs ef?ciently as detergent at this concentration[31].Therefore0.5%(w/w)was chosen as the optimal concentration to prepare detergent here,con-sidering the CMC of tea saponin is0.5%(w/w).

After evaluating the ef?ciency and safety of the extracted tea saponin on the cleaning of contaminated arti?cially aged silks and an old silk remnants,we applied it to the cleaning of historic silks.Figure8shows the cleaning effect of one piece of historic window shade silk (Qianlong Emperor Garden of Qing Dynasty,Palace Museum)contaminated by dust,paste,water stains,etc.It can be seen that most of the stains on the old silk were removed completely after cleaning;while the colors of the embroidery decorations and the ground cloth remain unchanged.What is worth mentioning is that the handle of the silk was improved after cleaning.It indicates that the tea saponin extracted in this study is effective and safe for cleaning old silk.Tea saponin could be a candidate for a detergent for the cleaning of contaminated historic textiles. Conclusions

Tea saponin containing compounds similar to a standard tea saponin was extracted by MAE from oil-tea camellia seed https://www.wendangku.net/doc/0514531521.html,pared with conventional extraction,the MAE method saves much time and solvent and is more environmentally friendly with a higher ef?ciency.The extracted tea saponin has been effectively applied for the cleaning of contaminated old silks.

Acknowledgments This work was?nancially supported by Zhe-jiang Culture Relics Protection Fund(No.2011202and2010264). References

1.Sagesaka YM,Uemura T,Watanabe N,Sakata K,Uzawa J

(1994)A new glucuronide saponin from tea leaves camellia sinensis var.sinensis.Biosci Biotechnol Biochem58:2036–2040 2.Kuo PC,Lin TC,Yang CW,Lin CL,Chen GF,Huang JW(2010)

Bioactive saponin from tea seed pomace with inhibitory effects against rhizoctonia solani.J Agr Food Chem58:8618–8622

3.Rizwan-Ul-Haq M,Hu QB,Hu MY,Zhong GH,Weng QF

(2009)Study of destruxin B and tea saponin,their interaction and synergism activities with Bacillus thuringiensis kurstaki against Spodoptera exigua(Hubner)(Lepidoptera:Noctuidae).Appl Entomol Zool44:419–428

4.Zhang WG,Zhang DC,Chen XY(2012)A novel process for

extraction of tea oil from Camellia oleifera seed kernels by combination of microwave puf?ng and aqueous enzymatic oil extraction.Eur J Lipid Sci Tech114:352–356

5.Kwon JH,Be′langer JMR,Pare′JRJ,Yaylayan VA(2003)

Application of the microwave-assisted process(MAP TM)to the fast extraction of ginseng saponins.Food Res Int36:491–498 6.Bai XP,Qiu AY,Guan JJ(2007)Optimization of microwave-

assisted extraction of antihepatotoxic triterpenoid from Actinidia deliciosa root and its comparison with conventional extraction methods.Food Technol Biotech45:174–180

7.Chen Y,Xie MY,Nie SP,Gong XF(2007)I&EC64-Comparison

of microwave-assisted extraction and conventional extraction of polysaccharides from Ganoderma atrum.In:Abstracts of Papers from the234th American Chemical Society National Meeting, Boston,MA

8.Yan J,Wu Z,Zhao Y,Jiang C(2011)Separation of tea saponin

by two-stage foam fractionation.Sep Purif Technol80:300–305 9.Kaufmann B,Christen P(2002)Recent extraction techniques for

natural products:microwave-assisted extraction and pressurised solvent extraction.Phytochem Anal PCA13:105–113

10.Mandal V,Dewanjee S,Mandal SC(2009)Microwave-assisted

extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin:a potential biomarker.

Phytochem Anal PCA20:491–497

11.Chen YZ,Zhao L,Liu BG,Zuo SS(2012)Application of

response surface methodology to optimize microwave-assisted extraction of polysaccharide from Tremella.Physics Procedia 24:429–433

12.Xia EQ,Wang BW,Xu XR,Zhu L,Song Y,Li HB(2011)

Microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait.Int J Mol Sci12:5319–5329

13.Ganzler K,Szinai I,Salgo A(1990)Effective sample preparation

method for extracting biologically active compounds from dif-ferent matrices by a microwave technique.J Chromatogr A 520:257–262

14.Yan MM,Liu W,Fu YJ,Zu YG,Chen CY,Luo M(2010)

Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali.Food Chem 119:1663–1670

15.Ganzler K,Salgo A,Valko K(1986)Microwave extraction.A

novel sample preparation method for chromatography.J Chro-matogr A371:299–306

16.Renoe BW(1994)Microwave assisted extraction.American Lab

34–39

17.Ferhat MA,Tigrine-Kordjani N,Chemat S,Meklati BY,Chemat

F(2007)Rapid extraction of volatile compounds using a new simultaneous microwave distillation:solvent extraction device.

Chromatographia65:217–222

18.Wu XH,Zhang XM(2009)Optimization and mathematical

description of microwave-assisted extraction of tea saponin.

J SCUT(Chinese)37:126–129

19.Peng YB,Zhou JP,Guo H(2009)Technological study on

extraction of tea saponin by microwave-assisted method.Food Ferm Technol(Chinese)45:31–32

20.Zhang WG(2011)Study on new extracting technology for

camellia saponin.J SU(Chinese)32(32):45–48

21.Xiang ZB,Tang CH,Chen G,Shi YS(2001)Studies on colori-

metric determination of oleanolic acid in Chinese quince.Nat Pro Res Dev13:23–26

22.Gao M,Song BZ,Liu CZ(2006)Dynamic microwave-assisted

extraction of?avonoids from Saussurea medusa Maxim cultured cells.Biochem Eng J32:79–83

23.Tigrine-Kordjani N,Meklati BY,Chemat F(2011)Contribution

of microwave accelerated distillation in the extraction of the essential oil of Zygophyllum album L.Phytochem Anal22:1–9 24.Hao JY,Han W,Huang SD,Xue BY,Deng X(2002)Microwave-

assisted extraction of artemisinin from Artemisia annua L.Sep Purif Technol28:191–196

25.Chen Y,Xie MY,Gong XF(2007)Microwave-assisted extrac-

tion used for the isolation of total triterpenoid saponins from Ganoderma atrum.J Food Eng81:162–170

26.Eskilsson CS,Bjorklund E(2000)Analytical-scale microwave-

assisted extraction.J Chromatogr A902:227–250

27.Xiao WH,Han LJ,Shi B(2008)Microwave-assisted extraction

of?avonoids from Radix Astragali.Sep Purif Technol 62:614–618

28.Liu XQ,Wang XY(2000)Quantitative analysis of tea saponin.

J Tea.26:81–82

29.Tian JY,Wang CL,Bai ZP(2005)A research on the removing of

mould stain of ancient silk.Sci Conserv Archaeol(Chinese) 17:1–6

30.Liu YG,Hu JH,Zhou YM(2008)Study on optimization of

extraction technology of tea saponin from Oil-tea cake.Cereals Oils Process6:80–84

31.Xia CH,Zhu QF,Tian JH,Liu RX,Fan TX(1990)Surface

activity of tea saponin and related functional properties.J Tea Sci 10:1–10

Author Biographies

Jun He is an M.Sc.student in Zhejiang Sci-Tech University, Hangzhou—China,majoring in materials science,with research focusing on materials for cultural heritage protection.Ziying Wu is a professor and senior engineer who is engaged in teaching and research on textile materials at Zhejiang Sci-Tech University.

Shuo Zhang is an M.Sc.student at Zhejiang Sci-Tech University, majoring in materials science,with a research focusing on materials for cultural heritage protection.

Yang Zhou is a senior engineer who is engaged in cultural heritage protection at the China National Silk Museum.

Feng Zhao is a professor and the curator of the China National Silk Museum.His research focuses on silk history and textile technology history.He was a visiting researcher at the Metropolitan Museum of Art,the Toronto Royal Ontario Museum,and the British Museum from1997to2006.

Zhi-qin Peng was a postdoctoral researcher in the department of Advanced Fibro-Science,Kyoto Institute of Technology,Japan,from 2008to2009.He is engaged in teaching and research on materials science and engineering at Zhejiang Sci-Tech University,with a focus on materials for cultural heritage conservation.

Zhi-wen Hu is a professor whose research focuses on functional polymer materials and cultural heritage protection at Zhejiang Sci-tech University.

人参皂苷的提取教学文稿

人参皂苷的提取

第一章综述 1.1 人参皂苷的简介 人参为五加科植物人参(Panax ginseng C.A.Mey.)的干燥根,是传统名贵中药,始 载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢 冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、 心力衰竭、心源性休克等的治疗。 人参的化学成分很复杂,有皂苷、挥发油、糖类及维生素等。经现代医学和药理研究 证明,人参皂苷为人参的主要有效成分,它具有人参的主要生理活性。 人参皂苷(ginsenoside,GS)是人参的主要有效成分,现已明确结果的GS单体约 有40余种;在人参中的含量在4%左右。其中研究最多且与肿瘤细胞凋亡最为相关的为 Rg3与Rh2。众多研究表明,它具有较高的抗肿瘤活性,对正常细胞无毒副作用,与其 他化疗药物(如顺铂)联合应用有协同作用。人参皂苷通过调控肿瘤细胞增殖周期、诱 导细胞分化和凋亡来发挥抗肿瘤作用。将肿瘤细胞诱导分化成正常细胞有利于控制肿瘤 发展,诱导肿瘤细胞凋亡使细胞解体后形成凋亡小体,不引起周围组织炎症反应。Popovich等研究认为,人参皂苷可以促进人白血病细胞的凋亡,其途径与地塞米松相识,均为受体依赖性。目前我国对人参皂苷的提取分离方法、制剂工艺、抗肿瘤作用机 制以及临床应用等方面做了大量研究,而且已经有人参皂苷的新产品推向市场。 1.2 人参皂苷成分 人参的根、茎、叶、花及果实中均含有多种人参皂苷(ginsenosides)。到目前为止, 文献报道从人参根及其它部位已分离确定化学结构的人参皂苷有人参皂苷-Ro、-Ra1、- Ra2 、-Rb1、-Rb2、-Rb3、-Rc、-Rd、-Re、-Rf、-Rg1、-Rg2、-Rg3、-Rh1、-Rh2及-Rh3 等50 余种人参皂苷。 Rh2:具有抑制癌细胞向其它器官转移,增强机体免疫力,快速恢复体质的作用。 对癌细胞具有明显的抗转移作用,可配合手术服用增强手术后伤口的愈合及体力的恢复. Rg:具有兴奋中枢神经,抗疲劳、改善记忆与学习能力、促进DNA、RNA合成的作用。 Rg1:可快速缓解疲劳、改善学习记忆、延缓衰老,具有兴奋中枢神经作用、抑制 血小板凝集作用。 Rg2:具有抗休克作用,快速改善心肌缺血和缺氧,治疗和预防冠心病。 Rg3:可作用于细胞生殖周期的G2期,抑制癌细胞有丝分裂前期蛋白质和ATP的 合成,使癌细胞的增殖生长速度减慢,并且具有抑制癌细胞浸润、抗肿瘤细胞转移、促 进肿瘤细胞凋亡、抑制肿瘤细胞生长等作用。 Rb1:西洋参(花旗参)的含量最多,具影响动物睾丸的潜力,亦会影响小鼠的胚胎 发育,具有增强胆碱系统的功能,增加乙酰胆碱的合成和释放以及改善记忆力作用.

提取人参皂苷并且检验以及在过程的一些注意事项

1.人参皂苷提取 人参为五加科植物人参(Panax ginseng)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。 人参皂甙和稀HCl在醇液中进行温和酸水解,可得到三种皂甙元,齐墩果酸、人参二醇和人参三醇。而不能得到原人参二醇和原人参三醇,这是因为在酸水解过程中侧链的20-位碳原子上的羟基(-OH)与该链上的双键(C=C)易闭环,而形成带有三甲基四氢吡喃环的人参二醇和人参三醇。水解后,除去醇、氯仿萃取物经硅胶柱层析分离即可得到三种单体皂甙元,经重结晶获得纯品,分别与已知皂甙的红外光谱相一致。 2.人参皂甙提取和甙元分离工艺流程 ①人参皂甙提取工艺: 人参茎叶粗粉20g 热水提取1小时,粗滤,(棉花) 提取液药渣 加0.6g是会乳沉淀,并调至PH9-10,放置10分钟,抽滤 沉淀物滤液 浓硫酸调PH7,放置10分钟。 中性提取液 回收后,上大孔树脂柱,先用水洗至无色,再用 70%氨性醇洗至绿色。 乙醇洗脱液 回收乙醇 人参总皂甙(黄白色) a)人参皂甙元的水解和甙元的分离流程 人参总皂甙 加含5%HCl的50%乙醇液, 加热回流2小时 沉淀水解液 (酸性皂甙元部分)加水稀释,水浴蒸去醇,氯仿萃取 3次(10,5,5ml)

水层氯仿层 干燥, 无水NaSO 4 回收氯仿 总皂甙元 少量苯溶解,硅胶柱 层析,用苯-乙酸乙脂 (8:2)洗脱 组分Ⅰ组分Ⅱ组分Ⅲ95%乙醇重95%乙醇重丙酮结晶 结晶3次结晶3次2次 齐墩果酸人参二醇人参三醇 mp299-301℃mp245-250℃mp244-246℃ 1.操作方法 人参总皂甙的提取:取人参茎叶粗粉20g,放入烧杯用热水(80℃-90℃)提取1小时,然后用棉花粗滤,在所得滤液中加入0.6g水石灰乳除杂并调PH9-10放置10分钟左右,过滤,再将滤液用浓硫酸(少量)调PH7,放置10分钟左右,回收提取液至少量(5-10ml),再上大孔树脂柱(注:此柱应提前洗好,清洗办法略)先用蒸馏水洗至无色,再用70%的乙醇洗至无色,分别用小瓶接收。便得到了乙醇洗脱液,回收乙醇,便得到了人参总皂甙(黄白色)。 人参皂甙的水解 称取人参皂甙()4-5g(不足时由老师提供),加20倍量含5%HCl的50%乙醇溶液,加热回流2小时,放冷,加倍水,水浴去醇,转入分液漏斗中,用氯仿萃取3此(10,5,5ml),合并氯仿层,加少量无水硫酸钠干燥,回收氯仿即得总皂甙元。 甙元柱层析分离 称取100-200目硅胶(105℃活化30分钟)50g,用苯做洗脱剂湿法装柱,柱顶放一层脱脂棉,压上数个玻璃球,放出多余的苯(至高于吸附剂1cm),计算保留体积。总皂甙元用少量苯溶解上柱,用苯-乙酸乙脂(8:2)洗脱,薄层检识(与甙元标准品对照)相同组分合并,回收溶剂。齐墩果酸、人参二醇用95%乙醇重结晶,人参三醇用丙酮重结晶,纯品80℃干燥,收集于小瓶中。 2.人参皂甙的检验 (一)显色反应

绞股蓝总皂苷提取分离及鉴别方法

绞股蓝总皂苷提取分离及鉴别方法 该药是从植物中提取出来的,为七叶树科植物天师栗(Aesculus Wilsonii Rehd.)的干燥成熟果实(娑罗子)提取物得到的皂苷钠盐,是天然植物药,呈白色粉末或结晶性粉末,味苦涩而辣,具引湿性,符合未来用药趋势, 注射用七叶皂苷钠有什么药理作用? ①抗炎作用。七叶皂苷可消退由卵白蛋白,福尔马林和葡聚糖诱导的大鼠爪肿胀。V ogel 等注意到七叶皂苷对正常大鼠有促进钠排泄作用,但排钾维持正常水平,注射七叶皂苷后,立即显示利尿作用。对于七叶皂苷抗炎作用的机理,一些学者认为抗炎作用在于能使炎症刺激剂所致的炎症初期的毛细血管通透性增大变为正常。另一些学者认为皮质甾类化合物的正常分泌是七叶皂苷抗炎作用所必要。 ②消肿胀作用。七叶皂苷对大鼠脑水肿有保护作用;Siering证实七叶皂苷的抗肿胀作用与改善细胞通透性有关。Mussgnug认为七叶皂苷抗水肿作用机理为:(1)表面张力活性;(2)提高红细胞与水结合的能力,随着边缘血浆流量提高,产生代谢被动钠泵的依赖;(3)使细胞内、外流体交换正常;(4)在结缔组织和细胞膜上有直接作用的位点。 ③抗渗出作用。七叶皂苷对大鼠巴豆油急性渗出和磷酸组织胺引起的小鼠毛细血管通透性增大具有显著的抑制作用,其强度分别约为氢化可的松的7倍和8倍;并能对抗紫外红斑渗出及缓激肽所致家兔后肢淋巴通透性增加。 ④促皮质甾酮作用。七叶皂苷能促进肾上腺皮质分泌皮质醇,抑制组胺所致的毛细血管通透性增加,增加前列腺素F2,减少前列腺素E1的释放量,阻滞细胞的胞苷二磷酸酯的作用,并延缓Na+交换,从而具有抗炎,抗渗出活性,提高静脉张力。 ⑤抗自由基作用。提高血浆过氧化物歧化酶活性,使抗自由基活性增强。 回答者:drinkyle 方法:分别采用无水乙醇回流提取、无水乙醇回流-正丁醇萃取、体积分数为70%乙醇回流提取、体积分数为70%乙醇回流提取-正丁醇萃取、水提取、超声波提取和超临界CO2提取方法,以人参皂苷Re作对照品,比色法测定提取液中山茱萸总皂苷的含量。结果及结论:不同提取方法对皂苷含量有较大的影响,超临界CO2提取技术无溶剂残留,操作温度低,对环境友好,提取效率高,皂苷含量是传统溶剂提取的1.5~2.0倍,有较好的应用前景 可以采用D101大孔吸附树脂用于提取人参皂甙的分离工艺。现生产工艺已成熟完善。 1、人参提取物回收乙醇后加水溶解通经预处理的吸附柱,先用水洗脱除尽游离糖等非皂甙极性成分,以60%乙醇洗脱下总皂甙,残留于柱层析上的非极性成分则用工业乙醇洗净。树脂可再生重复使用。总皂甙再通过一次吸附树脂即得以精制。 2、在PH<6.5,西洋参总皂甙的水解反应随溶液酸度的增大而加快。在PH6.5~9.00,水溶液中西洋参总皂甙几乎不水解而稳定存在。据此,人参皂甙水提液可调PH值至9上柱,将有利于极化色素等难溶于水的杂质不被吸附而被分离。但需注意采碱性溶液上柱,吸附后需强化水洗(最好仅冲一次),彻底将树脂层碱液洗净,不留死角,否则将会影响最终产品质量。

天然药物化学 第8章 甾体及其苷类

第8章甾体及其苷类 一、选择题 1.甾体皂苷不具有的性质是() A.可溶于水、正丁醇B.与醋酸铅产生沉淀C.与碱性醋酸铅沉淀D.表面活性与溶血作用E.皂苷的苷键可以被酶、酸或碱水解 2.溶剂沉淀法分离皂苷是利用总皂苷中各皂苷() A.酸性强弱不同B.在乙醇中溶解度不同C.极性不同 D.难溶于石油醚的性质E.分子量大小的差异 3.可用于分离中性皂苷与酸性皂苷的方法是() A.中性醋酸铅沉淀B.碱性醋酸铅沉淀C.分段沉淀法 D.胆甾醇沉淀法E.酸提取碱沉淀法 4.Liebermann-Burchard反应所使用的试剂是() A D 5. A 6. A C E 7. A. D. 8. A D 9. A C D 10. A C E 11. A. D 12. A C.E E.分子中常含羧基,又称酸性皂苷 13.水解强心苷不使苷元发生变化用() A.0.02~0.05mol/L盐酸B.氢氧化钠/水C.3~5%盐酸 D.碳酸氢钠/水E.氢氧化钠/乙醇 14.Ⅱ型强心苷水解时,常用酸的浓度为() A.3~5% B.6~10% C.20% D.30~50% E.80%以上 15.甲型和乙型强心苷结构的主要区别点是() A.A/B环稠和方式不同B.C/D环稠和方式不同 C.糖链连接位置不同D.内酯环连接位置不同 E.C17不饱和内酯环不同 16.只对游离2-去氧糖呈阳性反应的是()

A.香草醛-浓硫酸反应B.三氯醋酸反应C.亚硝酰铁氰化钠反应 D.3,5-二硝基苯甲酸反应E.三氯化铁-冰醋酸反应 17.从种子药材中提取强心苷时,为除去油脂,可先采用() A.乙醇回流法B.酸提取碱沉淀法C.大孔吸附树脂法 D.石油醚连续提取法E.水蒸气蒸馏法 18.在甲-Ⅰ型强心苷的水解中,不使苷元发生变化用()水解 A.0.02~0.05mol/LHClB.2%NaOH水溶液C.3%~5%HCl D.NaHCO3水溶液E.Ca(OH)2溶液 19.水解强心苷时,为了定量的得到糖,水解试剂是选择() A.NaHCO3水溶液B.Ca(OH)2溶液C.0.02~0.05mol/LHCl D.3%~5%HClE.2%NaOH水溶液 20.用于区别甲型和乙型强心苷的反应是() A.醋酐-浓硫酸反应B.亚硝酰铁氰化钠反应C.香草醛-浓硫酸反应 21.Ⅰ- A B C D E 22. A. D 23.2- A 24. A C. E 25. A C. E 26. A C E 27. A. 28. A 29.下列化合物属于() A.异螺甾烷醇型皂苷B.乙型强心苷C.螺甾烷醇型皂苷 D.甲型强心苷E.呋甾烷醇型皂苷 30.下列化合物属于() A.甲型强心苷B.螺甾烷醇型皂苷

人参皂苷的提取与分离材料

人参皂苷的提取与分离 学生姓名 专业 班级

学院 摘要 首先认识人参和人参皂苷,了解人参皂苷的详细作用和功效,接着研究了人参茎叶总皂苷含量提取方法,用详细的工艺提取人参皂苷,并且用对显色反应和薄层层析对提取物进行鉴定,为以后的人参茎叶的开发利用奠定基础。 关键词:皂苷;人参茎叶;鉴定。 Abstract The first ginseng and ginseng saponin, understanding the role and efficacy of ginseng saponin in detail, then study the effect of ginseng stem leaf total saponin extraction method, with the detailed process of extraction of ginseng saponin, and used for color reaction and thin-layer chromatography to extract were identified, for the future of ginseng stem and leaf development lays a foundation. key words: saponin; ginseng stems and leaves; appraisal;

目录 摘要 (1) Abstract ..................................... 错误!未定义书签。 1 绪论 (3) 1.1 ............................................. 人参概述 错误!未定义书签。 1.2 ........................................ 人参的化学成分 1 1.2.1人参皂苷 (1) 1.2.2人参蛋白 (1) 1.2.3人参多糖 (1) 1.2.4无机元素 (2) 1.2.5其他成分 (2) 1.3 ................................ 人参的生理功能及药理活性 2 1.3.1增强免疫功能 (2) 1.3.2抗衰老 (2) 1.3.3抗肿瘤 (3) 1.3.4增强学习和记忆能力 (3) 1.3.5保护心血管系统 (3) 2 实验部分 (5) 2.1 ............................................ 实验材料 5 2.2 人参皂苷的提取分离 (5) 2.2.1 人参皂苷的提取分离原理 (5) 2.2.2 人参皂苷提取和苷元分离工艺流程 (5) 2.3 ........................................ 人参皂苷的检识 7 2.3.1 显色反应 (7)

第八章 甾体及其苷类

第八章甾体及其苷类 一、名词解释 1.强心苷2.甾体皂苷3.Keller-Kiliani 反应二、单选题 1.区别三萜皂苷与甾体皂苷的反应() A.3,5-二硝基苯甲酸 B.三氯化铁-冰醋酸 C.α-萘酚-浓硫酸反应 D.20%三氯醋酸反应2.分步结晶法分离甾体皂苷元利用() A.皂苷元的分子量差异 B.皂苷元的极性差异 C.皂苷元的结构类型差异 D.皂苷元的酸碱性差异3. O H O O HO按结构应属于() A.四环三萜皂苷元 B.异螺甾烷醇类皂苷元 C.呋螺甾烷醇类皂苷元 D.螺甾烷醇类皂苷元 4. O O HO按结构应属于() A.螺甾烷醇类 B.异螺甾烷醇类 C.呋螺甾烷醇类 D.四环三萜 6.在甲-Ⅰ型强心苷的水解中,为了得到完整的苷元,应采用() A.3%硫酸水解 B.0.05mol/L硫酸水解 C.Ca(OH)2催化水解 D. 酶催化水解 7.水解强心苷时,为了定量的得到糖,水解试剂是() A.0.02—0.05mol/L HCI B. 3%-5%HCI C.NH4OH D.NaHCO3水溶液E.Ca(OH)2溶液 8.用于区别甲型和乙型强心苷的反应是()

A.醋酐-浓硫酸反应 B. 香草醛-浓硫酸反应C.三氯化铁-冰醋酸反应D.三氯醋酸反应E.亚硝酰铁氰化钠反应 9.使强心苷中糖上的乙酰基脱掉应采取()水解 A.0.05mol/L HCl B. 5%HCl C.5%Ca(OH)2 D.盐酸—丙酮 E.药材加硫酸铵水润湿,再水提 10.Ⅰ-型强心苷分子结合形式为() A.苷元-O-(2,6-二去氧糖)x-O-(α-羟基糖)y B.苷元-O-(α-羟基糖)x-O-(2,6-二去氧糖)y C.苷元-O-(α-羟基糖)x D.苷元-O-(6-去氧糖)x-O-(α-羟基糖)y E.苷元-O-(α-羟基糖)x-O-(6-去氧糖)y 11.下列提取方法中,溶剂用量最省的是( ) A.连续提取法 B.回流提取法 C.渗漉法 D.煎煮法13.可用于分离螺甾烷甾体皂苷和呋甾烷皂苷的方法是()A.乙醇沉淀法 B. 分段沉淀法C.胆甾醇沉淀法D.醋酸铅沉淀法E.明胶沉淀法 14.强心苷苷元与糖连接的方式有三种类型,其共同点是()A.葡萄糖在末端B.鼠李糖在末端 C.去氧糖在末端D.氨基糖在末端 15.α-去氧糖常见于() A.黄酮苷 B. 蒽醌苷C.香豆素苷D.强心苷E.皂苷 16. 下列化合物属于()

人参皂苷的提取

第一章综述 人参皂苷的简介 人参为五加科植物人参(Panax ginseng)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。 人参的化学成分很复杂,有皂苷、挥发油、糖类及维生素等。经现代医学和药理研究证明,人参皂苷为人参的主要有效成分,它具有人参的主要生理活性。 人参皂苷(ginsenoside,GS)是人参的主要有效成分,现已明确结果的GS单体约有40余种;在人参中的含量在4%左右。其中研究最多且与肿瘤细胞凋亡最为相关的为Rg3与Rh2。众多研究表明,它具有较高的抗肿瘤活性,对正常细胞无毒副作用,与其他化疗药物(如顺铂)联合应用有协同作用。人参皂苷通过调控肿瘤细胞增殖周期、诱导细胞分化和凋亡来发挥抗肿瘤作用。将肿瘤细胞诱导分化成正常细胞有利于控制肿瘤发展,诱导肿瘤细胞凋亡使细胞解体后形成凋亡小体,不引起周围组织炎症反应。Popovich等研究认为,人参皂苷可以促进人白血病细胞的凋亡,其途径与地塞米松相识,均为受体依赖性。目前我国对人参皂苷的提取分离方法、制剂工艺、抗肿瘤作用机制以及临床应用等方面做了大量研究,而且已经有人参皂苷的新产品推向市场。 人参皂苷成分 人参的根、茎、叶、花及果实中均含有多种人参皂苷(ginsenosides)。到目前为止,文献报道从人参根及其它部位已分离确定化学结构的人参皂苷有人参皂苷-Ro、-Ra1、-Ra2 、-Rb1、-Rb2、-Rb3、-Rc、-Rd、-Re、-Rf、-Rg1、-Rg2、-Rg3、-Rh1、-Rh2及-Rh3 等50余种人参皂苷。 Rh2:具有抑制癌细胞向其它器官转移,增强机体免疫力,快速恢复体质的作用。对癌细胞具有明显的抗转移作用,可配合手术服用增强手术后伤口的愈合及体力的恢复. Rg:具有兴奋中枢神经,抗疲劳、改善记忆与学习能力、促进DNA、RNA合成的作用。 Rg1:可快速缓解疲劳、改善学习记忆、延缓衰老,具有兴奋中枢神经作用、抑制血小板凝集作用。 Rg2:具有抗休克作用,快速改善心肌缺血和缺氧,治疗和预防冠心病。 Rg3:可作用于细胞生殖周期的G2期,抑制癌细胞有丝分裂前期蛋白质和ATP的合成,使癌细胞的增殖生长速度减慢,并且具有抑制癌细胞浸润、抗肿瘤细胞转移、促进肿瘤细胞凋亡、抑制肿瘤细胞生长等作用。

中药化学实验指导—实验八 甾体皂苷元的提取分离与检识

实验八 甾体皂苷元的提取分离与检识 (一)目的要求 学习从药材中提取、精制和检识甾体皂苷元,通过实验要求: 1.掌握用酸水解,有机溶剂提取和精制皂苷元的方法。 2.熟悉皂苷及皂苷元的性质和检识方法。 (二)主要化学成分的结构及性质 甾体皂苷主要存在于百合科、薯蓣科、龙舌兰科等植物中。某些甾体皂苷元如薯蓣皂苷元、替告皂苷元及海可皂苷元等是制药工业中合成甾体激素类药物及甾体避孕药的重要原料。穿山龙为薯蓣科植物穿龙薯蓣Dioscorea nipponica Mak.的干燥根茎。具有舒筋活血、消食利水、祛痰截疟的功效。主治风寒湿痹、慢性气管炎、消化不良、劳损扭伤、疟疾、痈肿。常被作为提取薯蓣皂苷元的原料,穿山龙总皂苷水解可得1.5%~2.6%薯蓣皂苷元。 1.薯蓣皂苷(dioscin) 分子式C 45H 72O 16,分子量869.08,针状结晶,mp.275~277℃(分解),可溶于甲醇、乙醇、醋酸,微溶于丙酮、戊醇,难溶于石油醚、苯,不溶于水。 1 42 1 rha O lc rh a 薯蓣皂苷 2.薯蓣皂苷元(diosgenin) 又称薯蓣皂素,分子式C 27H 42O 3,分子量414.61。为白色结晶性粉末(乙醇),mp.206~208℃,可溶于常用的有机溶剂及醋酸中,不溶于水。 (三)实验原理 本实验是根据药材中的薯蓣皂苷,经酸加热水解可产生薯蓣皂苷元和糖。因甾体皂苷元不溶于水,可溶于有机溶剂的性质,用石油醚连续回流提取总皂苷元,再用活性炭吸附脱色精制,得到精制薯蓣皂苷元。

(四)实验内容 1.薯蓣皂苷元的提取、精制 略 2.薯蓣皂苷与皂苷元的检识 (1)泡沫试验:取穿山龙的水浸液2ml,置于小试管中,用力振摇1分钟,应产生多量泡沫,放置10分钟,泡沫量应无显著变化。 (2)溶血试验:取清洁试管二支,一支加入穿山龙的水浸液0.5ml,另一支加入蒸馏水0.5ml作对照,然后各加入0.8%氯化钠水溶液0.5ml,摇匀,再向每支试管中加入红细胞悬浮液1ml,充分摇匀,静置,观察溶血现象。如试管中溶液为透明的鲜红色,管底无红色沉淀物为全部溶血;如试管中溶液透明但无色,管底沉着大量红细胞,振摇立即发生混浊为不溶血。 (3)醋酐-浓硫酸反应:取薯蓣皂苷元结晶少许,置白瓷板上,加醋酐数滴溶解后,加浓硫酸1滴,观察颜色变化。 (4)三氯醋酸反应:取薯蓣皂苷元结晶少许,置于干燥试管中,加等量固体三氯醋酸,于60~70℃恒温水浴中加热数分钟后,观察颜色变化。 (5)磷钼酸试验:取薯蓣皂苷元结晶少许,溶于乙醇中,用毛细管点于滤纸片或硅胶薄层板上,滴加磷钼酸试剂于斑点上,110℃加热,观察颜色变化,并与空白试剂作对照。 (6)薄层色谱检识 薄层板:硅胶G-CMC-Na板 试样:薯蓣皂苷元精制品乙醇溶液 对照品:薯蓣皂苷元对照品乙醇溶液 展开剂:氯仿-丙酮(93∶7) 显色:喷5%磷钼酸乙醇溶液,110℃加热10分钟显色。 (五)实验说明及注意事项 1.穿山龙经酸水解后应充分洗涤呈中性,以免烘干时被碳化。 2.在干燥水解后的原料时,应注意经常翻动,以缩短干燥时间。 3.石油醚极易挥发和燃烧,必须用水浴加热且水浴温度不宜过高,以能使石油醚微沸即可,并应加大冷凝水流速,以便冷凝完全。

皂素的提取方法

茶壳中皂素的提取 1.皂素的基本性质 茶皂素茶皂素属于五环三萜类皂苷,是由皂苷元(即配基)、糖体和有机酸形成的结构复杂的混合物。从茶皂素中一共分离出7 种皂苷配基,它们分别是茶皂苷元A、茶皂苷元B(玉蕊精醇C)、茶皂苷元C(山茶皂苷元A)、茶皂苷元E、山茶皂苷元B 及山茶皂苷元D。这七种皂苷配基,均为齐墩果烷的衍生物,区别仅在于 A 环上C-23、C-24 及E 环C-21 所接的基团不同。糖体部分包括葡萄糖醛酸、阿拉伯糖、木糖、半乳糖4 种,构成的有机酸是当归酸、醋酸,因此茶皂素是一种多单糖的配糖体。 纯的茶皂素固体,熔点223℃~224℃,无色微细柱状结晶,味苦而辛辣,平均分 子式C57H90O26,相对分子质量范围1200~2800,水解后皂苷元碳原子数为C30 2..皂素提取的基本方法 2.1超声波提取法 2.11实验器材及药品 药品:茶壳、无水乙醇,丙酮、浓盐酸等均为分析纯 器材:Y98 -3D超声波细胞粉碎机、RE-3000B旋转蒸发仪、JJ -1大功率电动搅器、HDM1000调温恒温电热套。 2.2实验方法:茶壳—粉碎—超声波提取—过滤—干燥—茶皂素。 用粉碎机将茶壳粉碎,并经过20目筛选,然后浸泡于一定体积的乙醇溶液中,搅拌均匀后装入合适的容器中,将容器固定于反应架上,启动超声波(频率20kHz)细胞粉碎机设置提取时间20分钟(不同时间对提取率的影响)、乙醇浓度80%、料液比1:4、超声功率(800w)及提取液温度50度等参数,进行提取,浸提完毕后,进行分离过滤,所得滤液用旋转蒸发仪浓缩并干燥得茶皂素,称重,测定油茶皂素的含量以及提取率。 2.2浸提法 2.2.1材料与药品:茶壳、石油醚、不同浓度乙醇(100% 、95% 、90% 、85%)、丙酮 2.2.2实验器材:粉碎机、40目筛子、磨口烧瓶、水浴锅、真空抽滤机、 2.2.3材料处理:茶壳清洗干净后,干燥后粉碎, 过40 目筛备用。 2.2.4茶皂素提取工艺流程:茶壳→粉碎→石油醚回流去油脂→乙醇回流→过滤→浓缩→丙 酮沉淀→真空干燥→粗皂素 2.2.5实验方法 2.2.5.1单因素浸提实验 2.2.5.1.1不同乙醇浓度浸提实验称取磨碎的茶壳10.0g 左右, 置于250mL 磨口烧瓶中, 加入80mL石油醚, 45℃水浴回流2h, 去茶油, 过滤, 残渣用相同方法再浸提一次,过滤, 挥发干残渣中的石油醚。再分别加入80ml不同浓度乙醇(100% 95% 、90% 、85%), 在80℃的水浴下回流2h, 趁热过滤, 并用50mL 相应试剂分两次洗涤残渣。将滤液真空浓缩至20mL 左右, 然后加入40mL 丙酮, 沉淀茶皂素, 过滤,将沉淀于50℃条件下真空干燥即得粗茶皂素。 2.2.5.2.2不同料液比浸提实验脱脂后的茶壳中分别加入不同料液比(1∶8、1:10、1∶12、1∶14) 的95%乙醇, 粗茶皂素的浸提方法同上。 2.2.5. 3.3不同提取时间浸提实验茶壳经脱脂后,加入100mL 的95%乙醇, 在80℃水浴中分别回流不同的时间(1、2、3、4h), 粗茶皂素的浸提方法同上。 1.3.1.4 不同提取温度浸提实验脱脂后的茶籽仁中, 加入100mL 的95%乙醇, 分别在不同

甾体皂苷类成分提取分离方法

甾体皂苷提取分离方法 甾体皂苷( steroidal saponins) 是天然产物中一类重要的化学成分,大多 都具有一定的生理活性,在天然产物化学研究中日趋活跃。据不完全统计,超过90 个科的植物含有甾体皂苷,尤以单子叶植物的百合科、石蒜科、薯蓣科和龙舌兰科等植物报道最多。由于含甾体皂苷成分的动植物药有相当的疗效。所以,人们在应用和研究方面越来越广泛。例如: Dracaena draco 被用于抗腹泻和止血[1],蒺藜用于治疗眼病、浮肿、腹胀、高血压、皮癣和气管炎[2], Chlorophytum malayense 对肿瘤有潜在的细胞毒活性[3], A gave americana有通便和利尿的作用[4], Solanum nigrum 在中国和日本用于对各种癌症的治疗[5],白首乌民间用于滋补药膳,是一种有前途的抗衰老药物[6],虎眼万年青民间用于抗肿瘤[7],西陵知 母用于治疗烦热消渴,骨蒸劳热,肺热咳嗽等[8]。本文就甾体皂苷的提取分离方法做一简单综述。 甾体皂苷类化合物由于连有糖残基, 一般有较强的极性, 易溶于水、甲醇、乙醇等极性溶剂, 不易溶于氯仿、乙醚等非极性溶剂。甾体皂苷不易形成结晶(苷元例外),且有时结构相似,给分离带来一定困难。甾体皂苷提取分离基本步骤为粗提、除杂、分离。 1、提取 目前, 实验室最常用不同浓度的工业乙醇或甲醇提取。也有用水作为溶剂的, 如:Jianying zhang 等用80 - 85℃的水从Anemarrhena asphodeloides 的根状茎中提取到六种甾体皂苷[9]。也可以先用氯仿、石油醚等强亲脂性溶剂处理中草药原料, 然后用乙醇为溶剂加热提取, 冷却提取液, 多数甾体皂苷由于难溶于 冷乙醇而作为沉淀析出[10]。 2、除杂方法 无论是用水还是醇作为溶剂提取所得到的皂苷,多还包含许多杂质, 如无机盐、糖类、鞣质、色素等, 尚需要进一步精制。 2.1 液液萃取法 这是一种最普遍的皂苷除杂方法, 利用皂苷一般极性较大, 易溶于水而其 中的一些杂质极性较小易溶于非极性溶剂的性质来去除一些脂溶性的杂质。一般的操作是将醇提取液减压浓缩得到的浸膏, 悬浮于水中, 依次用石油醚、乙酸乙

实验六 人参中人参皂苷的提取分离及鉴定

实验六人参中人参皂苷的提取分离及鉴定 人参为五加科植物人参(Panax ginseng C.A.Mey.)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。 人参的化学成分很复杂,有皂苷、挥发油、糖类及维生素等。经现代医学和药理研究证明,人参皂苷为人参的主要有效成分,它具有人参的主要生理活性。人参的根、茎、叶、花及果实中均含有多种人参皂苷(ginsenosides)。到目前为止,文献报道从人参根及其它部位已分离确定化学结构的人参皂苷有人参皂苷-Ro、-Ra1、-Ra2 、-Rb1、-Rb2、-Rb3、-Rc、-Rd、-Re、-Rf、-Rg1、-Rg2、-Rg3、-Rh1、-Rh2及-Rh3 等50余种人参皂苷。 根据皂苷元的结构可分为A、B、C三种类型:①人参二醇型-A 型,②人参三醇型-B型,③齐墩果酸型-C型。A型和B型皂苷均属四环三萜皂苷,其皂苷元为达马烷型四环三萜,A型皂甙元称为20(S)-原人参二醇[20(S)-protopanaxadiol]。B型皂甙元称为20(S)-原人参三醇[20(S)-protopanaxatriol]。C型皂苷则是齐墩果烷型五环三萜的衍生物,其皂苷元是齐墩果酸(oleanolic acid)。

[目的要求] 1.通过实验进一步掌握三萜类化合物的理化性质及提取、分离和检识方法。 2.学习和掌握简单回流提取法、两相溶剂萃取法、旋转蒸发器、大孔树脂柱色谱等基本实验操作技能。 [实验原理] 人参的主要成分为人参皂苷,总皂苷含量约4%,人参皂苷大多数是白色无定形粉末或无色结晶,味微甘苦,具有吸湿性。人参皂苷易溶于水,甲醇、乙醇,可溶于正丁醇、乙酸、乙酸乙酯,不溶于乙醚、苯等亲脂性有机溶剂。水溶液经振摇后可产生大量的泡沫。人参总皂苷无溶血作用,分离后,B型和c型人参皂苷有显著的溶血作用,而A型人参皂苷有抗溶血作用。 人参中除含有皂苷外,还含有脂溶性成分如挥发油,脂肪、甾体

西陵知母中甾体皂苷的分离与鉴定_洪永福

西陵知母中甾体皂苷的分离与鉴定 洪永福*,张广明1,孙连娜,韩公羽,计国桢1 (第二军医大学药学院,上海200433;1中科院上海有机化学研究所,上海200032) 摘要 目的:从新鲜西陵知母(Anemarrhena asphodeloides Bunge.)根茎中分离出有生理活性的化学成分—甾体皂苷。方法:用柱色谱法分离纯化,通过理化方法及光谱分析(U V,IR,1HN M R,13CN M R,EI-M S,ESI-M S,HM BC, HM Q C)鉴定化学结构。结果:从新鲜西陵知母根茎的乙醇提取物中分离得到西陵知母皂苷A与B,其化学结构分别为萨尔萨皂苷元-3-O-β-D-葡糖基(1※2)-O-β-D-半乳糖苷和萨尔萨皂苷元-3-O-β-D-葡糖基(1※3)-O-β-D-葡糖基(1※2)-O-β-D-半乳糖苷。结论:西陵皂苷B为一新化合物。 关键词 知母;甾体皂苷;西陵皂苷A;西陵皂苷B 中药知母为百合科(liliaceae)植物Anemar-rhena asphodeloides Bunge.的干燥根茎,主产于我国北方,其中以河北易县西陵一带所产品质最佳,为中药道地药材,称西陵知母。知母性味苦寒,有滋阴降火、润燥滑肠的功效,用于治疗烦热消渴,骨蒸劳热,肺热咳嗽,大便燥结,小便不利等症。知母根茎中含大量甾体皂苷,已分离鉴定出多种皂苷[1~6],其皂苷元有萨尔萨皂苷元(sarsasapogenin),吗尔考皂苷元(markogenin),新支脱皂苷元(neogitogenin),有A 环C-3位连接糖的苷,F环开环后,C-26位上连接糖的苷和C3,C26位同时连接有糖的苷。此外还有芒果苷,异芒果苷,新芒果苷,脂肪油,油脂,菸酸,菸酰胺,多糖[7~9]等。药理实验表明[10],知母皂苷及皂苷元有抑制Na+,K+-ATP酶的活性。这可能与知母滋阴降火,治烦热消渴,骨蒸劳热的解热机理相关。 本文报道从秋季采集的新鲜西陵知母根茎中,分离得到两个甾体皂苷:西陵皂苷A与B。根据理化性质与光谱分析,确认其结构。皂苷A(xilingsaponin A)为萨尔萨皂苷元-3-O-β-D-葡糖基(1※2)-O-β-D-半乳糖苷,皂苷B(xilingsaponin B)为萨尔萨皂苷元-3-O-β-D-葡糖基(1※3)-O-β-D-葡糖基(1※2)-O-β-D-半乳糖苷。皂苷B为一新化合物。 皂苷A 白色针状结晶,不溶于水,mp315℃(dec),[α]19D-42.32°(c0.27,dioxane)(mp317~322℃(dec),[α]27D-41.6°)[11]。对Liebermann—Burchard反应呈紫红-兰绿色,对Molish试剂呈紫 收稿日期:1998-10-26 *Tel:(021)25070345,E-mail:yfhong@infow https://www.wendangku.net/doc/0514531521.html, 洪永福 男,53岁,教授环反应。UVλMeOH max nm:263,324。IR(KCl)cm-1: 985,920,895,890(920>895),表明皂苷A有C25βF 型甾体皂苷结构。皂苷A的MS m/z:741(M+ H)+,579(M+H-162)+,417(M+H-162-162)+,表明含有两个6碳糖,及甾体皂苷E和F环特征碎片峰和螺甾烷侧链产生的m/z139(基峰), 126,115特征峰。 皂苷A经酸水解得皂苷元,为白色细针状结晶,mp197~198℃。经薄层色谱,UV,IR,M S, 1HNM R光谱测定与萨尔萨皂苷元完全一致。因此皂苷A的苷元被确定为萨尔萨皂苷元。水解母液中检出半乳糖和葡糖两种单糖。 皂苷A的1HNM Rδ4.96(1H,d,J=7.56Hz)和δ5.28(1H,d,J=7.56Hz)为糖的端基质子信号,表明皂苷A分子中有两分子糖,且均以β-键相连接。将皂苷A的13CNM R数据与相关化合物作比较,表明其皂苷元部分与萨尔萨皂苷元完全一致,糖部分两个单糖—半乳糖与葡糖连接的顺序与相关化合物一致。从HMQC可见,皂苷A的H34.32与C375.0相关,g al H14.96与gal C1102.5相关,g lu H15.28与glu C1106.1相关,进一步确认糖与苷的连接位置。相关化合物13CNM R数据见表1。据此知皂苷A的化学结构为萨尔萨皂苷元-3-O-β-D-葡糖基(1※2)-O-β-D-半乳糖苷。与文献[2,11]报道的知母皂苷A III或An-I一致。 皂苷B 白色无定形粉状物,极易溶于水,mp 178~180℃(dec),[α]20D-22.96°(c0.6,M eOH)。泡沫实验阳性,对Liebermann—Burchard反应呈紫红-兰绿色,对Molish试剂呈紫环反应。Ehrlish反 · 518 ·药学学报A cta Pharmaceutica Sinica1999,34(7)∶518~521 DOI:10.16438/j.0513-4870.1999.07.009

人参皂苷提取和分离纯化方法的研究进展

湖南农业大学课程论文 学院:班级: 姓名:学号: 课程论文题目:人参皂苷提取和分离纯化方法的研究进展课程名称: 评阅成绩: 成绩评定教师签名: 日期:年月日

人参皂苷提取和分离纯化方法的研究进展 学生: (湖南农业大学园艺园林学院,长沙) 摘要:人参皂苷是人参的主要活性成分之一,具有提高免疫力,抗氧化,抗疲劳,抗肿瘤等多种药理活性作用,如何提高效率得到高质量的人参皂苷现已成为研究热点。因此,本文综述了人参皂苷提取、分离纯化方法,旨在为人参皂苷开发和利用提供一定的科学依据。 关键词:人参皂苷提取工艺分离纯化 1前言 人参为五加科植物人参(Panax ginseng C.A.Mey)的干燥根,主产于我国吉林长白山脉、辽宁、黑龙江、河北、山西等地,是我国传统名贵的中药材。现代研究表明,人参中已经分离鉴定40余种人参皂苷单体,其次还含有人参多糖、氨基酸、蛋白质、人参二醇、人参三醇等有效成分,其中人参皂苷为人参中的主要活性成分之一,具有保护心功能,降血糖,抗氧化,抗疲劳,抗肿瘤等药理活性作用[1-2],选用合理的提取分离方法得到高质量的人参皂苷已成为研究热点。据文献报道[3-4],传统提取分离方法,如煎煮法、渗漉法、索氏提取法、柱层析法等均在中药制药业发展过程中发挥了重大作用。但是,这些方法均不同程度的存在提取周期长,有效成分流失多,提取效率低等问题。随着现代科学技术的不断发展,出现了许多新型的提取分离技术,如超临界二氧化碳萃取技术等,运用这些技术不仅降低了生产成本,又能提高其得率,对人参产业化、确化、自动化提供了技术指导。 2提取工艺研究 2.1微波提取法 微波提取具有设备简单,节省时间,萃取率高,投资少,节省溶剂,污染小等优点。刘永练[5]等采用微波提取法对西洋参干燥根中的人参皂苷进行提取,结果发现人参皂苷得率高达5.53%,比乙醇回流提取率提高29%,提取时间是乙醇回流的2%。另有实验证实了微波提取人参皂苷的提取

10、皂苷类成分的提取分离技术

中药化学技术周 次 第 15、16 周 授课 班级 13中药1班 13中药2班 13中药大参林班 授课 教师 刘惠俊 皂苷类的提取分离技术计划 课时 4 1、掌握与皂苷类成分提取分离有关的理化性质和重要的提取分离方法原理; 2、熟悉皂苷类成分的结构特点、性质和检识; 3、了解皂苷类成分的结构类型、分布情况和生物活性。 重点:兴趣培养,引导方向 难点:知识框架构成图 讲授图例见教学内容教 具 粉笔,彩图 教室 兴趣引导―――――――——————————――20分钟 课程主要内容框架讲解―――――――——――――120分钟 学生自由提问——————————————―――15分钟 总结、点评、回顾———————————————15分钟 本节课将开始讲中药化学成分--生皂苷类成分的分离技术理论,教学中结合学生的原有认识水平、心理情况的特点进行教学设计。开课由老师讲述各种原理与仪器,阐述课程学习内容与目标,调动起学生的情绪使他们身心能尽快进入学习状态。以“皂苷成分”为重点展开对课程的介绍,以相关思考提高学习兴趣。并且让学生在自我思考及提问后,让学生用自己的语言形容对中药化学认识,并给予科学的阐述。课后布置500字的上课感想及对教学的建议及愿望表达来了解学生的心理和知识水平,以便日后更好的开展课程教学,因材施教。

第一节认识皂苷 一、结构与分类 甾体皂苷 三萜皂苷 二、理化性质及溶血性 三、检识反应 第二节提取分离 第三节工作任务 任务一:人参中皂苷成分的提取分离任务二:甘草中人参皂苷的提取分离任务三:柴胡中皂苷类成分的提取分离

整个教学过程学生基本按预先的教学设计意图有效的完成了教学内容,对知识点的掌握都达到了预期目标。但部分女生则胆小羞涩,迟迟不愿举起手,但以“平时成绩分”做诱饵,则大有改善。有时学生对板书不是很在意,不能做到及时记好笔记。在以后的教学中除了需不断强调学生自主学习意识,避免被动填鸭式教学外,还需要在教学手段、方法上完善。

天然甾体皂苷的提取分离现状

第39卷第4期辽宁化工V o.l39,N o.4 2010年4月L i aoning Che m ical Industry A pr i,l2010天然甾体皂苷的提取分离现状 李少亮 (广州化学试剂厂,广东广州510288) 摘要:介绍了甾体皂苷的提取和分离技术现状,对其分析测定也作了简单概述。甾体皂苷的提 取分离技术由传统的溶剂法,逐步发展到现代仪器法如超声法、超临界法、色谱法等,分离效果和速度都 大大提高。 关键词:甾体皂苷;提取;分离;高效液相色谱 中图分类号:TQ028文献标识码:A文章编号:1004-0935(2010)04-0428-04 甾体皂苷(stero i d al saponins)是天然产物中一类重要的化学成分,具有祛痰、止咳、镇静、抗菌、抗癌、解热等多种生物活性,在天然产物化学研究中日趋活跃。其作为药物中间体的药用价值极高,是合成4大类甾体激素的主要原料之一,在制备消炎、镇痛、脑血管、避孕药物中广泛应用,在一些农药也作为添加剂使用。1992年联合国卫生组织宣布禁止使用化学合成法生产甾体激素药物,而动物中提取的皂苷可导致肥胖和巨人症,因此,从植物中提取天然皂苷、甾醇生产甾体激素药物具有广阔的市场前景。 1提取与分离纯化 传统的甾体皂苷提取主要有溶剂法和沉淀法,缺点是提取分离有效组分的量以及纯化的程度都相对较低。随着现代分析分离技术的进步,提纯和分离高浓度的甾体皂苷已经实现,但是要大规模生产高浓度的皂苷仍然成本较高,需要开发新式更经济的提取分离方法。 1.1溶剂法 溶剂法提取的基本步骤分为粗提、除杂、分离。主要是使用甲醇或稀乙醇作溶剂,提取液经过回收溶剂后,用水稀释,经正丁醇萃取或大孔吸附树脂纯化,得粗皂苷,最后用硅胶柱色谱法或高效液相色谱法分离,得到单体,常用的洗脱剂有不同比例的氯仿-甲醇-水混合溶剂和水饱和的正丁醇等。 作为传统的溶剂法,文献报道较多。谭大维[1]等采用乙醇回流提取,正丁醇萃取绵萆薛中的皂苷成分,分离时采用加压硅胶柱层析的氯仿-甲醇-水梯度洗脱,洗脱液分类浓缩结晶后,使用SP825大孔吸附树脂柱色谱依次用丙酮-水的梯度洗脱,得到三部分化合物,均为不同类的薯蓣皂苷。洪永福[2]等采用乙醇回流提取,热戊醇萃取中药西陵知母中的甾体皂苷,对总皂苷分离时使用硅胶柱色谱,以水饱和正丁醇溶液洗脱,分别得到两种知母皂苷和知母黄酮。董梅[3]等采用95%乙醇加热回流提取黄山药中甾体皂苷,浓缩后取部分样品进行硅胶柱色谱,以氯仿-乙醇梯度洗脱,将其中的部分经H PLC分离,得到几种甾体皂苷。 中药重楼是云南白药、宫血凝胶囊等的主要组成药物,其主要的活性成分是甾体皂苷类化合物。刘海[4]等采用乙醇提取重楼得到的提取液,经过减压浓缩脱醇后,以水溶解,使用大孔树脂D101柱,收集40%~80%的洗脱液,将得到的浸膏经硅胶柱层析(氯仿-甲醇梯度洗脱)、Sepha-dex L H-20(氯仿-甲醇),RP-C18(甲醇-水)反复分离纯化,得到多种重楼皂苷和其他化合物。 1.2沉淀法 收稿日期:2010-01-03 作者简介:李少亮(1982-),男,助理工程师。

人参皂苷Re的提取

人参皂苷Re的提取研究方法综述 康乐 摘要:人参作为我国传统的中药广泛被人们开发,然而并未完全分析透彻其内的全部活性物质。因此,文章从人参皂苷Re的提取方法进行综述,并根据当前开发的情况进行了总结并提出今后的研究方向。 关键词:人参皂苷Re;提取方法;展望 Review about Ginseng saponins of extration methods Re Kangle Abstract As the traditional Chinese medicine ginseng widely developed, however, not fully analyzed thoroughly all of its active substances. Therefore, this article from the ginseng saponins Re were reviewed in this article, and according to the current development of the paper and put forward the direction of future research. Keyword Ginseng saponins Re Extraction method Research direction 人参是一味被广泛用于养身治病的传统中药,与貂皮、鹿茸并称为中国东北三宝。人参皂苷是人参的主要有效成分。根据皂苷元的不同,人参皂苷被分为原人参二醇类皂苷、原人参三醇类皂苷及齐墩果酸类皂苷。人参皂苷在人参中的含量很低,在人参的各个组织器官中的含量都有所不同,这无形中又增加了我们对人参皂苷的分离提取的难度。在实际生产中,我们一方面要保证皂苷的产率,另一方面又要保证它的生物活性。 1.人参皂苷单体Re的提取方法 人们对人参的提取多以人参皂苷Re的含量作为其质量指标,且常用的提取方法有醇回流法、超声提取法、微波处理、紫外可见分光光度法、层析法(硅胶柱层析法、薄层层析法)、高速逆流色谱法(HSCCC)、湿法粉碎提取法、煎煮法、薄层扫描法、HPLC法等。 1.1层析法 在层析法中,采用硅胶柱层析法对人参叶三醇皂苷进行分离,TLC点板后收集单点Re 产品,通过结晶法精制,从而得到较纯的人参皂苷Re。硅胶层析法制胶简单,操作过程容易,但人参总皂苷经硅胶柱分离后,各组分间并没有完全分离,还存在互相混合的部分。

相关文档